LT3999 [Linear]

Low Noise, 1A, 1MHz Push-Pull DC/DC Driver with Duty Cycle Control;
LT3999
型号: LT3999
厂家: Linear    Linear
描述:

Low Noise, 1A, 1MHz Push-Pull DC/DC Driver with Duty Cycle Control

文件: 总16页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3999  
Low Noise, 1A, 1MHz  
Push-Pull DC/DC Driver  
with Duty Cycle Control  
FEATURES  
DESCRIPTION  
The LT®3999 is a monolithic, high voltage, high frequency  
DC/DC transformer driver providing isolated power in a  
n
Wide Input Operating Range: 2.7V to 36V  
n
Dual 1A Switches with Programmable Current Limit  
n
Programmable Switching Frequency: 50kHz to 1MHz small solution footprint.  
n
n
n
n
n
n
n
n
Frequency Synchronization Up to 1MHz  
The LT3999 has two 1A current limited power switches  
V Compensation Using Duty Cycle Control  
IN  
that switch out of phase. The duty cycle is programmable  
to adjust the output voltage. The switching frequency is  
programmed up to 1MHz and can be synchronized to an  
external clock for more accurate placement of switcher  
harmonics. The input operating range is programmed  
withtheprecisionundervoltageandovervoltagelockouts.  
The supply current is reduced to less than 1µA during  
shutdown. A user-defined RC time constant provides an  
adjustable soft-start capability by limiting the inrush cur-  
rent at start-up.  
Low Noise Topology  
Programmable Input Over and Undervoltage Lockout  
Cross Conduction Prevention Circuitry  
Programmable Soft-Start  
Low Shutdown Current: <1µA  
10-Lead MSOP and DFN Packages  
APPLICATIONS  
n
Low Noise Isolated Supplies  
n
Medical Instrument and Safety  
The LT3999 is available in a 10-lead MSOP and 3mm ×  
3mm DFN package with exposed pad.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Distributed Power  
Multiple Output Supplies  
Positive-to-Negative Supplies  
Noise Immunity in Data Acquisition, RS232  
and RS485  
n
n
n
TYPICAL APPLICATION  
LT3999 Line Regulation with  
Duty Cycle Control  
12V to 12V, 10W Low Noise Isolated DC/DC Converter  
V
IN  
16  
15  
12V  
10µF  
16V  
V
IN  
15.3µH  
V
OUT  
12V  
SYNC  
SWA  
SWB  
14  
13  
12  
11  
10  
9
0.8A  
255k  
10k  
UVLO  
10µF  
16V  
I
= 400mA  
OUT  
OVLO/DC  
RDC  
I
= 200mA  
OUT  
LT3999  
15.8k  
I
= 800mA  
OUT  
3999 TA01a  
RT  
ILIM/SS  
RBIAS  
28k  
GND  
0.1µF 49.9k  
500kHz  
8
14 15  
10 11 12 13  
INPUT VOLTAGE (V)  
16 17 18  
3999 TA01b  
3999fa  
1
For more information www.linear.com/LT3999  
LT3999  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
SWA, SWB................................................. –0.3V to 80V  
IN  
OVLO/DC, SYNC ......................................... –0.3V to 8V  
Operating Junction Temperature Range (Note 2)  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
V , UVLO .................................................. –0.3V to 60V  
MSOP ...............................................................300°C  
LT3999E ............................................ –40°C to 125°C  
LT3999I ............................................. –40°C to 125°C  
LT3999H............................................ –40°C to 150°C  
LT3999MP......................................... –55°C to 150°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
SWA  
1
2
3
4
5
10 SWB  
SWA  
1
2
3
4
5
10 SWB  
RBIAS  
9
8
7
6
ILIM/SS  
RBIAS  
9
8
7
6
ILIM/SS  
11  
GND  
11  
V
SYNC  
RT  
RDC  
V
IN  
SYNC  
RT  
IN  
GND  
UVLO  
UVLO  
OVLO/DC  
OVLO/DC  
RDC  
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
DD PACKAGE  
θ
= 40°CW, θ = 10°CW  
JC  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
JA  
10-LEAD (3mm × 3mm) PLASTIC DFN  
θ
= 43°C/W, θ = 5.5°C/W  
JC  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3999EMSE#PBF  
LT3999IMSE#PBF  
LT3999HMSE#PBF  
LT3999MPMSE#PBF  
LT3999EDD#PBF  
LT3999IDD#PBF  
TAPE AND REEL  
PART MARKING*  
LTGKR  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3999EMSE#TRPBF  
LT3999IMSE#TRPBF  
LT3999HMSE#TRPBF  
LT3999MPMSE#TRPBF  
LT3999EDD#TRPBF  
LT3999IDD#TRPBF  
10-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–55°C to 150°C  
–40°C to 125°C  
–40°C to 125°C  
LTGKR  
10-Lead Plastic MSOP  
LTGKR  
10-Lead Plastic MSOP  
LTGKR  
10-Lead Plastic MSOP  
LGKQ  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
LGKQ  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3999fa  
2
For more information www.linear.com/LT3999  
LT3999  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 15V  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Supply and Shutdown  
l
l
V
V
V
V
Minimum Operating Voltage  
Overvoltage Lockout  
Supply Current  
2.7  
42  
V
V
IN  
IN  
IN  
IN  
Internal, Rising  
(Note 3)  
36  
40  
4.3  
0.1  
1.25  
125  
10  
mA  
μA  
V
Shutdown Current  
V
V
V
= 0.3V  
1
UVLO  
l
l
UVLO Threshold (Rising)  
UVLO Hysteresis  
1.15  
1.15  
1.35  
mV  
nA  
V
UVLO Pin Current  
= 1.25V  
100  
UVLO  
OVLO/DC Threshold (Rising)  
OVLO/DC Hysteresis  
OVLO/DC Pin Current  
Power Switches (SWA, SWB)  
Switch Saturation Voltage  
Switch Current Limit  
Non Overlap Time  
1.25  
125  
10  
1.35  
mV  
nA  
= 1.25V  
100  
1.7  
OVLO/DC  
I
= 1A  
350  
1.4  
70  
mV  
A
SW  
l
Internal Default  
1.0  
ns  
Switch Base Drive Current  
Oscillator/Sync  
I
= 1A  
35  
mA  
SW  
Switching Frequency  
R = 316k  
50  
kHz  
kHz  
kHz  
T
l
R = 49.9k  
280  
100  
300  
320  
T
R = 12.1k  
1000  
T
Synchronization Frequency Range  
SYNC Voltage Threshold  
SYNC Pin Input Resistance  
ILIM/SS  
1000  
kHz  
V
1.5  
200  
kΩ  
l
SWA and SWB Current Limit  
ILIM/SS Pin Current  
Duty Cycle  
R
= 43.2k  
0.4  
22  
0.5  
10  
0.6  
30  
A
ILIM/SS  
μA  
Switch Duty Cycle  
OVLO/DC = 0.8V, R = 24.3k, R = 49.9k  
20  
25  
48  
%
%
%
DC  
T
l
OVLO/DC = 0.612V, R = 24.3k, R = 49.9k  
DC  
T
OVLO/DC = 0.3V, R = 24.3k, R = 49.9k  
DC  
T
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect the device  
reliability and lifetime.  
Note 3: Supply current specification does not include switch drive  
currents. Actual supply currents will be higher.  
Note 2: The LT3999E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization, and correlation with statistical process controls. The  
LT3999I Is guaranteed over the –40°C to 125°C operating junction  
temperature range. The LT3999H is guaranteed over the full –40°C to  
150°C operating junction temperature range. The LT3999MP is 100%  
tested and guaranteed over the –55°C to 150°C junction temperature  
range. High junction temperatures degrade operating lifetimes; operating  
lifetime is derated for junction temperatures greater than 125°C.  
3999fa  
3
For more information www.linear.com/LT3999  
LT3999  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
IN Shutdown Current  
Switching Frequency  
VCESAT vs Switch Current  
2.5  
400  
375  
350  
325  
300  
275  
250  
225  
200  
400  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.5  
1.0  
0.5  
0
0
50 75  
TEMPERAURE (°C)  
–50 –25  
0
25  
100 125 150  
50  
TEMPERATURE (°C)  
400 500  
600 700  
–50 –25  
0
25  
75 100 125 150  
0
100  
800 9001000  
200 300  
SWITCH CURRENT (mA)  
3999 G02  
3999 G01  
3999 G03  
Switch VCESAT  
Switch Leakage Current  
Switch Current Limit  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
SWITCH CURRENT = 1A  
500  
400  
R
= OPEN  
= 80.6k  
ILIM/SS  
R
ILIM/SS  
ILIM/SS  
300  
200  
100  
R
= 43.2k  
600  
400  
200  
0
–50  
50  
100 125  
150  
75 100  
–25  
0
25  
75  
50  
–50 –25  
0
25 50  
125 150  
–50 –25  
0
25  
75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3999 G06  
3999 G04  
3999 G05  
UVLO Threshold Voltage  
OVLO Threshold Voltage  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
OVLO RISING  
UVLO RISING  
OVLO FALLING  
UVLO FALLING  
–50  
50  
100 125  
150  
–25  
0
25  
75  
–50  
50  
100 125  
150  
–25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3999 G08  
3999 G07  
3999fa  
4
For more information www.linear.com/LT3999  
LT3999  
TYPICAL PERFORMANCE CHARACTERISTICS  
Soft-Start (ILIM/SS) Current  
Switch Duty Cycle  
14  
13  
12  
11  
10  
9
40  
35  
30  
25  
20  
15  
10  
8
7
6
5
4
75 100  
–50  
50  
100 125  
150  
–50 –25  
0
25 50  
125 150  
–25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3999 G09  
3999 G10  
PIN FUNCTIONS  
SWA, SWB (Pin 1, Pin 10): SWA and SWB pins are the  
open-collector nodes of the power switches. These pins  
drive the transformer and are connected to the outer ter-  
minals of the center tapped transformer. Large currents  
flowthroughthesepinssokeepPCBtracesshortandwide.  
RDC (Pin 6): The RDC pin is the duty cycle control pin. A  
resistor to ground sets the duty cycle. If unused leave the  
pin floating or connect to the OVLO/DC pin.  
RT (Pin 7): The RT pin sets the switching frequency of  
the power switches.  
RBIAS (Pin 2): The RBIAS pin sets the bias current of  
the power switches (SWA and SWB). Connect the pin to  
a 49.9k resistor to GND.  
SYNC (Pin 8): The SYNC pin synchronizes the part to an  
external clock. Set the internal oscillator frequency below  
the external clock frequency. Synchronizing the clock to  
an external reference is useful for creating more stable  
positioning of the switcher voltage or current harmonics.  
Connect the SYNC pin to ground if not used.  
V
IN  
(Pin 3): The V pin is the main supply pin for the  
IN  
switch driver and internal regulator. Short duration, high  
current pulses are produced during the turn on and turn  
off of the power switches. Connect a low ESR capacitor  
of 4.7µF or greater.  
ILIM/SS (Pin 9): The ILIM/SS pin sets a threshold level  
for the cycle by cycle maximum switch current. Imple-  
UVLO (Pin 4): The UVLO pin has a precision threshold  
ment soft-start with a capacitor, C , placed on this pin to  
SS  
with hysteresis to implement an accurate V undervolt-  
ground. An internal current source charges the capacitor.  
IN  
age lockout. The UVLO function disables switching and  
The R , C time constant sets the soft-start time and  
ILIM SS  
sets the part into a low current shutdown mode. Connect  
ramps the maximum switch current threshold at start-up.  
the UVLO pin directly to V or to a resistor divider string.  
IN  
If the ILIM/SS function is not used, float this pin and the  
current limit will default to the internal limit.  
OVLO/DC(Pin5):TheOVLO/DCpinhasaprecisionthresh-  
old withhysteresistoimplementan accurateV overvolt-  
IN  
GND (Pin 11): The ground pin is the exposed pad of the  
package. Solder the exposed pad directly to the ground  
plane.  
age lockout. The OVLO function disables the switching.  
Connect OVLO/DC pin to ground to disable the function  
or to a resistor divider string to program the duty cycle.  
3999fa  
5
For more information www.linear.com/LT3999  
LT3999  
BLOCK DIAGRAM  
D1  
D2  
T1  
V
OUT  
V
IN  
C
IN  
3
1
10  
SWA SWB  
V
IN  
LINEAR  
R
R
A2  
A1  
BANDGAP  
REGULATOR  
UVLO  
+
+
4
INTERNAL  
BIAS  
+
+
RBIAS  
SWITCH  
CONTROL  
2
OVLO/DC  
R
5
BIAS  
SWITCH A  
SWITCH B  
R
B
+
+
OSCILLATOR  
+
+
DUTY CYCLE  
CONTROL  
+
R
SENSE  
+
RDC  
SYNC RT  
7
GND ILIM/SS  
6
8
11  
9
3999 BD  
R
ILIM  
C
SS  
R
DC  
R
T
3999fa  
6
For more information www.linear.com/LT3999  
LT3999  
OPERATION  
Overview  
Current Limit and Soft-Start  
The LT3999 is a monolithic isolated push-pull DC trans-  
former driver. It includes functions such as duty cycle  
control, soft-start and protection features.  
The LT3999 ILIM/SS pin programs the cycle-by-cycle  
switch current limit and the soft-start time. A resistor on  
the ILIM/SS pin sets the current limit. A capacitor on the  
pininconjunctionwiththeresistorsetsthesoft-starttime.  
Push-Pull Topology  
When the programmed current limit is reached the switch  
isimmediatelyturnedoffandremainsofffortheremainder  
of the cycle. Leaving the ILIM/SS pin unconnected will  
disable the programmable current limit and the LT3999  
will default to its internal current limit.  
In a push-pull topology, a pair of switches operating out  
of phase generate a square wave voltage pulse on the  
primary side of a center tapped transformer. The diodes  
on the secondary side rectify the voltage and generate  
the output voltage. This voltage is simply V times the  
IN  
Thesoft-startfunctionrampsthemaximumswitchcurrent  
over the programmed soft-start time. The purpose of the  
soft-startistoreduceinrushcurrentfromtheinputsupply.  
transformer turns ratio.  
Duty Cycle Control  
The LT3999 duty cycle control provides, to a degree, line  
regulation. The duty cycle is programmed by a resistor  
on the RDC pin and the OVLO/DC voltage. By making the  
Other Features  
The LT3999 protection features include overvoltage lock-  
out (OVLO), undervoltage lockout (UVLO) and thermal  
shutdown.  
OVLO/DC voltage a function of V the duty cycle will  
IN  
adjust with varying V thereby keeping V  
constant.  
IN  
OUT  
The OVLO function is programmed with the OVLO/DC pin.  
Switching is disabled during an OVLO event. An internal  
ThisfeatureisusefulincaseswhereanLDOisusedtopost  
regulate the output of the LT3999. By pseudo regulating  
the output with the duty cycle control the power dissipa-  
tion in the LDO is minimized.  
overvoltage lockout on the V pin is also provided to  
IN  
protect the LT3999.  
The UVLO function is programmed with the UVLO pin.  
Switching is disabled during a UVLO event. The UVLO  
pin is also used to put the LT3999 into a low quiescent  
shutdown state.  
Leaving the RDC pin floating or connecting it to the OVLO/  
DC pin disables the duty cycle function and the LT3999  
operates at close to 50% duty cycle.  
At a junction temperature above the operating tempera-  
ture range the thermal shutdown function turns off both  
switches.  
3999fa  
7
For more information www.linear.com/LT3999  
LT3999  
APPLICATIONS INFORMATION  
Switching Frequency  
Oscillator Sync  
The LT3999 drives two output power switches out of  
phase, thustheoscillatorfrequencyistwotimestheactual  
switching frequency of each power switch. The choice  
of switching frequency is a trade-off between power ef-  
ficiency and the size of capacitive and inductive storage  
components.  
In applications where a more precise frequency is desired  
toaccuratelyplacehighfrequencyharmonics, theLT3999  
oscillator can be synchronized to an external clock. Set  
the internal oscillator frequency 10% to 50% lower than  
the external sync frequency. The switching frequency is  
one-half the sync frequency.  
Operating at low switching frequency reduces the switch-  
inglosses(transientlosses)andconsequentlyimprovesthe  
power converter efficiency. However, the lower switching  
frequency requires greater inductance for a given amount  
of ripple current, resulting in a larger design footprint and  
higher cost.  
Drive the SYNC pin with a 2V or greater square wave.  
The rising edge of the sync square wave will initiate clock  
discharge. If unused, connect the SYNC pin to ground.  
Duty Cycle  
To run the LT3999 at full duty cycle leave the RDC pin  
unconnected.  
TheLT3999switchingfrequencyissetintherangeof50kHz  
to 1MHz. The value of R for a given operating frequency  
T
Variations in V are, to a first order, compensated with  
IN  
is chosen from Table 1 or from the following equation:  
the LT3999 duty cycle control function. The duty cycle  
function is implemented with a resistor divider on V  
IN  
Table 1. Recommended 1% Standard Values  
connected to the OVLO/DC pin and a resistor to ground  
on the RDC pin. Use the following formula to calculate  
the RDC resistor or duty cycle:  
R
f
SW  
T
316kΩ  
158kΩ  
76.8kΩ  
49.9kΩ  
36.5kΩ  
28kΩ  
50kHz  
100kHz  
200kHz  
300kHz  
400kHz  
500kHz  
600kHz  
700kHz  
800kHz  
900kHz  
1000kHz  
1.25RDC  
Duty Cycle DC =  
(
)
RB  
V •  
•RT 4  
IN  
RA +RB  
22.6kΩ  
19.1kΩ  
16.2kΩ  
14kΩ  
RB  
RA +RB  
1.25  
V •  
•RT •DC•4  
IN  
RDC=  
12.1kΩ  
where R and R are the resistors from the V to OVLO/  
A
B
IN  
DC resistor divider and R is the frequency setting resis-  
T
1
R kΩ =  
70ns 3.251010  
(
)
T
tor. See Figure 1. Setting the OVLO/DC pin to be 0.612V  
2•f  
SW  
at the nominal V voltage yields good line regulation over  
IN  
a wide input range.  
The duty cycle refers to the duty cycle of the individual  
switch. Normally each switch operates at close to 50%  
duty cycle.  
3999fa  
8
For more information www.linear.com/LT3999  
LT3999  
APPLICATIONS INFORMATION  
Soft-Start and Current Limit  
V
V
IN  
IN  
R
R
R
R
R
A
B
A2  
A1  
B
The LT3999 soft-start ramps the peak switch current over  
a time programmed by either a capacitor or a resistor and  
capacitor on the ILIM/SS pin.  
UVLO  
OR  
OVLO/DC  
UVLO  
OVLO/DC  
Whenprogrammingthesoft-starttimewithacapacitoronly  
thesoft-starttimeiscalculatedwiththefollowingformula:  
3999 F01  
Figure 1. Precision UVLO and OVLO Resistor Divider  
t
(ms) = C • 80  
SS  
SS  
where C is in µF.  
SS  
Resistors are chosen by first selecting R . Then calculate  
A
B
R with the following formula:  
Thecurrentlimitdefaultstotheinternallysetvaluebecause  
there is no resistor on the pin.  
VTH  
1.25V  
–1  
RA =RB  
When programming the soft-start time with a resistor  
and capacitor on the ILIM/SS pin the soft-start time is  
calculated with the following formula:  
where V is the V referred voltage at which the supply  
TH  
IN  
is enabled (UVLO) or disabled (OVLO/DC).  
τ = RC  
Transformer Design  
where 3τ will be 95% of the maximum current.  
Table 3 lists recommended center tapped transformers  
for a variety of input voltage, output voltage and power  
combinations. These transformers will yield slightly high  
output voltages so that they can accommodate an LDO  
regulator on the output.  
The cycle-by-cycle current limit of the LT3999 is set with  
a resistor on the ILIM/SS pin. Use the following formula  
to calculate the value of the resistor:  
R
ILIM  
(kΩ) = I • 86.4  
LIM  
OVLO/DC and UVLO  
If your application is not listed, the LTC Applications group  
is available to assist in the choice and/or the design of the  
transformer. In the design/selection of the transformer  
the following characteristics are critical and should be  
considered:  
The UVLO pin has a precision voltage threshold with  
hysteresis to enable the LT3999. The pin is typically con-  
nected to V through a resistor divider; however, it can  
IN  
be directly connected to V .  
IN  
Table 3. Recommended Center Tapped Transformers  
The OVLO/DC pin has a precision voltage threshold with  
hysteresis to disable the LT3999 switching operation. The  
NOMINAL  
INPUT  
NOMINAL  
OUTPUT  
OUTPUT  
pin is typically connected to V through a resistor divider.  
IN  
VOLTAGE (V) VOLTAGE (V) POWER (W)  
PART NUMBER  
Coilcraft PA6383  
Coilcraft PA6381  
The OVLO/DC pin can be directly connected to GND to  
disable the function. It is possible to use two separate  
resistor divider strings for OVLO/DC and UVLO pins or  
combine them together and use one resistor divider string  
to drive both pins. See Figure 1.  
5
5
5
5
5
1
3
12  
12  
Cooper Bussmann  
CTX02-19064  
12  
24  
12  
24  
10  
20  
Coilcraft PA6384  
Cooper Bussmann  
CTX02-19061  
3999fa  
9
For more information www.linear.com/LT3999  
LT3999  
APPLICATIONS INFORMATION  
Turns Ratio  
Winding Resistance  
The turns ratio of the transformer determines the output  
voltage. The following equation is used as a first pass to  
calculate the turns ratio:  
Resistance in either the primary or secondary winding  
reduces overall efficiency and degrades load regulation.  
If efficiency or load regulation is unsatisfactory, verify  
that the voltage drops in the transformer windings are  
not excessive.  
NS  
VOUT +VF  
=
NP 2 V – V  
DC  
(
)
IN  
SW  
Capacitors  
where V is the forward voltage of the output diode, V  
F
SW  
In applications with full duty cycle operation, the input  
supplycurrentisapproximatelyconstant. Therefore, large  
input “hold-up type” capacitors are not necessary. A low  
value (>4.7µF), low ESR ceramic will be adequate to filter  
high frequency noise at the input. The output capacitors  
supply energy to the output load only during switch  
transitions. Therefore, large capacitance values are not  
necessary on the output.  
is the voltage drop across the internal switches (see the  
Typical Performance curves) and DC is the duty cycle.  
Sufficient margin should be added to the turns ratio to  
account for voltage drops due to transformer winding  
resistance.  
Magnetizing Current  
The magnetizing inductance of the transformer causes  
a ripple current that is independent of load current. This  
ripple current is calculated by:  
Transformer winding capacitance between the isolated  
primary and secondary has parasitic currents that can  
cause noise on the grounds. Providing a high frequency,  
low impedance path between the primary and secondary  
gives the parasitic currents a local return path. A 2.2nF,  
1kV ceramic capacitor is recommended.  
V •DC  
fSW •LM  
IN  
I=  
whereIandL areprimaryripplecurrentandmagnetizing  
M
Optional LC Filter  
inductancereferredtotheprimarysideofthetransformer,  
respectively. Increasing the transformer magnetizing in-  
An optional LC filter, as shown on the Typical Application  
on the first page of this data sheet, should be included if  
ultralow noise and ripple are required. It is recommended  
that the corner frequency of the filter should be set a  
decade below the switching frequency so that the switch  
noise is attenuated by a factor of 100. For example, if the  
ductance,L ,reducestheripplecurrent.Theripplecurrent  
M
formula shows the effect of the switching frequency on  
the magnetizing inductance. Setting the LT3999 at high  
switching frequency reduces the ripple current for the  
same magnetizing inductance. Therefore, it is possible to  
reduce the transformer turns and still achieve low ripple  
current.Thishelpstoreducethepowerconverterfootprint  
as well. The transformer magnetizing inductance should  
be designed for the worst-case duty cycle and input line  
voltage combination.  
f
= 100kHz, then f  
= 10kHz where:  
OSC  
CORNER  
1
fCORNER  
=
2•π LC  
Switching Diode Selection  
A good rule of thumb is to set the primary current ripple  
A fast recovery, surface mount diode such as a Schottky  
is recommended. The proximity of the diodes to the  
transformer outputs is important and should be as close  
as possible with short, wide traces connecting them.  
amplitude 10% to 30% of the average primary current, I :  
P
POUT  
IP =  
V eff  
IN  
where P  
is the output power of the converter and eff  
OUT  
is the converter efficiency, typically around 85%.  
3999fa  
10  
For more information www.linear.com/LT3999  
LT3999  
APPLICATIONS INFORMATION  
Output Voltage Regulation  
The junction temperature is computed as:  
T = T  
+ P θ  
D
The output voltage of the DC transformer topology is  
unregulated. Variations in the input voltage will cause  
the output voltage to vary because the output voltage is  
a function of the input voltage and the transformer turn  
ratio. Also, variations in the output load will cause the  
output voltage to change because of circuit parasitics,  
such as the transformer DC resistance and power switch  
on resistance. If regulation is necessary, a post regulator  
such as a linear regulator can be added to the output of  
the supply. See the Typical Applications for examples of  
adding a linear regulator.  
J
AMB  
JA  
where:  
P = P  
+ P  
+ P and θ is the package  
SW JA  
D
VIN  
VCESAT  
thermal resistance.  
Layout Consideration Check List  
The following is a list of recommended layout consider-  
ations:  
• Locate the bypass capacitor on the V pin of the trans-  
IN  
former close to the transformer.  
Power Consideration  
• Create a solid GND plane, preferably on layer two of  
the PCB.  
The current derived from the V pin and the SWA and  
IN  
SWB switching currents are the sources of the LT3999  
• Use short wide traces to connect to the transformer.  
power dissipation. The power dissipation is the sum of:  
• The transformer and PCB routing should be care-  
fully designed to maximize the symmetry between two  
switching half cycles.  
1) The quiescent current and switch drive power  
dissipation:  
ISW •DC  
30  
• SoldertheLT3999exposedpadtothePCB.Addmultiple  
vias to connect the exposed pad to the GND plane.  
IN   
VIN = V  
P
+4mA  
More Help  
where I is the average switch current.  
SW  
AN70: “A Monolithic Switching Regulator with 100mV  
Output Noise” contains much information concerning  
applications and noise measurement techniques.  
2) Theconductingpowerdissipationoftheswitchesduring  
on state:  
P
= V • I • 2DC  
CESAT SW  
VCESAT  
where DC is the duty cycle and V  
is the collector  
CESAT  
to emitter voltage drop during the switch saturation.  
3) The dynamic power dissipation due to the switching  
transitions:  
P
SW  
= V • I • f  
• (t + t )  
IN SW OSC r f  
where t and t are the rise and fall times.  
r
f
3999fa  
11  
For more information www.linear.com/LT3999  
LT3999  
TYPICAL APPLICATIONS  
30V to 12V, 10W Push-Pull DC Transformer  
V
IN  
30V  
C
10µF  
50V  
L1  
IN  
OPTIONAL  
V
D1  
IN  
V
OUT  
T1  
R1  
SYNC  
12V  
SWA  
SWB  
499k  
C
10µF  
16V  
0.8A  
OUT  
UVLO  
R2  
19.1k  
OVLO/DC  
LT3999  
RDC  
D2  
RT  
3999 TA02  
ILIM/SS  
RBIAS  
D1, D2: DIODES INC. B260  
L1: COILCRAFT M56132-153  
T1: COOPER BUSSMANN CTX02-19062  
R
T
GND  
R
49.9k  
C1  
0.1µF  
BIAS  
28k  
500kHz  
5V to 5V, 4W Low Part Count Push-Pull DC Transformer  
V
IN  
5V  
C
IN  
47µF  
10V  
V
D1  
IN  
V
OUT  
T1  
5V  
UVLO  
SWA  
SWB  
C
10µF  
10V  
0.8A  
OUT  
SYNC  
OVLO/DC  
LT3999  
RDC  
D2  
RT  
3999 TA03  
ILIM/SS  
RBIAS  
D1, D2: CENTRAL SEMI. CMSH1-20M  
T1: COILCRAFT PA6383  
R
T
GND  
R
BIAS  
12.1k  
1MHz  
49.9k  
10V-15V to 12V, 200mA Isolated Switching Regulator  
V
IN  
10V TO 15V  
C
10µF  
100V  
IN  
R1  
L1  
V
OUT  
V
715k  
IN  
D1  
39µH  
SHDN OUT  
12V  
T1  
C
10µF  
25V  
OUT1  
SYNC  
200mA  
SWA  
SWB  
IN  
1M  
R2  
36.5k  
C1  
LT3065  
UVLO  
C3  
10µF  
50V  
ADJ  
180pF  
OVLO/DC  
REF/BYP  
R8  
52.3k  
D2  
D3  
R7  
10k  
L2  
39µH  
R3  
66.5k  
0.01µF  
R4  
39k  
LT3999  
–V  
OUT  
SHDN OUT  
IN  
–12V  
R6 200mA  
10k  
RDC  
C
OUT2  
10µF  
25V  
C2  
10µF  
50V  
RT  
ILIM  
D4  
LT3090  
ILIM/SS  
RBIAS  
SET  
D1-D4: CENTRAL SEMI. CMSH1-200HE  
L1, L2: COILCRAFT XFL3012-393MEG  
T1: WÜRTH 750314781  
R10  
243k  
GND  
R
T
GND  
R
C
R
BIAS  
DC  
SS  
12.1k  
1MHz  
13.3k  
0.01µF 49.9k  
3999 TA04  
3999fa  
12  
For more information www.linear.com/LT3999  
LT3999  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MSE Package  
10-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1664 Rev I)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
1.88  
(.074)  
1.88 ±0.102  
(.074 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
1
0.29  
REF  
1.68  
(.066)  
0.05 REF  
5.10  
(.201)  
MIN  
1.68 ±0.102  
3.20 – 3.45  
DETAIL “B”  
(.066 ±.004) (.126 – .136)  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
10  
NO MEASUREMENT PURPOSE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ±.0015)  
TYP  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 3)  
0.497 ±0.076  
(.0196 ±.003)  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
REF  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
4.90 ±0.152  
(.193 ±.006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
1
2
3
4 5  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0213 REV I  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD  
SHALL NOT EXCEED 0.254mm (.010") PER SIDE.  
3999fa  
13  
For more information www.linear.com/LT3999  
LT3999  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
0.70 ±0.05  
3.55 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 ± 0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DD) DFN REV C 0310  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3999fa  
14  
For more information www.linear.com/LT3999  
LT3999  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
04/15 Corrected pin assignments  
Revised schematics  
5
13, 16  
3999fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT3999  
TYPICAL APPLICATION  
5V to 12V, 1W Low Power Push-Pull DC Transformer  
V
IN  
5V  
C
IN  
10µF  
V
D1A  
IN  
V
OUT  
T1  
R1  
10V  
12V  
SYNC  
SWA  
SWB  
261k  
C
2.2µF  
16V  
0.08A  
OUT  
UVLO  
R2  
100k  
OVLO/DC  
LT3999  
RDC  
D1B  
RT  
3999 TA05  
ILIM/SS  
RBIAS  
D1, D2: VISHAY BAT54C  
T1: COOPER BUSSMANN CTX02-19065R  
R
12.1k  
1MHz  
T
GND  
R
R
BIAS  
49.9k  
C
ILIM  
SS  
40.3k  
0.1µF  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT3439  
LT1533  
LT1683  
LT1738  
Slew Rate Controlled Ultralow Noise 1A Isolated DC/DC  
Transformer Driver  
V : 2.7V to 17.5V, I (Supply) = 12mA, I < 12mA, SO-16,  
IN Q SD  
Low Noise: <100mV , Independent Control of Switch Voltage  
P-P  
and Current Slew Rates  
Slew Rate Controlled Ultralow Noise 1A Switching Regulator  
Slew Rate Controlled Ultralow Noise Push-Pull Controller  
Slew Rate Controlled Ultralow Noise DC/DC Controller  
V : 2.7V to 23V, I (Supply) = 12mA, I < 12mA, SO-16,  
IN Q SD  
Low Noise: <100mV , Independent Control of Switch Voltage  
P-P  
and Current Slew Rates  
V : 2.7V to 20V, I (Supply) = 25mA, I < 24mA, SSOP-20,  
IN  
Q
SD  
Low Noise: <200mV , Independent Control of Switch Voltage  
P-P  
and Current Slew Rates  
V : 2.7V to 20V, I (Supply) = 12mA, I < 24mA, SSOP-20,  
IN  
Q
SD  
Greatly Reduced Conducted and Radiated EMI, Independent  
Control of Switch Voltage and Current Slew Rates  
3999fa  
LT 0415 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 2014  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT3999  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY