LT4276CHUFD#PBF [Linear]

暂无描述;
LT4276CHUFD#PBF
型号: LT4276CHUFD#PBF
厂家: Linear    Linear
描述:

暂无描述

文件: 总26页 (文件大小:441K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT4276  
++  
+
LTPoE /PoE /PoE  
PD Forward/Flyback Controller  
FeaTures  
DescripTion  
IEEE802.3af/at and LTPoE 90W Powered Device  
(PD) with Forward/Flyback Controller  
The LT®4276 is a pin-for-pin compatible family of IEEE  
n
++  
++  
802.3 and LTPoE Powered Device (PD) controllers. It  
n
LT4276A Supports All of the Following Standards:  
includesanisolatedswitchingregulatorcontrollercapable  
of synchronous operation in both forward and flyback  
topologies with auxiliary power support.  
n
++  
LTPoE 38.7W, 52.7W, 70W and 90W  
n
n
IEEE 802.3at 25.5W Compliant  
IEEE 802.3af up to 13W Compliant  
++  
TheLT4276AemploystheLTPoE classificationscheme,  
n
n
n
n
n
n
n
LT4276B is IEEE 802.3at/af Compliant  
LT4276C is IEEE 802.3af Compliant  
receiving 38.7W, 52.7W, 70W or 90W of power at the PD  
RJ45 connector, and is backwards compatible with IEEE  
802.3. The LT4276B is a fully 802.3at compliant, 25.5W  
Superior Surge Protection (100V Absolute Maximum)  
Wide Junction Temperature Range (–40°C to 125°C)  
Auxiliary Power Support as Low as 9V  
No Opto-Isolator Required for Flyback Operation  
External Hot SwapN-Channel MOSFET for Lowest  
Power Dissipation and Highest System Efficiency  
>94% End-to-End Efficiency with LT4321 Ideal Bridge  
Available in a 28-Lead 4mm × 5mm QFN Package  
+
Type 2 (PoE ) PD. The LT4276C is a fully 802.3af compli-  
ant, 13W Type 1 (PoE) PD.  
The LT4276 supports both forward and flyback power  
supply topologies, configurable for a wide range of PoE  
applications. The flyback topology supports No-Opto  
feedback. Auxiliaryinputvoltagecanbeaccuratelysensed  
with just a resistor divider connected to the AUX pin.  
n
n
applicaTions  
The LT4276 utilizes an external, low R  
N-channel  
DS(ON)  
n
High Power Wireless Data Systems  
MOSFET for the Hot Swap function, maximizing power  
delivery and efficiency, reducing heat dissipation, and  
easing the thermal design.  
n
Outdoor Security Camera Equipment  
n
Commercial and Public Information Displays  
High Temperature Applications  
n
++,  
L, LT, LTC, LTM, LTPoE  
Linear Technology and the Linear logo are registered trademarks of  
Linear Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
+
++  
LTPoE 70W Power Supply in a Forward Mode  
AUX  
LT4276 Family  
37V-57V  
+
LT4276  
GRADE  
+
MAX DELIVERED  
POWER  
V
22µF  
+
PORT  
5V  
13A  
FMMT723  
100µH  
A
l
l
l
l
l
l
B
C
0.1µF  
3.3k  
10nF  
++  
LTPoE 90W  
BAV19WS  
RR  
10µF  
V
++  
LTPoE 70W  
(T ≤50ns)  
++  
LTPoE 52.7W  
VPORT HS  
GATE  
AUX  
V
IN  
HS SW  
SRC VCC  
FFS PG  
DLY  
CC  
V
CC  
+
ISEN  
++  
LTPoE 38.7W  
20mΩ  
10k  
l
l
25.5W  
13W  
LT4276A  
ISEN  
R
R
CLASS  
l
SG  
++  
CLASS  
100pF  
100k  
0.1µF  
GND FB31 SS ROSC  
T2P  
ITHB  
4276 TA01  
OPTO  
TO MICROPROCESSOR  
4276fa  
1
For more information www.linear.com/LT4276  
LT4276  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
TOP VIEW  
VPORT, HSSRC, V Voltages .....................–0.3 to 100V  
IN  
HSGATE Current.................................................. 20mA  
V
Voltage.................................................... –0.3 to 8V  
CC  
28 27 26 25 24 23  
++  
RCLASS, RCLASS  
Voltages.................................–0.3 to 8V (and ≤ VPORT)  
SFST, FFSDLY, ITHB, T2P Voltages ......–0.3 to V +0.3V  
GND  
AUX  
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
DNC  
V
CC  
++  
RCLASS /NC*  
PG  
CC  
29  
GND  
RCLASS  
GND  
SG  
+
ISEN , ISEN Voltages........................................... 0.3V  
T2P/NC**  
FB31 Voltage..................................................+12V/–30V  
+
V
CC  
ISEN  
++  
RCLASS/RCLASS Current .............................. –50mA  
V
ISEN  
CC  
AUX Current........................................................ 1.4mA  
ROSC Current ..................................................... 100µA  
RLDCMP Current ................................................ 500µA  
T2P Current.........................................................–2.5mA  
Operating Junction Temperature Range (Note 3)  
V
RLDCMP  
CC  
9
10 11 12 13 14  
UFD PACKAGE  
28-LEAD (4mm × 5mm) PLASTIC QFN  
LT4276AI/LT4276BI/LT4276CI..............–40°C to 85°C  
LT4276AH/LT4276BH/LT4276CH ....... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
T
= 150°C, θ = 3.4°C/W  
JMAX  
JC  
EXPOSED PAD (PIN 29) IS GND, MUST BE SOLDERED TO PCB  
++  
*RCLASS is not connected in the LT4276B and LT4276C  
**T2P is not connected in the LT4276C  
orDer inForMaTion  
LEAD FREE FINISH  
LT4276AIUFD#PBF  
LT4276AHUFD#PBF  
LT4276BIUFD#PBF  
LT4276BHUFD#PBF  
LT4276CIUFD#PBF  
LT4276CHUFD#PBF  
TAPE AND REEL  
PART MARKING* MAX PD POWER PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT4276AIUFD#TRPBF  
4276A  
90W  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
28-Lead (4mm × 5mm) Plastic QFN  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
LT4276AHUFD#TRPBF 4276A  
LT4276BIUFD#TRPBF 4276B  
LT4276BHUFD#TRPBF 4276B  
LT4276CIUFD#TRPBF 4276C  
LT4276CHUFD#TRPBF 4276C  
90W  
25.5W  
25.5W  
13W  
13W  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
4276fa  
2
For more information www.linear.com/LT4276  
LT4276  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VVPORT = VHSSRC = VVIN = 40V, VVCC = VCCREG, ROSC, PG, and SG Open,  
RFFSDLY = 5.23kΩ to GND. AUX connected to GND unless otherwise specified. (Note 2)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
60  
UNITS  
l
l
l
l
l
l
l
l
l
l
VPORT, HSSRC, V Operating Voltage  
At VPORT Pin  
V
V
V
V
V
V
V
V
V
V
IN  
V
V
V
VPORT Signature Range  
At VPORT Pin  
1.5  
12.5  
5.6  
8
10  
SIG  
VPORT Classification Range  
VPORT Mark Range  
At VPORT Pin  
21  
CLASS  
MARK  
At VPORT Pin, After 1st Classification Event  
10  
VPORT AUX Range  
At VPORT Pin, V  
≥ 6.45V  
60  
AUX  
Signature/Class Hysteresis Window  
Reset Threshold  
1.0  
2.6  
5.6  
37  
V
V
Hot Swap Turn-On Voltage  
Hot Swap Turn-Off Voltage  
Hot Swap On/Off Hysteresis Window  
35  
31  
HSON  
30  
3
HSOFF  
Supply Current  
VPORT, HSSRC & V Supply Current  
l
l
l
V
= V  
= V = 60V  
2
mA  
mA  
mA  
IN  
VPORT  
VPORT  
VPORT  
HSSRC  
VIN  
++  
= 17.5V, RCLASS, RCLASS Open  
VPORT Supply Current During Classification V  
0.7  
0.4  
1.0  
1.3  
2.2  
VPORT Supply Current During Mark Event  
Signature and Classification  
V
= V after 1st Classification Event  
MARK  
l
l
l
l
Signature Resistance  
V
V
(Note 4)  
23.6  
5.2  
24.4  
8.3  
25.5  
11.4  
1.43  
2
kΩ  
kΩ  
V
SIG  
Signature Resistance During Mark Event  
(Note 4)  
MARK  
++  
RCLASS/RCLASS Voltage  
–10mA ≥ I  
≥ –36mA  
1.36  
1.40  
RCLASS  
Classification Stability Time  
V
Step to 17.5V, R  
= 35.7Ω  
ms  
VPORT  
CLS  
Digital Interface  
l
l
l
l
V
AUX Threshold  
AUX Pin Current  
T2P Output High  
T2P Leakage  
V
V
V
V
= 17.5V, V = V  
= 18.5V  
6.05  
3.3  
6.25  
5.3  
6.45  
7.3  
0.3  
1
V
µA  
V
AUXT  
AUXH  
PORT  
IN  
HSSRC  
I
= 6.05V, V  
= 17.5V, V = 9V, V = 0V  
PORT IN CC  
AUX  
VCC  
T2P  
- V , –1mA Load  
T2P  
= 0V  
–1  
µA  
Hot Swap Control  
l
l
l
I
HSGATE Pull Up Current  
HSGATE Voltage  
V
- V = 5V (Note 5)  
HSSRC  
–27  
10  
–22  
7.6  
–18  
14  
µA  
V
GPU  
HSGATE  
–10µA Load, with respect to HSSRC  
- V = 5V  
HSGATE Pull Down Current  
V
400  
µA  
HSGATE  
HSSRC  
V
Supply  
CC  
l
l
VCCREG  
V
Regulation Voltage  
7.2  
8.0  
V
CC  
Feedback Amplifier  
V
FB31 Regulation Voltage  
FB31 Pin Bias Current  
3.11  
3.17  
-0.1  
–40  
3.23  
V
µA  
FB  
RLDCMP Open  
Time Average, –2µA < I  
l
l
gm  
Feedback Amplifier Average Trans-  
Conductance  
< 2µA  
–52  
4.4  
–26  
µA/V  
ITHB  
I
ITHB Average Sink Current  
Time Average, V  
= 0V  
8.0  
13.4  
µA  
µA  
SINK  
FB31  
Soft-Start  
l
I
Charging Current  
V
SFST  
= 0.5V, 3.0V  
–49  
–42  
–36  
SFST  
4276fa  
3
For more information www.linear.com/LT4276  
LT4276  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VVPORT = VHSSRC = VVIN = 40V, VVCC = VCCREG, ROSC, PG, and SG Open,  
RFFSDLY = 5.23kΩ to GND. AUX connected to GND unless otherwise specified. (Note 2)  
SYMBOL PARAMETER  
Gate Outputs  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
PG, SG Output High Level  
I = –1mA  
V
CC  
–0.1  
V
V
PG, SG Output Low Level  
PG Rise Time, Fall Time  
SG Rise Time, Fall Time  
I = 1mA  
1
PG = 1000pF  
SG = 400pF  
15  
15  
ns  
ns  
Current Sense/Overcurrent  
l
l
V
Overcurrent Fault Threshold  
V + - V –  
ISEN ISEN  
125  
140  
155  
–98  
mV  
FAULT  
ΔV  
ΔV  
/
Current Sense Comparator Threshold with  
–130  
–111  
mV/V  
SENSE  
ITHB  
Respect to V  
ITHB  
l
V
V
Offset  
ITHB  
3.03  
3.17  
3.33  
V
ITHB(OS)  
Timing  
l
l
f
Default Switching Frequency  
Switching Frequency  
ROSC Pin Open  
= 45.3kΩ to GND  
200  
280  
214  
300  
223  
320  
kHz  
kHz  
OSC  
R
OSC  
++  
f
t
LTPoE Signal Frequency  
f
/256  
SW  
T2P  
l
l
Minimum PG On Time  
175  
63  
250  
66  
330  
70  
ns  
%
MIN  
D
Maximum PG Duty Cycle  
PG Turn-On Delay-Flyback  
MAX  
t
5.23kΩ from FFSDLY to GND  
52.3kΩ from FFSDLY to GND  
45  
171  
92  
ns  
ns  
ns  
ns  
PGDELAY  
PG Turn-On Delay-Forward  
10.5kΩ from FFSDLY to V  
52.3kΩ from FFSDLY to V  
CC  
CC  
391  
t
t
t
Feedback Amp Enable Delay Time  
Feedback Amp Sense Interval  
350  
550  
ns  
ns  
FBDLY  
FB  
PG Falling to SG Rising Delay Time-Flyback Resistor from FFSDLY to GND  
PG Falling to SG Falling Delay Time-  
Forward  
20  
67  
301  
ns  
ns  
ns  
PGSG  
10.5kΩ from FFSDLY to V  
52.3kΩ from FFSDLY to V  
CC  
CC  
l
l
l
t
t
I
Start Timer (Note 6)  
Fault Timer (Note 6)  
MPS Current  
Delay After Power Good  
80  
80  
10  
86  
86  
12  
93  
93  
14  
ms  
ms  
mA  
START  
FAULT  
MPS  
Delay After Overcurrent Fault  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4. Signature resistance specifications do not include resistance  
added by the external diode bridge which can add as much as 1.1kΩ to the  
port resistance.  
Note 5. I  
available in PoE powered operation. That is, available after  
GPU  
Note 2. All voltages with respect to GND unless otherwise noted. Positive  
currents are into pins; negative currents are out of pins unless otherwise  
noted.  
V(VPORT) > V  
and V(AUX) < V  
and 60V.  
, over the range where V(VPORT)  
HSON  
AUXT  
is between V  
HSOFF  
Note 6. Guaranteed by design, not subject to test.  
Note 3. This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature can exceed 150°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
4276fa  
4
For more information www.linear.com/LT4276  
LT4276  
Typical perForMance characTerisTics  
Input Current vs Input Voltage  
25k Detection Range  
Signature Resistance  
vs Input Voltage  
VCC Current vs Temperature  
0.5  
0.4  
0.3  
0.2  
0.1  
0
26.25  
25.75  
25.25  
24.75  
24.25  
23.75  
12  
10  
8
125°C  
85°C  
25°C  
–40°C  
125°C  
85°C  
25°C  
–40°C  
300KHz  
214KHz  
6
4
2
0
0
2
4
6
8
10  
1
2
3
4
5
6
7
8
9
–50 –25  
0
25  
50  
75 100 125  
VPORT VOLTAGE (V)  
VPORT VOLTAGE (V)  
TEMPERATURE (°C)  
4276 G01  
4276 G02  
4276 G03  
Feedback Amplifier Output Current  
vs VFB31  
Switching Frequency  
vs Temperature  
VFB31 vs Temperature  
3.178  
3.176  
3.174  
3.172  
3.170  
3.168  
3.166  
3.164  
3.162  
15  
10  
5
325  
300  
275  
250  
225  
200  
175  
125°C  
85°C  
25°C  
–40°C  
R
OSC  
= 45.3k  
0
–5  
–10  
–15  
ROSC OPEN  
–50 –25  
0
25  
50  
75 100 125  
2.57 2.77 2.97 3.17 3.37 3.57 3.77  
FB31 VOLTAGE (V)  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4276 G04  
4276 G05  
4276 G06  
Current Sense Voltage  
vs Duty Cycle, ITHB  
PG Delay Time vs Temperature in  
Flyback Mode  
PG Delay Time vs Temperature in  
Forward Mode  
160  
140  
120  
100  
80  
250  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 0.96V (FB31 = 0V)  
ITHB  
T
, R  
= 52.3k  
PGDELAY FFSDLY  
200  
150  
100  
50  
V
= 1.8V  
R
= 52.3k  
ITHB  
FFSDLY  
T
, R  
= 52.3k  
PGSG FFSDLY  
V
= 2.3V  
= 2.6V  
ITHB  
ITHB  
60  
T
T
, R  
= 10.5k  
PGDELAY FFSDLY  
40  
R
= 5.23k  
FFSDLY  
V
20  
, R  
= 10.5k  
PGSG FFSDLY  
V
= 2.9V  
30  
ITHB  
0
0
0
0
10  
20  
40  
50  
60  
70  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
DUTY CYCLE (%)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4276 G07  
4276 G08  
4276 G09  
4276fa  
5
For more information www.linear.com/LT4276  
LT4276  
pin FuncTions  
GND(Pins 1, 19, Exposed Pad Pin 29): Device Ground.  
ExposedPadmustbeelectricallyandthermallyconnected  
to PCB GND and Pin 19.  
FET. Note that the voltage gain from ITHB to the input of  
the current sense comparator (V ) is negative.  
SENSE  
FB31 (Pin 14): Feedback Input. In flyback mode, connect  
external resistive divider from the third winding feedback.  
Reference voltage is 3.17V. Connect to GND in forward  
mode.  
++  
++  
++  
RCLASS (Pin 3, LT4276A Only): LTPoE Class Select  
Input. Connect a resistor between RCLASS to GND per  
Table 1.  
AUX (Pin 2): Auxiliary Sense. Assert AUX via a resistive  
divider from the auxiliary power input to set the voltage  
at which the auxiliary supply takes over. Asserting AUX  
pulls down HSGATE, disconnects the signature resistor  
RLDCMP (Pin 15): Load Compensation Adjustment. Op-  
tional resistor to GND controls output voltage set point  
as a function of peak switching current. Leave RLDCMP  
open if load compensation is not needed.  
and disables classification. The AUX pin sinks I  
when  
AUXH  
ISEN (Pin 16): Current Sense, Negative Input. Route as  
belowitsthresholdvoltageofV  
Connect to GND if not used.  
toprovidehysteresis.  
AUXT  
a dedicated trace to the current sense resistor.  
+
ISEN (Pin 17): Current Sense, Positive Input. Route as  
RCLASS (Pin 4): Class Select Input. Connect a resistor  
between RCLASS to GND per Table 1.  
a dedicated trace to the current sense resistor.  
SG(Pin18):Secondary(Synchronous)GateDrive,Output.  
PG (Pin 20): Primary Gate Drive, Output.  
T2P(Pin5,LT4276AandLT4276Bonly):PSETypeIndica-  
tor.LowimpedancetoV indicates2-eventclassification.  
CC  
++  
Alternating low/high impedance indicates LTPoE clas-  
V
(Pins 6, 7, 8, 9, 21): Switching Regulator Controller  
CC  
sification (LT4276A only, see Applications Information).  
High impedance indicates 1-event classification. This pin  
is not connected on the LT4276C. See the Applications  
Information Section for pin behavior when using the AUX  
pin.  
Supply Voltage. Connect a local 1µF ceramic capacitor  
from V pin 21 to GND pin 19 as close as possible to  
CC  
LT4276 as shown in Table 2.  
SWVCC(Pin 23): Switch Driver for V ’s Buck Regulator.  
CC  
This pin drives the base of a PNP in a buck regulator to  
DNC (Pin 22): Do Not Connect. Leave pin open.  
generate V .  
CC  
ROSC (Pin 10): Programmable Frequency Adjustment.  
Resistor to GND programs operating frequency. Leave  
open for default frequency of 214kHz.  
V
(Pin 24): Buck Regulator Supply Voltage. Usually  
IN  
separated from HSSRC by a pi filter.  
HSSRC (Pin 25): External Hot Swap MOSFET Source.  
Connect to source of the external MOSFET.  
SFST (Pin 11): Soft-Start. Capacitor to GND sets soft-  
start timing.  
HSGATE (Pin 26): External Hot Swap MOSFET Gate Con-  
trol, Output. Capacitance to GND determines inrush time.  
FFSDLY (Pin 12): Forward/Flyback Select and Primary  
GateDelayAdjustment.ResistortoGNDadjustsgatedrive  
NC (Pin 27): No Connection. Not internally connected.  
delay for a flyback topology. Resistor to V adjusts gate  
CC  
drive delay for a forward topology.  
VPORT(Pin28):PDInterfaceSupplyVoltageandExternal  
Hot Swap MOSFET Drain Connection.  
ITHB (Pin 13): Current Threshold Control. The voltage on  
this pin corresponds to the peak current of the external  
4276fa  
6
For more information www.linear.com/LT4276  
LT4276  
block DiagraM  
VPORT  
V
IN  
SWVCC  
CP  
INTERNAL  
BUCK  
CONTROLLER  
START-UP  
REGULATOR  
V
CC  
HSGATE  
11V  
V
CC  
PD INTERFACE  
CONTROLLER  
HSSRC  
VPORT  
T2P  
+
1.4V  
TSD  
GND  
RCLASS  
VPORT  
+
1.4V  
PG  
SG  
++  
RCLASS  
+
AUX  
V
AUXT  
I
AUXH  
FB31  
+
ITHB  
SFST  
V
FB  
V
CC  
FEEDBACK AMP  
gm = –40µA/V  
SWITCHING  
REGULATOR  
CONTROLLER  
FFSDLY  
ROSC  
LOAD  
COMP  
OSC  
+
V
V
ITHB(OS)  
CURRENT  
FAULT  
COMPARATOR  
CURRENT  
SENSE  
COMPARATOR  
∆V  
∆V  
SENSE  
ITHB  
A
=
V
A
= 10  
V
SLOPE  
COMP  
SENSE  
V
FAULT  
+
+
ISEN  
A
V
= 1  
4276 BD  
ISEN  
RLDCMP  
4276fa  
7
For more information www.linear.com/LT4276  
LT4276  
applicaTions inForMaTion  
OVERVIEW  
V
SENSE  
Power over Ethernet (PoE) continues to gain popularity  
as products take advantage of DC power and high speed  
data available from a single RJ45 connector. The LT4276A  
allowshigherpowerwhilemaintainingbackwardscompat-  
ibility with existing PSE systems. The LT4276 combines  
a PoE PD controller and a switching regulator controller  
capable of either flyback or forward isolated power sup-  
ply operation.  
∆V  
SENSE  
∆V  
ITHB  
V
ITHB  
V
ITHB(OS)  
4276 F01  
SIGNIFICANT DIFFERENCES FROM PREVIOUS  
PRODUCTS  
Figure 1. VSENSE vs. VITHB  
Flyback/Forward Mode Is Pin Selectable  
The LT4276 has several significant differences from pre-  
vious Linear Technology products. These differences are  
briefly summarized below. See Applications Information  
for more detail.  
The LT4276 operates in flyback mode if FFSDLY is pulled  
down by a resistor to GND. It operates in forward mode  
if FFSDLY is pulled up by a resistor to V . The value of  
CC  
and t  
this resistor determines the t  
.
PGDELAY  
PGSG  
ITHB Is Inverted from the Usual ITH pin  
T2P Pin Polarity Is Reversed  
TheITHBpinvoltagehasaninverserelationshiptothecur-  
rentsensecomparatorthreshold,V  
.Furthermore,the  
SENSE  
The T2P pin pulls up to V when active rather than pull-  
CC  
ITHB pin offset voltage, V  
, is 3.17V. See Figure 1.  
ITHB(OS)  
ing down to GND.  
Duty-Cycle Based Soft-Start  
V
CC  
Is Powered by Internally Driven Buck Regulator  
The LT4276 uses a duty cycle ramp soft-start that injects  
charge into ITHB. This allows startup without appreciable  
overshoot and with inexpensive external components.  
The LT4276 includes a buck regulator controller that must  
be used to generate the V supply voltage.  
CC  
PoE MODES OF OPERATION  
The Feedback Pin (FB31) is 3.17V rather than 1.25V  
The LT4276 has several modes of operation, depending  
on the input voltage sequence applied to the VPORT pin.  
The error amp feedback voltage (V ) is 3.17V.  
FB  
Table 1. Classification Codes, Power Levels and Resistor Selection  
LT4276 GRADE CAPABILITY  
RESISTOR (1%)  
PD POWER  
AVAILABLE  
13W  
3.84W  
6.49W  
13W  
25.5W  
38.7W  
52.7W  
70W  
NOMINAL CLASS  
CURRENT  
++  
CLASS  
0
1
2
3
PD TYPE  
Type 1  
Type 1  
Type 1  
Type 1  
Type 2  
A
B
C
R
R
CLS  
CLS  
0.7mA  
10.5mA  
18.5mA  
28mA  
40mA  
40mA  
40mA  
40mA  
40mA  
Open  
150Ω  
80.6Ω  
52.3Ω  
35.7Ω  
Open  
150Ω  
80.6Ω  
52.3Ω  
Open  
Open  
Open  
Open  
Open  
35.7Ω  
47.5Ω  
64.9Ω  
118Ω  
4
++  
4*  
4*  
4*  
4*  
LTPoE  
++  
LTPoE  
++  
LTPoE  
++  
90W  
LTPoE  
++  
*An LTPoE PD classifies as class 4 by an IEEE 802.3 compliant PSE.  
4276fa  
8
For more information www.linear.com/LT4276  
LT4276  
applicaTions inForMaTion  
Detection  
POWER ON  
During detection, the PSE looks for a 25kΩ signature  
resistor which identifies the device as a PD. The LT4276  
signature resistor is smaller than 25k to compensate for  
the additional series resistance introduced by the IEEE  
required bridge.  
V
HSON  
V
HSOFF  
CLASS  
V
CLASSMIN  
V
SIGMAX  
Classification  
DETECT  
The detection/classification process varies depending on  
V
RESET  
++  
whether the PSE is Type 1, Type 2, or LTPoE . A Type 1  
V
SIGMIN  
PSE, after a successful detection, may apply a classifica-  
tion probe voltage of 15.5V to 20.5V and measure current.  
4276 F02  
Figure 2. Type 1 Detect/Class Signaling Waveform  
In 2-event classification, a Type 2 PSE probes for power  
classification twice as shown in Figure 3. The LT4276A or  
POWER ON  
LT4276BrecognizesthisandpullstheT2PpinuptoV to  
CC  
signal the load that Type 2 power is available. Otherwise it  
V
HSON  
does not pull up on the T2P pin, indicating that only Type  
V
HSOFF  
++  
1 power is available. If an LT4276A senses an LTPoE  
PSE it alternates between pulling T2P up and floating T2P  
++  
1ST CLASS 2ND CLASS  
V
CLASSMIN  
at a rate of f to indicate the LTPoE power is available.  
T2P  
V
SIGMAX  
++  
LTPoE Classification  
DETECT  
The LT4276A allows higher power allocation while main-  
tainingbackwardscompatibilitywithexistingPSEsystems  
by extending the classification signaling of IEEE 802.3.  
1ST MARK 2ND MARK  
V
RESET  
V
SIGMIN  
4276 F03  
++  
Linear Technology PSE controllers capable of LTPoE  
Figure 3. Type 2 Detect/Class Signaling Waveform  
are listed in the Related Parts section. IEEE PSEs classify  
++  
an LTPoE PD as a Type 2 PD.  
POWER ON  
Classification Resistors (R  
and R  
)
++  
CLS  
CLS  
V
HSON  
The R  
and R  
resistors set the classification cur-  
++  
CLS  
CLS  
V
HSOFF  
rent corresponding to the PD power classification. Select  
1ST CLASS 2ND CLASS 3RD CLASS  
the value of R  
from Table 1 and connect the resistor  
CLS  
++,  
V
between the RCLASS pin and GND. For LTPoE  
use  
CLASSMIN  
the LT4276A and select the value of R  
from Table  
++  
CLS  
V
SIGMAX  
1 in addition to R . The resistor tolerance must be 1%  
CLS  
DETECT  
or better to avoid degrading the overall accuracy of the  
1ST MARK 2ND MARK 3RD MARK  
V
RESET  
classification circuit.  
V
SIGMIN  
Signature Corrupt During Mark  
4276 F04  
++  
Figure 4. LTPoE Detect/Class Signaling Waveform  
During the mark state, the LT4276 presents <11kΩ to the  
port as required by the IEEE specification.  
4276fa  
9
For more information www.linear.com/LT4276  
LT4276  
applicaTions inForMaTion  
Inrush and Powered On  
EXTERNAL V SUPPLY  
CC  
Once the PSE detects and optionally classifies the PD, the  
PSE then powers on the PD. When the port voltage rises  
The external V supply must be configured as a buck  
CC  
regulatorshowninFigure6.Tooptimizethebuckregulator,  
use the external component values in Table 2 correspond-  
above the V  
threshold, it begins to source I  
out  
HSON  
GPU  
of the HSGATE pin. This current flows into an external  
capacitor (C in Figure 5) that causes a voltage to ramp  
ing to the V operating range. This buck regulator runs  
IN  
in discontinuous mode with the inductor peak current  
GATE  
up the gate of the external MOSFET. The external MOSFET  
acts as a source follower and ramps the voltage up on  
considerably higher than average load current on V .  
CC  
Thus, the saturation current rating of the inductor must  
the output bulk capacitor (C  
in Figure 5), thereby  
exceed the values shown in Table 2. Place the capacitor, C,  
PORT  
determining the inrush current (I  
in Figure 5). To  
to be ~100mA.  
as close as possible to V pin 21 and GND pin 19. For  
INRUSH  
INRUSH  
CC  
meet IEEE requirements, design I  
optimal performance, place the external components as  
close as possible to the LT4276.  
The LT4276 internal charge pump provides an N-channel  
MOSFET solution, eliminating a larger and more costly  
V
IN  
V
IN  
P-channel FET. The low R  
MOSFET also maximizes  
DS(ON)  
R
e
power delivery and efficiency, reduces power and heat  
dissipation, and eases thermal design.  
FMMT723  
PBSS9110T  
SWVCC  
LT4276  
I
INRUSH  
L(µH)  
VPORT  
+
V
GND  
V
CC  
3.3k  
C
PORT  
CC  
C(µF)  
C
GATE  
I
GPU  
4276 F06  
HSGATE  
Figure 6. VCC Buck Regulator  
VPORT  
HSSRC  
Table 2 . Buck Regulator Component Selection  
LT4276  
GND  
CPORT  
CGATE  
IINRUSH =IGPU •  
V
IN  
C
L
I
R
e
1Ω  
20Ω  
SAT  
9V-57V  
PoE  
22µF  
10µF  
22µH  
100µH  
≥1.2A  
≥300mA  
4276 F05  
AUXILIARY SUPPLY OVERRIDE  
Figure 5. Programming IINRUSH  
If the AUX pin is held above V  
, the LT4276 enters  
AUXT  
DELAY START  
auxiliary power supply override mode. In this mode the  
signature resistor is disconnected, classification is dis-  
abled, and HSGATE is pulled down. The T2P pin pulls up  
After the HSGATE charges up to approximately 7V above  
HSSRC, fully enhancing the external Hot Swap MOSFET,  
the switching regulator controller operates after a delay  
++  
to V on the LT4276B (or the LT4276A when no R  
CC  
CLS  
resistorispresent).TheT2Ppinalternatesbetweenpulling  
of t  
. During this delay, the LT4276 draws I  
from  
START  
MPS  
++  
CLS  
up and floating at f on the LT4276A when the R  
VPORT to ensure that the PSE does not DC disconnect  
T2P  
resistor is present.  
the PD due to Maintain Power Signature requirements.  
The AUX pin allows for setting the auxiliary supply turn on  
(V ) and turn off (V ) voltage thresholds. The  
AUXON  
AUXOFF  
auxiliary supply hysteresis voltage (V  
sinking current (I  
) is set by  
AUXHYS  
) only when the AUX pin voltage is  
AUXH  
4276fa  
10  
For more information www.linear.com/LT4276  
LT4276  
applicaTions inForMaTion  
lessthanV  
.UsethefollowingequationstosetV  
AUXT  
AUXON  
and V  
via R1 and R2 in Figure 7. A capacitor up to  
t
PGon  
AUXOFF  
PG  
SG  
1000pF may be placed between the AUX pin and GND to  
improve noise immunity.  
t
PGDELAY  
t
PGSG  
V
must be lower than V  
.
AUXON  
HSOFF  
4276 F07  
VAUXON VAUXOFF VAUXHYS  
+
R1=  
=
IAUXH  
R1  
IAUXH  
Figure 8: PG and SG Relationship in Flyback Mode  
LT4276  
GND  
R1  
R2  
R2 =  
R1≥  
V
AUX  
VAUXOFF  
VAUXT  
AUX  
+
1  
VAUX(MAX) VAUXT  
4276 F08a  
PG  
1.4mA  
Figure 7. AUX Threshold and Hysteresis Calculation  
LT4276  
+
ISEN  
SWITCHING REGULATOR CONTROLLER OPERATION  
ISEN  
GND FFSDLY SG  
The switching regulator controller portion of the LT4276  
is a current mode controller capable of implementing  
either a flyback or a forward power supply. When used in  
flyback mode, no opto-isolator is required for feedback  
becausetheoutputvoltageissensedviathetransformer’s  
third winding.  
R
FFSDLY  
4276 F08  
Figure 9: Example PG and SG Connections in Flyback Mode  
Flyback Mode  
Forward Mode  
The LT4276 is programmed into flyback mode by placing  
The LT4276 is programmed into forward mode by placing  
a resistor R  
from the FFSDLY pin to GND. This resis-  
FFSDLY  
aresistorR  
fromtheFFSDLYpintoV . TheR  
FFSDLY CC FFSDLY  
tor must be in the range of 5.23kΩ to 52.3kΩ. If using a  
potentiometer to adjust R , ensure the adjustment  
resistormustbeintherangeof10.5kΩto52.3kΩ. Ifusing  
a potentiometer to adjust R ensure the adjustment  
FFSDLY  
FFSDLY  
of the potentiometer does not exceed 52.3kΩ.The value  
of the potentiometer does not exceed 52.3kΩ.  
The value of R determines t and t ac-  
PGSG  
of R determines t according to the following  
FFSDLY  
PGDELAY  
FFSDLY  
PGDELAY  
equations:  
cording to the following equations:  
t
t
PGDELAY 2.69ns/kΩRFFSDLY +30ns  
PGSG 20ns  
t
t
≈ 7.16ns/kΩ R  
+ 17ns  
PGDELAY  
FFSDLY  
≈ 5.60ns/kΩ R  
+ 7.9ns  
PGSG  
FFSDLY  
The PG and SG relationships in flyback mode are shown  
in Figure 8.  
The PG and SG relationships in forward mode are shown  
in Figure 10.  
The SG pin must be connected to the secondary side  
MOSFET through a gate drive transformer as shown in  
Figure 9. Add a Schottky diode from PG to GND as shown  
in Figure 9 to prevent PG from going negative.  
4276fa  
11  
For more information www.linear.com/LT4276  
LT4276  
applicaTions inForMaTion  
THIRD  
LT4276  
ITHB  
R
R
FEEDBACK  
FB1  
FB31  
PG  
SG  
V
+
OUT  
V
IN  
V
FB  
FB2  
PRIMARY  
SECONDARY  
PG  
t
PGDELAY  
t
PGSG  
+
ISEN  
ISEN  
A
= 10  
V
4276 F09  
+
+
R
SENSE  
Figure 10: PG and SG relationship in Forward Mode  
RLDCMP  
4276 F11  
R
LDCMP  
V
CC  
R
FFSDLY  
Figure 12: Feedback and Load Compensation Connection  
V
FFSDLY  
CC  
PG  
LT4276  
+
ISEN  
ISEN  
FB31  
VOLTAGE  
V
FB  
GND  
SG  
GND  
PG  
SG  
4276 F10  
Figure 11: Example PG and SG Connections in Forward Mode  
4276 F09  
t
t
FBDLY FB  
In forward mode, the SG pin has the correct polarity to  
drivetheactiveclampP-channelMOSFETthroughasimple  
level shifter as shown in Figure 11. Add a Schottky diode  
from the PG to GND as shown in Figure 11 to prevent PG  
from going negative.  
Figure 13: Feedback Amplifier Timing Diagram  
FEEDBACK AMPLIFIER OUTPUT, ITHB  
As shown in the Block Diagram, V  
is the input of  
SENSE  
the Current Sense Comparator. V  
is derived from  
SENSE  
FEEDBACK AMPLIFIER  
the output of a linear amplifier whose input is the voltage  
on the ITHB pin, V  
.
In the flyback mode, the feedback amplifier senses the  
output voltage through the transformer’s third winding as  
showninFigure12.Theamplifierisenabledonlyduringthe  
ITHB  
This linear amplifier inverts its input, V  
, with a gain,  
ITHB  
ΔV  
/ΔV  
, and with an offset voltage of V  
SENSE  
to yield its output, V  
graphically in Figure 1. Note the slope ΔV  
is a negative number and is provided in the electrical  
ITHB ITHB(OS)  
fixed interval, t , as shown in Figure 13. This eliminates  
FB  
. This relationship is shown  
SENSE  
theopto-isolatorinisolateddesigns,thusgreatlyimproving  
/ΔV  
SENSE  
ITHB  
the dynamic response and stability over lifetime. Since t  
FB  
is a fixed interval, the time-averaged transconductance,  
gm, varies as a function of the user-selected switching  
frequency.  
characteristics table.  
–1  
ΔVSENSE  
V
ITHB = VITHB(OS) + VSENSE •  
ΔV  
ITHB  
4276fa  
12  
For more information www.linear.com/LT4276  
LT4276  
applicaTions inForMaTion  
The block diagram shows V  
is compared against  
Where: ΔV  
is the desired change to V  
OUT OUT  
FB2 FB2  
SENSE  
+
the voltage across the current sense resistor, V(ISEN )-  
ΔR is the required change to R  
V(ISEN ) modified by the internal slope compensation  
N
/N  
is the transformer third  
THIRD SECONDARY  
voltage discussed subsequently.  
winding to secondary winding  
LOAD COMPENSATION  
OPTO-ISOLATOR FEEDBACK  
As can be seen in Figure 13, the voltage on the FB31 pin  
droops slightly during the flyback period. This is mostly  
caused by resistances of components of the secondary  
Forforwardmodeoperation, theflybackvoltagecannotbe  
sensed across the transformer. Thus, opto-isolator feed-  
back must be used. When using opto-isolator feedback,  
connect the FB31 pin to GND and leave the RLDCMP pin  
open. In this condition, the feedback amplifier sinks an  
side such as: the secondary winding, R  
of the syn-  
DS(ON)  
chronous MOSFET, ESR of the output capacitor, etc. These  
resistances cause a feedback error that is proportional to  
the current in the secondary loop at the time of feedback  
sample window. To compensate for this error, the LT4276  
places a voltage proportional to the peak current in the  
primary winding on the RLDCMP pin.  
average current of I  
into the ITHB pin. An example for  
SINK  
feedback connections is shown in Figure 14. Note that  
since I is time-averaged over the switching period,  
SINK  
the sink current varies as a function of the user-selected  
switching frequency.  
Determining Feedback and Load Compensation  
Resistors  
V
OUT  
V
CC  
Because the resistances of components on the secondary  
side are generally not well known, an empirical method  
must be used to determine the feedback and load com-  
pensation resistor values.  
C
X
LT4276  
R
X
ITHB  
GND  
FB31  
INITIALLY SET RFB2 = 2kΩ  
4276 F13  
VOUT NTHIRD  
VFB NSECONDARY  
RFB1RFB2  
RFB2  
Figure 14: Opto-isolator Feedback  
Connections in the Forward Mode  
SOFT-START  
ConnecttheresistorR  
betweentheRLDCMPpinand  
LDCMP  
GND. R  
must be at least 10kΩ. Adjust R  
for  
LDCMP  
LDCMP  
In PoE applications, a proper soft-start design is required  
to prevent the PD from drawing more current than the  
PSE can provide.  
minimumchangeofV overthefullinputandoutputload  
OUT  
range. Apotentiometerinserieswith10kΩmaybeinitially  
used for R  
and adjusted. The potentiometer+10kΩ  
LDCMP  
The soft-start time, t  
, is approximately the time in  
SFST  
may then be removed, measured, and replaced with the  
equivalent fixed resistor. The resulting V differs from  
which the power supply output voltage, V , is charg-  
OUT  
OUT  
ing its output capacitance, C . This results in an inrush  
OUT  
the desired V  
due to offset injected by load compensa-  
OUT  
current at the port of the PD, Iport_inrush. Care must be  
tion. The change to R to correct this is predicted by:  
FB2  
taken in selecting t  
more current than the PSE can provide.  
to prevent the PD from drawing  
SFST  
2
ΔVOUT NTHIRD RFB2  
VFB NSECONDARY RFB1  
ΔRFB2  
=
4276fa  
13  
For more information www.linear.com/LT4276  
LT4276  
applicaTions inForMaTion  
In the absence of an output load current, the Iport_inrush,  
SLOPE COMPENSATION  
is approximated by the following equation:  
The LT4276 incorporates current slope compensation.  
Slope compensation is required to ensure current loop  
stability when the duty cycle is greater than or near 50%.  
The slope compensation of the LT4276 does not reduce  
the maximum peak current at higher duty cycles.  
2
Iport_inrush ≈ (C  
V  
)/(η t V )  
SFST IN  
OUT  
OUT  
where η is the power supply efficiency,  
V is the input voltage of the PD  
IN  
Iport_inrush plus the port current due to the load current  
must be below the current the PSE can provide. Note that  
the PSE current capability depends on the PSE operating  
standard.  
CONTROL LOOP COMPENSATION  
In flyback mode, loop frequency compensation is per-  
formed by connecting a resistor/capacitor network from  
the output of the feedback amplifier (ITHB pin) to GND as  
shown in Figure 12. In forward mode, loop compensation  
The LT4276 contains a soft-start function that controls  
t
by connecting an external capacitor, C  
, between  
is performed by varying R and C in Figure 14.  
SFST  
SFST  
X X  
theSFSTpinandGND. TheSFSTpinispulledupwithI  
SFST  
when the LT4276 begins switching. The voltage ramp on  
the SFST pin is proportional to the duty cycle ramp for PG.  
ADJUSTABLE SWITCHING FREQUENCY  
TheLT4276hasadefaultswitchingfrequency,f ,of214  
OSC  
For flyback mode, the soft-start time is:  
kHz when the ROSC pin is left open. If a higher switching  
frequency, f , is desired (up to 300 kHz), a resistor no  
SW  
CSFST  
600µA  
nF  
smaller than 45.3kΩ may be added between the ROSC pin  
tSFST  
=
tPGon + tPGDELAY – tMIN  
(
)
I
to GND. The resistor can be calculated below:  
SFST  
where t  
is the time when PG is high as shown in  
3900kΩkHz  
PGon  
ROSC  
=
kΩ  
( )  
Figure 8 once the power supply is in steady-state.  
fSW fOSC  
(
)
Inforwardmode, eachofthebackpageapplicationssche-  
matics provides a chart with t  
vs. C  
SFST  
. Select the  
SHORT CIRCUIT RESPONSE  
SFST  
SFST  
application and choose a value of C  
that corresponds  
If the power supply output voltage is shorted, overloaded,  
or if the soft-start capacitor is too small, an overcurrent  
fault event occurs when the voltage across the sense pins  
to the desired soft-start time.  
CURRENT SENSE COMPARATOR  
exceeds V  
(after the blanking period of t ). This  
FAULT  
MIN  
begins the internal fault timer t  
. For the duration  
The LT4276 uses a differential current sense comparator  
to reduce the effects of stray resistance and inductance  
FAULT  
of t  
, the LT4276 turns off PG and SG and pulls the  
FAULT  
SFST pin to GND. After t  
ates soft-start.  
expires, the LT4276 initi-  
+
on the measurement of the primary current. ISEN and  
FAULT  
ISEN mustbeKelvinconnectedtothesenseresistorpads.  
The fault and soft-start sequence repeats as long as the  
shortcircuit oroverload conditionspersist. This condition  
is recognized by the PG waveform shown in Figure 15  
Like most switching regulator controllers, the current  
sense comparator begins sensing the current t  
after  
MIN  
PG turns on. Then, the comparator turns PG off after the  
repeating at an interval of t  
.
+
voltage across ISEN and ISEN– exceeds the current  
sensecomparatorthreshold,V .Notethatthevoltage  
FAULT  
SENSE  
t
FAULT  
+
across ISEN and ISEN– is modified by LT4276’s internal  
slope compensation.  
4276 F14  
Figure 15: PG Waveform with Output Shorted  
4276fa  
14  
For more information www.linear.com/LT4276  
LT4276  
applicaTions inForMaTion  
For high efficiency applications, the LT4276 supports  
an LT4321-based PoE ideal diode bridge that reduces  
the forward voltage drop from 0.7V to nearly 20mV per  
diode in normal operation, while maintaining IEEE 802.3  
compliance.  
OVERTEMPERATURE PROTECTION  
The IEEE 802.3 specification requires a PD to withstand  
any applied voltage from 0V to 57V indefinitely. During  
classification,however,thepowerdissipationintheLT4276  
may be as high as 1.5W. The LT4276 can easily tolerate  
this power for the maximum IEEE classification timing but  
overheats if this condition persists abnormally.  
Auxiliary Input Diode Bridge  
Some PDs are required to receive AC or DC power from an  
auxiliarypowersource. Adiodebridgeistypicallyrequired  
to handle the voltage rectification and polarity correction.  
The LT4276 includes an over-temperature protection  
feature which is intended to protect the device during  
momentaryoverloadconditions.Ifthejunctiontemperature  
exceedstheover-temperaturethreshold, theLT4276pulls  
down HSGATE pin, disables classification, and disables  
the switching regulator operation.  
In high efficiency applications, the voltage dropacrossthe  
rectifiercannotbetolerated. TheLT4276canbeconfigured  
with an LT4320-based ideal diode bridge to recover the  
diode voltage drop and ease thermal design.  
MAXIMUM DUTY CYCLE  
Input Capacitor  
The maximum duty cycle of the PG pin is modified by the  
A 0.1µF capacitor is needed from VPORT to GND to meet  
the input impedance requirement in IEEE 802.3 and to  
properlybypasstheLT4276.Thiscapacitormustbeplaced  
as close as possible to the VPORT and GND pins.  
chosen t  
and f . It is calculated below:  
PGDELAY  
SW  
MAX POWER SUPPLY DUTY CYCLE  
=DMAX – tPGDELAY fSW  
Transient Voltage Suppressor  
The LT4276 specifies an absolute maximum voltage of  
100V and is designed to tolerate brief overvoltage events  
due to Ethernet cable surges.  
For an appropriate margin during transient operation, the  
forward or flyback power supply should be designed so  
that its maximum steady-state duty cycle should be about  
10%lowerthantheLT4276MaximumPowerSupplyDuty  
Cycle calculated above.  
To protect the LT4276, install a unidirectional transient  
voltage suppressor (TVS) such as an SMAJ58A between  
theVPORTandGNDpins.ThisTVSmustbeplacedasclose  
as possible to the VPORT and GND pins of the LT4276.  
For PD applications that require an auxiliary power input,  
EXTERNAL INTERFACE AND COMPONENT SELECTION  
PoE Input Diode Bridge  
and GND as close as possible  
install a TVS between V  
to the LT4276.  
IN  
PDs are required to polarity-correct its input voltage.  
When diode bridges are used, the diode forward voltage  
drops affect the voltage at the VPORT pin. The LT4276  
is designed to tolerate these voltage drops. The voltage  
parameters shown in the Electrical Characteristics are  
specified at the LT4276 package pins.  
For extremely high cable discharge and surge protection  
contact Linear Technology Applications.  
4276fa  
15  
For more information www.linear.com/LT4276  
LT4276  
Typical applicaTions  
13W (TYPE 1) PoE Power Supply in Flyback Mode with 5V, 2.3A Output  
L1: COILCRAFT, DO1813P-181HC  
L2: COILCRAFT, DO1608C-103  
2.2nF  
2kV  
L4: COILCRAFT, DO1608C-104  
C2: 22µF, 6.3V, MURATA GRM31CR70J226KE19  
C5: 47µF, 6.3V, PANASONIC 6SVP47M  
C7: 2.2µF, 100V, MURATA GRM32ER72A225KA35  
T1: WÜRTH, 750313109  
Q1: PSMN075-100MSE  
T2: PCA EPA4271GE OR PULSE PE-68386NL  
L2  
10µH  
L1  
180nH  
Q1  
V
OUT  
VPORT  
5V AT 2.3A  
+
C2  
22µF  
C5  
47µF  
6.3V  
47pF  
630V  
270Ω  
1/4W  
10µF  
100V  
C7  
2.2µF  
20Ω  
FMMT723  
L4  
100µH  
6.04k  
–V  
T1  
OUT  
3.3k  
10nF  
100V  
2k  
10µF  
10V  
BAV19WS  
FDN86246  
BAT54WS  
HSSRC  
V
IN  
SWVCC  
V
FB31  
CC  
PSMN4R2-30MLD  
PG  
1nF  
HSGATE  
VPORT  
11Ω  
1/4W  
8.2Ω  
+
ISEN  
LT4276C  
60mΩ  
1/4W  
1µF  
MMBT3906 MMBT3904  
15Ω  
ISEN  
0.1µF  
100V  
2.2nF  
100Ω  
T2  
PTVS58VP1UTP  
SG  
GND RCLASS FFSDLY  
52.3Ω 5.23k  
SFST  
ROSC  
ITHB  
1µF  
10k  
BAT46WS  
107k  
4.7nF  
20k  
330pF  
0.1µF  
GND  
4276 TA02  
2.2nF  
2KV  
Efficiency vs Load Current  
Output Regulation vs Load Current  
92  
90  
88  
86  
84  
82  
80  
78  
76  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
VPORT = 37V  
VPORT = 48V  
VPORT = 57V  
VPORT = 37V  
VPORT = 48V  
VPORT = 57V  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
LOAD CURRENT (A)  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
LOAD CURRENT (A)  
4276 TA02a  
4276 TA02b  
4276fa  
16  
For more information www.linear.com/LT4276  
LT4276  
Typical applicaTions  
O U T  
V
( V )  
E F F I C I E N C Y ( % )  
4276fa  
17  
For more information www.linear.com/LT4276  
LT4276  
Typical applicaTions  
O U T  
V
( V )  
E F F I C I E N C Y ( % )  
4276fa  
18  
For more information www.linear.com/LT4276  
LT4276  
Typical applicaTions  
O U T  
V
( V )  
E F F I C I E N C Y ( % )  
4276fa  
19  
For more information www.linear.com/LT4276  
LT4276  
Typical applicaTions  
O U T  
V
( V )  
E F F I C I E N C Y ( % )  
4276fa  
20  
For more information www.linear.com/LT4276  
LT4276  
Typical applicaTions  
O U T  
V
( V )  
E F F I C I E N C Y ( % )  
4276fa  
21  
For more information www.linear.com/LT4276  
LT4276  
Typical applicaTions  
O U T  
V
( V )  
E F F I C I E N C Y ( % )  
4276fa  
22  
For more information www.linear.com/LT4276  
LT4276  
Typical applicaTions  
O U T  
V
( V )  
E F F I C I E N C Y ( % )  
4276fa  
23  
For more information www.linear.com/LT4276  
LT4276  
package DescripTion  
Please refer to http://www.linear.com/product/LT4276#packaging for the most recent package drawings.  
UFD Package  
28-Lead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1712 Rev B)  
0.70 ±0.05  
4.50 ±0.05  
3.10 ±0.05  
2.50 REF  
2.65 ±0.05  
3.65 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
3.50 REF  
4.10 ±0.05  
5.50 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.35  
× 45° CHAMFER  
2.50 REF  
R = 0.115  
TYP  
R = 0.05  
TYP  
0.75 ±0.05  
4.00 ±0.10  
(2 SIDES)  
27  
28  
0.40 ±0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 ±0.10  
(2 SIDES)  
3.50 REF  
3.65 ±0.10  
2.65 ±0.10  
(UFD28) QFN 0506 REV B  
0.25 ±0.05  
0.200 REF  
0.50 BSC  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
4276fa  
24  
For more information www.linear.com/LT4276  
LT4276  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
12/15 Changed diode type of diode between SWVCC and V from Schottky to regular (BAV19WS) on all applicable  
1, 10, 16-20,  
22, 23  
CC  
schematics.  
Added additional conditions to V  
and I  
parameters.  
3
AUXT  
AUXH  
Revised graph: PG Delay Time vs Temperature in Flyback Mode.  
Added T2 transformer part number recommendation to all flyback schematics.  
Updated parts list for 25.5W (12V/1.9A) flyback schematic.  
5
16, 17, 19-23, 26  
21  
4276fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
25  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT4276  
Typical applicaTion  
+
25.5W (Type 2) PoE Power Supply in Flyback Mode with 12V, 1.9A Output  
2.2nF  
2kV  
L1: COILCRAFT, DO1813P-181HC  
L2: COILCRAFT, DO1608C-103  
L4: COILCRAFT, DO1608C-104  
C2: 10µF, 16V, MURATA GRM31CR61C106KA88  
C5: 22µF, 16V, PANASONIC 16SVP22M  
C7: 2.2µF, 100V, MURATA GRM32ER72A225KA35  
T1: WÜRTH, 750310742 OR PCA EPC3410G  
Q1-Q9: PSMN075-100MSE  
T2: PCA EPA4271GE OR PULSE PE-68386NL  
L2  
10µH  
L1  
180nH  
Q1  
V
OUT  
12V AT 1.9A  
+
C2  
10µF  
C5  
22µF  
20Ω  
10µF  
100V  
C7  
2.2µF  
47pF  
630V  
L4  
FMMT723  
100µH  
6.49k  
T1  
–V  
OUT  
Q2 Q3  
Q4 Q5  
150V  
1/4W  
DATA  
PAIRS  
10µF  
10V  
2.00kΩ  
1
BAV19WS  
BSZ520N15NS3G  
BAT54WS  
V
SWVCC  
V
FB31  
PG  
IN  
CC  
FDMC86160  
2
3
HSSRC  
HSGATE  
470pF  
13Ω  
1/4W  
TG12 BG12  
IN12  
BG36 TG36  
OUTP  
3.3k  
10nF  
100V  
EN  
+
6
4
ISEN  
ISEN  
1µF  
IN36  
IN45  
IN78  
47nF  
100V  
40mΩ  
1/4W  
LT4321  
24V  
SPARE  
PAIRS  
LT4276B  
MMBT3906 MMBT3904  
15Ω  
8.2Ω  
VPORT  
EN  
OUTN  
TG78 BG78  
2.2nF  
100Ω  
T2  
SG  
5
7
BG45 TG45  
T2P  
1µF  
10k  
BAT46WS  
GND RCLASS FFSDLY  
35.7Ω 5.23k  
SFST  
ROSC  
107k  
ITHB  
Q6 Q7  
Q8 Q9  
PTVS58VP1UTP  
3.3nF  
26.1k  
8
47nF  
100V  
0.1µF  
10k  
220pF  
2.2nF  
2KV  
V
OUT  
47k  
TO MICROPROCESSOR  
MOC207M  
4276 TA11  
Efficiency vs Load Current  
Output Regulation vs Load Current  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
12.5  
12.4  
12.3  
12.2  
12.1  
12.0  
11.9  
11.8  
11.7  
11.6  
11.5  
VPORT = 42.5V  
VPORT = 50V  
VPORT = 57V  
VPORT = 42.5V  
VPORT = 50V  
VPORT = 57V  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4276 TA11a  
4276 TA11b  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
IEEE 802.3af PD Interface With Integrated Internal 100V, 400mA Switch, Programmable Class, 200/300kHz Constant Frequency  
Switching Regulator PWM  
COMMENTS  
LTC4267/  
LTC4267-1/  
LTC4267-3  
LTC4269-1  
IEEE 802.3af PD Interface With Integrated 2-Event Classification, Programmable Class, Synchronous No-Opto Flyback Controller,  
Flyback Switching Regulator 50kHz to 250kHz, Aux Support  
LTC4269-2  
IEEE 802.3af PD Interface With Integrated 2-Event Classification, Programmable Class, Synchronous Forward Controller, 100kHz to  
Forward Switching Regulator 500kHz, Aux Support  
++  
+
++  
External Switch, LTPoE Support  
LT4275A/B/C  
LTC4278  
LTPoE /PoE /PoE PD Controller  
IEEE 802.3af PD Interface With Integrated 2-Event Classification, Programmable Class, Synchronous No-Opto Flyback Controller,  
Flyback Switching Regulator 50kHz to 250kHz, 12V Aux Support  
++  
+
++  
LTC4290/LTC4271 8-Port PoE/PoE /LTPoE PSE Controller Transformer Isolation, Supports IEEE 802.3af, IEEE 802.3at and LTPoE PDs  
LT4320/LT4320-1 Ideal Diode Bridge Controller  
9V-72V ,DC to 600Hz Input. Controls 4-NMOSFETs, Voltage Rectification without Diode Drops  
LT4321  
PoE Ideal Diode Bridge Controller  
Controls 8-NMOSFETs for IEEE-required PD Voltage Rectification without Diode Drops  
4276fa  
LT 1215 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
LINEAR TECHNOLOGY CORPORATION 2015  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT4276  

相关型号:

LT4276CIUFD#PBF

LT4276 - LTPoE++/PoE+/PoE PD Forward/Flyback Controller; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT4294HDD#PBF

LT4294 - IEEE 802.3bt PD Interface Controller; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT4294HMS#PBF

LT4294 - IEEE 802.3bt PD Interface Controller; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT4294IDD#PBF

LT4294 - IEEE 802.3bt PD Interface Controller; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT4294IMS#PBF

LT4294 - IEEE 802.3bt PD Interface Controller; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT4320

Ideal Diode Bridge Controller
Linear

LT4320-1

Ideal Diode Bridge Controller
Linear

LT4320-1_15

Ideal Diode Bridge Controller
Linear

LT4320IMSE#PBF

LT4320/LT4320-1 - Ideal Diode Bridge Controller; Package: MSOP; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT4320_15

Ideal Diode Bridge Controller
Linear

LT4321

PoE Ideal Diode Bridge Controller
Linear

LT4321HUF#PBF

LT4321 - PoE Ideal Diode Bridge Controller; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear