LT5500EGN [Linear]

1.8GHz to 2.7GHz Receiver Front End; 为1.8GHz至2.7GHz接收机前端
LT5500EGN
型号: LT5500EGN
厂家: Linear    Linear
描述:

1.8GHz to 2.7GHz Receiver Front End
为1.8GHz至2.7GHz接收机前端

电信集成电路 电信电路 光电二极管 接收机
文件: 总12页 (文件大小:297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5500  
1.8GHz to 2.7GHz  
Receiver Front End  
U
DESCRIPTIO  
FEATURES  
1.8V to 5.25V Supply  
The LT®5500 is a receiver front end IC designed for low  
voltage operation. The chip contains a low noise amplifier  
(LNA), a Mixer and an LO buffer. The IC is designed to  
operate over a power supply voltage range from 1.8V to  
5.25V.  
Dual LNA Gain Setting: +13.5dB/–14dB at 2.5GHz  
Double-Balanced Mixer  
Internal LO Buffer  
LNA Input Internally Matched  
Low Supply Current: 23mA  
The LNA can be set to either high gain or low gain mode.  
At 2.5GHz, the high gain mode provides 13.5dB gain and  
a noise figure (NF) of 4dB. The LNA in low gain mode  
provides –14dB gain and an IIP3 of +8dBm at 2.5GHz.  
Low Shutdown Current: 2µA  
24-Lead Narrow SSOP Package  
U
APPLICATIO S  
The mixer has 5dB of conversion gain and an IIP3 of  
2.5dBm at 2.5GHz, with –10dBm LO input power.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
IEEE 802.11 and 802.11b DSSS and FHSS  
High Speed Wireless LAN  
Wireless Local Loop  
U
TYPICAL APPLICATIO  
GAIN  
SELECT  
ENABLE  
100pF  
100pF  
2V  
LNA Gain (High Gain Mode)  
and Mixer Conversion Gain  
100pF  
×2  
LT5500  
EN  
GS  
RF INPUT  
FILTER  
L4  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
13.0  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
L2  
f
= 2.5GHz  
= 25°C  
LNA_IN  
LNA_OUT  
RF  
A
RF  
T
INPUT  
GND  
C4  
LO  
LNA_GND  
L3  
INTERSTAGE  
FILTER  
C17  
+
LO  
2V  
LO INPUT  
V
CC  
100pF  
1µF  
1nF  
×4  
L9  
LO  
MIX_GND  
MIX_IN  
RF  
IF  
C23  
+
L5  
3.5  
(V)  
4
1.5  
2
2.5  
3
4.5  
5
5.5  
IF  
IF  
V
CC  
T2  
8:1  
5500 TA02  
2V  
IF OUTPUT  
L7  
100pF  
5500 F01  
Figure 1. 2.5GHz Receiver. Interstage Filter is Optional  
5500f  
1
LT5500  
W W U W  
W U  
ABSOLUTE MAXIMUM RATINGS  
/O  
PACKAGE RDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
Power Supply Voltage ........................................... 5.5V  
LNA RF Input Power ............................................ 5dBm  
Mixer RF Input Power ........................................ 10dBm  
LO Input Power (Note 2) ................................... 10dBm  
All Other Pins......................................................... 5.5V  
Operating Ambient  
Temperature Range ............................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
NUMBER  
1
2
GS  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
EN  
GND  
V
CC  
LT5500EGN  
3
LNA_OUT  
LNA_IN  
4
V
GND  
LNA_GND  
LNA_GND  
LNA_GND  
LNA_GND  
CC  
5
GND  
6
LO  
+
7
LO  
8
V
CC  
9
GND  
V
CC  
10  
11  
12  
MIX_IN  
MIX_GND  
GND  
GND  
+
IF  
IF  
GN PACKAGE  
24-LEAD PLASTIC SSOP  
TJMAX = 150°C, θJA = 85°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
(Test circuit shown in Figure 3 for 1.8GHz application) VCC = 3V DC,  
LNA: fLNA_IN = 1.8GHz, Mixer: fMIX_IN = 1.8GHz, fLO = 1.52GHz, PLO = –10dBm, TA = 25°C, unless otherwise noted. (Notes 3, 4)  
SYMBOL PARAMETER  
LNA High Gain: EN = 1.35V, GS = 1.35V  
Frequency Range (Note 3)  
Forward Gain  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
1.8 to 2.7  
18.5  
–39  
GHz  
dB  
15.5  
Reverse Gain (Isolation)  
Noise Figure  
dB  
Terminated 50Source  
No External Matching  
With External Matching  
2.5  
dB  
Input Return Loss  
10.5  
15  
dB  
Output Return Loss  
dB  
Input 1dB Compression  
Input 3rd Order Intercept  
LNA Low Gain: EN = 1.35V, GS = 0.3V  
Frequency Range (Note 4)  
Forward Gain  
–24  
dBm  
dBm  
Two Tone Test, f = 2MHz  
–18  
–13  
–12  
1.8 to 2.7  
GHz  
dB  
–10  
–34  
16.5  
0
Reverse Gain (Isolation)  
Noise Figure  
dB  
dB  
Input 1dB Compression  
Input 3rd Order Intercept  
Mixer: EN = 1.35V, GS = 1.35V  
RF Frequency Range (Note 4)  
Conversion Gain  
dBm  
dBm  
Two Tone Test, f = 2MHz  
4.5  
5.5  
–6  
9
1.8 to 2.7  
8.5  
GHz  
dB  
SSB Noise Figure  
Terminated 50Source  
7.5  
dB  
Input P1dB  
–13  
dBm  
dBm  
5500f  
Input 3rd Order Intercept  
Two Tone Test, f = 2MHz  
2.5  
2
LT5500  
ELECTRICAL CHARACTERISTICS  
(Test circuit shown in Figure 3 for 1.8GHz application) VCC = 3V DC,  
LNA: fLNA_IN = 1.8GHz, Mixer: fMIX_IN = 1.8GHz, fLO = 1.52GHz, PLO = –10dBm, TA = 25°C, unless otherwise noted. (Notes 3, 4)  
SYMBOL PARAMETER  
LO Frequency Range (Note 4)  
CONDITIONS  
MIN  
TYP  
0.01 to 3.15  
10 to 450  
36  
MAX  
UNITS  
GHz  
MHz  
dB  
Matching Required  
Matching Required  
IF Frequency Range (Note 3)  
LO-IF Isolation  
LO-RF Isolation  
36  
dB  
RF-LO Isolation  
40  
dB  
(Test circuit shown in Figure 3 for 2.5GHz application) VCC = 3V DC, LNA: fLNA_IN = 2.5GHz, Mixer: fMIX_IN = 2.5GHz, fLO = 2.22GHz,  
LO = –10dBm, TA = 25°C, unless otherwise noted.  
P
SYMBOL PARAMETER  
LNA High Gain: EN = 1.35V, GS = 1.35V  
Forward Gain  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
13.5  
–35  
4
dB  
dB  
Reverse Gain (Isolation)  
Noise Figure  
Terminated 50Source  
No External Matching  
With External Matching  
dB  
Input Return Loss  
12  
dB  
Output Return Loss  
Input 1dB Compression  
Input 3rd Order Intercept  
LNA Low Gain: EN = 1.35V, GS = 0.3V  
Forward Gain  
15  
dB  
–15  
–3.5  
dBm  
dBm  
Two Tone Test, f = 2MHz  
–14  
–39  
19  
dB  
dB  
Reverse Gain (Isolation)  
Noise Figure  
dB  
Input 1dB Compression  
Input 3rd Order Intercept  
Mixer: EN = 1.35V, GS = 1.35V  
Conversion Gain  
–1  
8
dBm  
dBm  
Two Tone Test, f = 2MHz  
5
9.5  
–11  
2.5  
33  
dB  
dB  
SSB Noise Figure  
Terminated 50Source  
Input P1dB  
dBm  
dBm  
dB  
Input 3rd Order Intercept  
LO-IF Isolation  
Two Tone Test, f = 2MHz  
LO-RF Isolation  
37  
dB  
RF-LO Isolation  
32  
dB  
VCC = 3V DC, TA = 25°C (Note 4)  
SYMBOL PARAMETER  
Power Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage  
1.8 to 5.25  
V
mA  
mA  
µA  
CC  
I
I
I
I
I
HG  
LG  
Off  
Rx High Gain Mode  
Rx Low Gain Mode  
Shutdown Current  
Enable Current  
EN = 1.35V, GS = 1.35V  
EN = 1.35V, GS = 0.3V  
EN = 0.3V, GS = 0.3V  
EN = 1.35V (Note 5)  
GS = 1.35V (Note 6)  
23  
18  
2
33  
31  
25  
CC  
CC  
CC  
EN  
GS  
21  
21  
µA  
Gain Select Current  
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life of  
the device may be impaired.  
Note 2: LO Absolute Maximum Ratings apply for each LO pin separately.  
Note 4: Specifications over the –40°C to 85°C operating temperature range  
areassuredbydesign,characterizationandcorrelationwithstatisticalprocess  
controls.  
Note 5: When EN 0.3V, enable current is <10µA.  
Note 3: Component values listed in Figure 3 for 1.8GHz evaluation board were  
used to guarantee 1.8GHz performance.  
Note 6: When GS 0.3V, gain select current is <10µA.  
5500f  
3
LT5500  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
LNA Noise Figure vs Supply  
Voltage (High Gain Mode)  
LNA IIP3 vs Supply Voltage and  
Temperature (High Gain Mode)  
LNA Gain vs Supply Voltage and  
Temperature (High Gain Mode)  
0
–2  
20  
19  
18  
17  
16  
15  
14  
13  
12  
4.5  
–40°C, 2.5GHz  
25°C, 2.5GHz  
T = 25°C  
A
–40°C, 1.8GHz  
25°C, 1.8GHz  
2.5GHz  
–4  
4.0  
3.5  
85°C, 2.5GHz  
–6  
85°C, 1.8GHz  
–40°C, 1.8GHz  
25°C, 1.8GHz  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
3.0  
2.5  
2.0  
85°C, 1.8GHz  
25°C, 2.5GHz  
–40°C, 2.5GHz  
1.8GHz  
3.5  
85°C, 2.5GHz  
1.5  
3.5  
4.5  
5
2
2.5  
3
4
5.5  
3.5  
4
1.5  
2
2.5  
3
4.5  
5
5.5  
1.5  
2
2.5  
3
4
4.5  
5
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
5500 G02  
5500 G01  
5500 G03  
LNA Gain vs Supply Voltage and  
Temperature (Low Gain Mode)  
LNA IIP3 vs Supply Voltage and  
Temperature (Low Gain Mode)  
LNA Noise Figure vs Supply  
Voltage (Low Gain Mode)  
19.5  
19.0  
18.5  
–10.0  
–10.5  
–11.0  
–11.5  
–12.0  
–12.5  
–13.0  
–13.5  
–14.0  
–14.5  
12  
10  
8
T
= 25°C  
A
2.5GHz  
–40°C, 1.8GHz  
85°C, 1.8GHz  
25°C, 1.8GHz  
85°C, 1.8GHz  
85°C, 2.5GHz  
25°C, 1.8GHz  
18.0  
17.5  
17.0  
16.5  
16.0  
25°C, 2.5GHz  
–40°C, 2.5GHz  
–40°C, 1.8GHz  
6
25°C, 2.5GHz  
85°C, 2.5GHz  
1.8GHz  
3.5  
–40°C, 2.5GHz  
4
1.5  
3.5  
4
4.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
5.5  
1.5  
2
2.5  
3
5
5.5  
1.5  
4.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
5500 G04  
5500 G05  
5500 G06  
Mixer Conversion Gain vs Supply  
Voltage and Temperature  
Mixer IIP3 vs Supply Voltage and  
Temperature  
Mixer SSB Noise Figure  
vs Supply Voltage  
2
10  
9
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
T
= 25°C  
A
2.5GHz  
1
0
–40°C, 1.8GHz  
25°C, 1.8GHz  
85°C, 2.5GHz  
85°C, 1.8GHz  
25°C, 2.5GHz  
8
–1  
–2  
–3  
–4  
–5  
–6  
85°C, 1.8GHz  
7
25°C, 1.8GHz  
25°C, 2.5GHz –40°C, 2.5GHz  
6
–40°C, 1.8GHz  
–40°C, 2.5GHz  
1.8GHz  
3.5  
5
85°C, 2.5GHz  
4
4
4.5  
3.5  
4
4
4.5  
1.5  
2
2.5  
3
3.5  
5
5.5  
1.5  
2
2.5  
3
4.5  
5
5.5  
1.5  
2
2.5  
3
5
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
5500 G07  
5500 G08  
5500 G09  
5500f  
4
LT5500  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Mixer Conversion Gain  
vs LO Power  
Mixer SSB Noise Figure  
vs LO Power  
Mixer IIP3 vs LO Power  
9
8
7
6
5
4
3
2
1
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
–2.2  
–2.4  
–2.6  
–2.8  
–3.0  
15  
14  
13  
12  
IF = 280MHz  
IF = 280MHz  
V
T
= 3V  
V
T
= 3V  
1.8GHz  
CC  
A
CC  
A
= 25°C  
= 25°C  
2.5GHz  
11  
10  
2.5GHz  
1.8GHz  
–20  
1.8GHz  
2.5GHz  
9
8
7
IF = 280MHz  
V
A
= 3V  
CC  
T
= 25°C  
0
0
–5  
–10  
–15  
–30  
0
–5  
–10  
–15  
–20  
–25  
–30  
0
–5  
–10  
–25  
–30  
–20  
–25  
–15  
P(LO) (dBm)  
P(LO) (dBm)  
P(LO) (dBm)  
5500 G10  
5500 G12  
5500 G11  
LNA Input Return Loss  
vs Supply Voltage  
LNA Output Return Loss  
vs Supply Voltage  
LNA Input Return Loss  
vs Temperature  
18  
16  
14  
12  
10  
8
15  
14  
13  
12  
11  
10  
9
24  
RF = 2.5GHz  
A
RF = 2.5GHz  
= 3V  
RF = 2.5GHz  
A
T
= 25°C  
V
T
= 25°C  
CC  
22  
20  
18  
16  
14  
12  
10  
8
HIGH GAIN  
HIGH GAIN  
HIGH GAIN  
LOW GAIN  
8
LOW GAIN  
3.5  
7
LOW GAIN  
6
6
6
1.5  
2.5  
4.5  
5.5  
–50  
0
50  
100  
3.5  
1.5  
2.5  
4.5  
5.5  
TEMPERATURE (°C)  
V
(V)  
CC  
V
(V)  
CC  
5500 G13  
5500 G14  
5500 G15  
LNA Output Return Loss  
vs Temperature  
ICC vs Supply Voltage  
(High Gain Mode)  
ICC vs Supply Voltage  
(Low Gain Mode)  
20  
18  
16  
14  
12  
10  
8
31  
29  
27  
25  
23  
21  
19  
17  
15  
28  
26  
24  
22  
20  
18  
16  
14  
12  
RF = 2.5GHz  
CC  
V
= 3V  
85°C  
85°C  
25°C  
HIGH GAIN  
LOW GAIN  
25°C  
–40°C  
–40°C  
6
50  
TEMPERATURE (°C)  
100  
1.5  
3.5  
(V)  
5.5  
1.5  
3.5  
(V)  
5.5  
–50  
0
2.5  
4.5  
2.5  
4.5  
V
CC  
V
CC  
5500 G16  
5500 G17  
5500 G18  
5500f  
5
LT5500  
U
U
U
PIN FUNCTIONS  
EN(Pin1):EnablePin.Avoltagelessthan0.3V(LogicLow)  
disablesthepart. Aninputgreaterthan1.35V(LogicHigh)  
enablesthepart.Thispinshouldbebypassedtogroundwith  
a 100pF capacitor. To shut down the part, this pin and GS  
(Pin 24) must be logic low. Voltage on this pin should not  
exceed VCC nor fall below ground.  
The output can be taken differentially or transformed into  
a single ended output, depending on user preference and  
performance requirements.  
MIX_IN (Pin 15): Mixer RF Input. This pin is internally  
biased to 0.83V and must be AC coupled. An external  
matching network is necessary to match to a 50system.  
LO+, LO(Pins 18, 19): LO Input Pins. These pins are  
used to provide the LO drive to the mixer. The signal can  
be provided either single ended or differentially. These  
pins are internally biased to VCC – 0.2V and must be AC  
coupled.  
VCC (Pins 2, 9, 17, 21): Power Supply Pins. See Figure 6  
for recommended power supply bypassing.  
LNA_IN (Pin 3): LNA Input Pin. The LT5500 has better  
than 10dB input return loss from 1.8GHz to 2.7GHz. This  
pin is internally biased to 0.8V and must be AC coupled.  
GND (Pin 4, 11, 14, 16, 20, 23): Ground Pins. These pins  
LNA_OUT (Pin 22): The Output Pin for the LNA. An  
external matching network is necessary to match to a 50Ω  
system. This pin must be DC coupled to the power supply.  
should be connected directly to ground.  
LNA_GND (Pins 5, 6, 7, 8): LNA Ground Pins. These pins  
control the gain of the LNA. At higher frequencies, these  
pinsmustbeconnecteddirectlytogroundtomaximizethe  
gain.  
GS (Pin 24): Gain Select Pin. This pin is used to select  
between high gain and low gain modes. High gain mode is  
selected when an input voltage greater than 1.35V (Logic  
High) is applied to this pin. Low gain mode is selected  
when the applied voltage is less than 0.3V (Logic Low).  
This pin should be bypassed to ground with a 100pF  
capacitor. To shut down the part, this pin must be logic  
low. Voltage on this pin should not exceed VCC nor fall  
below ground.  
MIX_GND (Pin 10): Mixer Ground Pin. To optimize the  
performance of the mixer, a 4.7nH inductor to ground is  
required for this pin.  
IF+, IF(Pins 12, 13): Intermediate Frequency (IF) Mixer  
Output Pins. These pins must be inductively tied to VCC.  
5500f  
6
LT5500  
W
BLOCK DIAGRA  
LT5500  
1
EN  
GS  
LNA_OUT  
24  
22  
BIAS  
LNA_IN  
3
4, 11, 14, 16, 20, 23  
GND  
LO 19  
LNA_GND  
5
6
7
8
+
LO 18  
2, 9, 17, 21  
V
CC  
LO  
MIX_GND  
MIX_IN 15  
10  
RF  
IF  
+
IF  
12  
IF  
13  
5500 BD  
Figure 2. LT5500 Block Diagram  
U
W U U  
APPLICATIONS INFORMATION  
The LT5500 consists of an LNA, a Mixer, an LO buffer and  
the associated bias circuitry. The chip is designed to be  
compatible with IEEE802.11b wireless local area network  
(WLAN), MMDS and other wireless applications. The LNA  
andMixeraredesignedtooperateoveraninputfrequency  
range of 1.8GHz to 2.7GHz with a supply voltage of 1.8V  
to 5.25V. The Mixer IF output frequency range is typically  
10MHz to 450MHz with proper matching. The typical LO  
drive is –10dBm. The LO buffer operation is broadband.  
requires a shunt inductor connected to the power supply  
to provide the bias current. The component configuration  
for matching and example component values are listed in  
Figure 3. If it is desirable to reduce the gain further and  
simultaneously broaden the LNA bandwidth, an addi-  
tional shunt resistor to the power supply can be added to  
the output to reduce the output quality factor (Q).  
The LT5500 is designed to allow an interstage bandpass  
filter to be introduced between the output of the LNA and  
the input of the Mixer. If such an interstage filter is  
unnecessary, the output of the LNA can be connected to  
the Mixer input through a blocking capacitor and small  
value resistor.  
LNA  
The LNA has two modes of operation: high gain and low  
gain. In the high gain mode, the LNA is a cascode  
amplifier. Package inductance is used to achieve better  
than 10dB input return loss over the entire frequency  
range. The input of the LNA must be AC coupled. The  
linearity of the high gain mode of the LNA can be in-  
creased by adding inductance to LNA_GND. This will  
reduce the gain and improve input return loss while  
having little impact on the low gain mode. In low gain  
mode, the LNA uses a capacitively coupled diode and a  
resistively degenerated cascode to attenuate the incom-  
ing signal and maintain a moderate VSWR. The LNA  
output is an open collector, and the matching circuit  
Mixer  
The Mixer consists of a single-ended input differential pair  
followedbyadouble-balancedmixercell.Theinputmatch-  
ing configuration for the Mixer is shown in Figure 3. The  
Mixer uses a 4.7nH external inductance to act as a high  
frequency current source at the MIX_GND pin. Example  
component values for matching the mixer input are tabu-  
lated in Figure 3.  
5500f  
7
LT5500  
U
W U U  
APPLICATIONS INFORMATION  
GAIN  
SELECT  
ENABLE  
100pF  
100pF  
V
CC  
100pF  
100pF  
LT5500  
EN  
GS  
L4  
L2  
LNA_IN  
LNA_OUT  
RF OUT  
RF INPUT  
GND  
C4  
APPLICATION DEPENDENT  
COMPONENT VALUES  
LO  
LNA_GND  
RF INPUT 1.8GHz  
2.5GHz  
2.7nH  
4.7nH  
1.8nH  
220pF  
10pF  
L4  
L2  
4.7nH  
12nH  
L3  
C17  
+
LO  
V
CC  
L3  
4.7nH  
LO INPUT  
V
CC  
C4  
220pF  
C17  
L9  
10pF  
5.6nH  
*
2.7nH  
1.5pF  
C23  
1.8pF  
L9  
LO  
MIX_GND  
MIX_IN  
MIXER RF  
INPUT  
280MHz IF OUTPUT  
15nH  
RF  
L7  
T1  
IF  
C23  
+
TC8-1 MINI-CIRCUITS  
L5  
4.7nH  
IF  
IF  
T1  
V
CC  
IF OUTPUT  
*REFER TO FIGURE 6 FOR POWER SUPPLY  
PINS BYPASSING RECOMMENDATION  
C2  
100pF  
L7  
5500 F03  
Figure 3. Simplified Test Schematic for 1.8GHz and 2.5GHz Applications  
An IF transformer can be used to create a single-ended  
output. The additional discrete components necessary to  
achieve a 50match are tabulated in Figure 3. Alterna-  
tively, the discrete solution shown in Figure 4 can be used  
to perform differential to single-ended conversion. For  
best LO and RF signal suppression at the IF output, a  
transformer should be used. If it is desirable to reduce the  
gain of the mixer, a resistor between the IF outputs can be  
used.  
LO Buffer  
The LO inputs can be driven either differentially or single  
ended. A single-ended configuration is shown along with  
example component values in Figure 3. Optionally, the LO  
can be driven differentially as shown in Figure 5.  
LT5500  
12  
13  
+
IF  
IF  
TX1  
4:1  
19  
18  
V
CC  
LO  
LO INPUT  
IF OUTPUT 280MHz  
LT5500  
L3  
L10, L11  
C12  
27nH  
3.3pF  
2.2pF  
100pF  
+
LO  
C14  
5500 F05  
L10  
L11  
C14  
C12  
LO INPUT 2.22GHz  
50Ω  
IF OUTPUT  
L3  
TX1  
3.3nH  
TOKO-BF4  
5500 F04  
Figure 4. Alternative Mixer IF Output Matching  
Figure 5. Optional Transformer-Based Differential LO Drive  
5500f  
8
LT5500  
U
W U U  
APPLICATIONS INFORMATION  
Modes of Operation  
evaluationofbothtransformerbasedanddiscretecompo-  
nent based matching.  
The LT5500 has three operating modes:  
1. Shutdown  
The evaluation board employs primarily 0402 surface  
mount components, particularly near the signal paths. All  
surface mount inductors must have a high self-resonance  
frequency. The component values necessary for 1.8GHz  
and 2.5GHz applications are tabulated in Figure 3.  
2. LNA High Gain  
3. LNA Low Gain  
For shutdown, the EN pin and the GS pin must be at logic  
Low. LogicLowisdefinedasacontrolvoltagebelow0.3V.  
LNA High gain mode requires that both EN and GS pins be  
at logic High. Logic High is defined as a control voltage  
above 1.35V. LNA Low gain mode requires that the EN pin  
be at logic High and that the GS pin be at logic Low. Mixer  
operation is independent of the GS pin. The Mixer is  
enabled when the EN pin is at logic High.  
RF Layout Tips  
• Use50impedancetransmissionlinesuptothematch-  
ing networks. Use of ground planes is a must, particu-  
larly beneath the IC.  
• Keep the matching networks as close to the pins as  
possible.  
Table 1: Mode Selection  
• Surface mount 0402 outline (or smaller) parts are  
recommended to minimize parasitic capacitances and  
inductances.  
EN  
GS  
LNA  
MIXER  
On  
High  
High  
Low  
High  
Low  
Low  
High Gain  
Low Gain  
Shutdown  
On  
• ImproveLOisolationandmaximizecomponentdensity  
by putting the LO signal trace on the bottom of the  
board. Thispermitseitherthematchingcomponentsor  
an interstage filter to be placed directly between the  
LNA output and the Mixer input.  
Shutdown  
Evaluation Board  
Figure 6 shows the circuit schematic of the evaluation  
board. Each signal terminal of the evaluation board has  
provisions for three matching components in a T-forma-  
tion. In practice, two or fewer components are needed to  
achievethematch.InthecaseoftheLNAinput,noexternal  
components are necessary if the band select filter pro-  
vides the necessary AC coupling. Otherwise AC coupling  
must be provided. A similar consideration applies to the  
Mixer input pin. The LO terminal of the evaluation board  
was designed to permit evaluation of both single ended  
and differential matching configurations. The differential  
configuration anticipates the use of a transformer. Simi-  
larly, the IF output board layout was designed to permit  
• Place bypass capacitors to ground in close proximity to  
the pull-up inductors on the LNA and Mixer outputs to  
improve component behavior and assure a good small-  
signal ground.  
• VCC lines must be decoupled with low impedance,  
broadbandcapacitorstopreventinstability.Thecapaci-  
tors should be placed as close as possible to the VCC  
pins.  
• Avoid use of long traces whenever possible. Long RF  
traces in particular lead to signal radiation, degraded  
isolation and higher losses.  
5500f  
9
LT5500  
U
W U U  
APPLICATIONS INFORMATION  
R1  
5.1k  
V
CC2  
E1  
SW1  
R2  
5.1k  
4
3
1
2
C24  
100pF  
V
CC1  
C22  
100pF  
C1  
100pF  
C2  
V
C25  
100pF  
1µF  
CC1  
E2  
C3  
100pF  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
EN  
GS  
L4  
2.7nH  
V
C16  
CC1  
LT5500  
L2  
8.2pF  
V
GND  
CC  
4.7nH  
R3 0R4 0Ω  
3
J2  
J1  
LNA_IN  
LNA_OUT  
LNA_IN  
LNA_OUT  
4
C6  
1µF  
GND  
V
CC  
C17  
10pF  
5
R6  
0Ω  
LNA_GND  
LNA_GND  
LNA_GND  
LNA_GND  
GND  
C5 100pF  
C4 220pF  
6
J3  
LO_IN  
LO  
7
+
C8 1µF  
LO  
L3  
1.8nH  
C9  
100pF  
8
V
CC  
C10 100pF  
9
V
GND  
MIX_IN  
GND  
CC  
10  
11  
12  
MIX_GND  
GND  
L6  
2.7nH  
L5  
4.7nH  
J5  
+
IF  
IF  
MIX_IN  
C28  
1.5pF  
T1  
3
2
1
4
6
R5  
0Ω  
C13  
1nF  
C15  
100pF  
J6  
IF_OUT  
L7  
15nH  
E4  
E5  
5500 F06  
Figure 6. 2.5GHz Evaluation Circuit Schematic  
5500f  
10  
LT5500  
U
W U U  
APPLICATIONS INFORMATION  
Figure 7. Component Side Silkscreen of Evaluation Board  
Figure 8. Component Side Layout of Evaluation Board  
Figure 9. RF Ground (Layer 2) Layout of Evaluation Board  
Figure 10. Routing (Layer 3) Layout of Evaluation Board  
Figure 11. Bottom Side Silkscreen of Evaluation Board  
Figure 12. Bottom Side Layout of Evaluation Board  
5500f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT5500  
U
PACKAGE DESCRIPTION  
GN Package  
24-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.337 – .344*  
(8.560 – 8.738)  
.033  
(0.838)  
REF  
24 23 22 21 20 19 18 17 16 15 14 13  
.045 ±.005  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.254 MIN  
.150 – .165  
1
2
3
4
5
6
7
8
9 10 11 12  
.0165 ±.0015  
.0250 TYP  
RECOMMENDED SOLDER PAD LAYOUT  
.015 ± .004  
(0.38 ± 0.10)  
.053 – .068  
(1.351 – 1.727)  
.004 – .0098  
(0.102 – 0.249)  
× 45°  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.008 – .012  
(0.203 – 0.305)  
.0250  
(0.635)  
BSC  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
GN24 (SSOP) 0502  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT5502  
400MHz Quadrature Demodulator with RSSI  
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain,  
90dB RSSI Range  
LT5503  
1.2GHz to 2.7GHz Direct IQ Modulator and  
Upconverting Mixer  
1.8V to 5.25V Supply, Four-Step RF Power Control,  
120MHz Modulation Bandwidth  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
300MHz to 3.5GHz RF Power Detector  
80dB Dynamic Range, Temperature Compensated, 2.7V to 5.5V Supply  
>40dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply  
1.8V to 5.25V Supply, 40MHz to 500MHz IF, Linear Power Gain  
48dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply  
SC70 Package  
LTC5505  
LT5506/LTC5446 500MHz Quadrature IF Demodulator with VGA  
LTC5507  
LTC5508  
LTC5509  
LT5511  
LT5512  
LT5515  
LT5516  
LT5522  
100kHz to 1GHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
High Signal Level Upconverting Mixer  
High Signal Level Downconverting Mixer  
36dB Dynamic Range, SC70 Package  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC-3GHz, 20dBm IIP3, Integrated LO Buffer  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator 20dBm IIP3,Integrated LO Quadrature Generator  
0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator 21.5dBm IIP3,Integrated LO Quadrature Generator  
600MHz to 2.7GHz High Signal Level Mixer  
25dBm IIP3 at 900MHz, 21.5dBm IIP3 at 1.9GHz, Single-Ended 50Ω  
Matched RF and LO Ports, Integrated LO Buffer  
LTC5532  
300MHz to 7GHz Precision RF Power Detector  
Precision VOUT Offset Control, Adjustable Gain and Offset Voltage  
ThinSOT is a trademark of Linear Technology Corporation.  
5500f  
LT/TP 0305 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5500EGN#PBF

暂无描述
Linear

LT5500EGN#TR

LT5500 - 1.8GHz to 2.7GHz Receiver Front End; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5500EGN#TRPBF

LT5500 - 1.8GHz to 2.7GHz Receiver Front End; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5502

400MHz Quadrature IF Demodulator with RSSI
Linear

LT5502EGN

400MHz Quadrature IF Demodulator with RSSI
Linear

LT5502EGN#TR

LT5502 - 400MHz Quadrature IF Demodulator with RSSI; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5503

1.2GHz to 2.7GHz Direct IQ Modulator and Mixer
Linear

LT5503EFE

1.2GHz to 2.7GHz Direct IQ Modulator and Mixer
Linear

LT5503EFE#PBF

LT5503 - 1.2GHz to 2.7GHz Direct IQ Modulator and Mixer; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5503EFE#TR

LT5503 - 1.2GHz to 2.7GHz Direct IQ Modulator and Mixer; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5503EFE#TRPBF

LT5503 - 1.2GHz to 2.7GHz Direct IQ Modulator and Mixer; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5503EFE-PBF

1.2GHz to 2.7GHz Direct IQ Modulator and Mixer
Linear