LT5511EFE#TR [Linear]

LT5511 - High Signal Level Upconverting Mixer; Package: TSSOP; Pins: 16; Temperature Range: -40°C to 85°C;
LT5511EFE#TR
型号: LT5511EFE#TR
厂家: Linear    Linear
描述:

LT5511 - High Signal Level Upconverting Mixer; Package: TSSOP; Pins: 16; Temperature Range: -40°C to 85°C

文件: 总16页 (文件大小:280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5511  
High Signal Level  
Upconverting Mixer  
U
FEATURES  
DESCRIPTIO  
The LT®5511 mixer is designed to meet the high linearity  
requirementsofcableTVinfrastructuredownstreamtrans-  
mitters and wireless infrastructure transmit systems. The  
IC includes a differential LO buffer amplifier driving a  
double-balanced mixer. The LO, RF and IF ports can be  
easily matched to a broad range of frequencies for differ-  
ent applications. The high performance capability of the  
LO buffer allows the use of a single-ended source, thus  
eliminating the need for an LO balun.  
Wide RF Output Frequency Range to 3000MHz  
Broadband RF and IF Operation  
+17dBm Typical Input IP3 (at 950MHz)  
+6dBm IF Input for 1dB RF Output Compression  
Integrated LO Buffer: –10dBm Drive Level  
Single-Ended or Differential LO Input  
Double-Balanced Mixer  
Enable Function  
Single 4.0V – 5.25V Supply Voltage Range  
16-Pin TSSOP Exposed Pad Package  
The LT5511 mixer delivers +17dBm typical input 3rd  
order intercept point at 950MHz, and +15.5dBm IIP3 at  
1900MHz, with IF input signal levels of – 5dBm. The input  
1dB compression point is typically +6dBm.  
U
APPLICATIO S  
CATV Downlink Infrastructure  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Wireless Infrastructure  
High Linearity Mixer Applications  
U
TYPICAL APPLICATIO  
V
CC  
ENABLE  
5V  
RF Output Power  
LT5511  
EN  
and 3rd Order Intermodulation  
vs Input Power (Two Input Tones)  
V
CC  
BIAS  
V
LO  
+
CC  
BIAS  
10  
0
950MHz  
44MHz  
+
IF  
IF  
RF  
TO  
P
OUT  
DOWNMIXER  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
MOD  
RF  
IM3  
GND  
P
= –10dBm  
= 950MHz  
= 949MHz  
LO  
RF1  
RF2  
f
+
f
LO  
LO  
T
= 25°C  
A
5511 F01a  
–20  
–15  
–10  
–5  
0
5
LO INPUT  
994MHz  
–10dBm  
IF INPUT POWER (dBm/TONE)  
5511 F01b  
Figure 1. High Signal Level Upmixer for CATV Downlink Infrastructure.  
5511i  
1
LT5511  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
Supply Voltage ....................................................... 5.5V  
Enable Voltage ................................ –0.3V to VCC + 0.3V  
LO Input Power (Differential).............................. 10dBm  
IF Input Power (Differential) ............................... 10dBm  
IF+, IFDC Currents .............................................. 25mA  
Operating Temperature Range .................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10sec)................... 300°C  
+
LO  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
LO  
V
NUMBER  
NC  
LO  
CC  
LT5511EFE  
GND  
+
GND  
+
IF  
RF  
IF  
RF  
GND  
BIAS  
GND  
11 GND  
V
10  
9
EN  
NC  
CC  
FE PART MARKING  
5511EFE  
FE PACKAGE  
16-LEAD PLASTIC TSSOP  
TJMAX = 150°C, θJA = 38°C/W  
EXPOSED PAD IS GROUND  
(MUST BE SOLDERED TO  
PRINTED CIRCUIT BOARD)  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 5V , EN = High, T = 25°C  
DC A  
CC  
IF Input Frequency Range (Note 6)  
LO Input Frequency Range (Note 6)  
RF Output Frequency Range (Note 6)  
1 to 300  
30 to 2700  
10 to 3000  
MHz  
MHz  
MHz  
950MHz Application: (Test Circuit Shown in Figure 2) V = 5V , EN = High, T = 25°C, IF Input = 50MHz at –5dBm, LO Input = 1GHz at –10dBm,  
CC  
DC  
A
RF Output Measured at 950MHz, unless otherwise noted. (Notes 2, 3)  
IF Input Return Loss  
LO Input Power  
With External Matching, Z = 50Ω  
14  
–15 to –5  
14  
dB  
dBm  
dB  
O
LO Input Return Loss  
RF Output Return Loss  
Conversion Gain  
With External Matching, Z = 50Ω  
O
With External Matching, Z = 50Ω  
17  
dB  
O
0
dB  
LO to RF Leakage  
–46  
5.9  
dBm  
dBm  
dBm  
dBm  
dB  
Input 1dB Compression  
Input 3rd Order Intercept  
Input 2nd Order Intercept  
SSB Noise Figure  
Two-Tone, –5dBm/Tone, f = 1MHz  
17  
Single-Tone, –5dBm  
52  
15  
5511f  
2
LT5511  
ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
1.9GHz Application: (Test Circuit Shown in Figure 3) V = 5V , EN = High, T = 25°C, IF Input = 50MHz at –5dBm, LO Input = 1.95GHz at –10dBm,  
CC  
DC  
A
RF Output Measured at 1900MHz, unless otherwise noted. (Notes 3, 4)  
IF Input Return Loss  
LO Input Power  
With External Matching, Z = 50Ω  
14  
–15 to –5  
11.5  
11.5  
–0.7  
–47  
dB  
dBm  
dB  
O
LO Input Return Loss  
RF Output Return Loss  
Conversion Gain  
With External Matching, Z = 50Ω  
O
With External Matching, Z = 50Ω  
dB  
O
dB  
LO to RF Leakage  
dBm  
dBm  
dBm  
dBm  
dB  
Input 1dB Compression  
Input 3rd Order Intercept  
Input 2nd Order Intercept  
SSB Noise Figure  
5.2  
Two-Tone, –5dBm/Tone, f = 1MHz  
15.5  
51  
Single-Tone, –5dBm  
14  
Power Supply Requirements: V = 5V , EN = High, T = 25°C, unless otherwise noted.  
CC  
DC  
A
Supply Voltage  
Supply Current  
4.0 to 5.25  
V
DC  
56  
1
65  
30  
mA  
Shutdown Current (Chip Disabled)  
Enable Mode Threshold  
Disable Mode Threshold  
Turn ON Time (Note 5)  
Turn OFF Time (Note 5)  
Enable Input Current  
EN = Low  
EN = High  
EN = Low  
µA  
3
V
DC  
0.5  
V
DC  
2
6
1
µs  
µs  
EN = 5V  
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: External components on the final test circuit are optimized for  
operation at f = 1900MHz, f = 1.95GHz and f = 50MHz (Figure 3).  
RF  
LO  
IF  
Note 2: External components on the final test circuit are optimized for  
Note 5: Turn On and Turn Off times are based on rise and fall times of RF  
output envelope from full power to –40dBm with an IF input power of  
–5dBm.  
Note 6: Part can be used over a broader range of operating frequencies.  
Consult factory for applications assistance.  
operation at f = 950MHz, f = 1GHz and f = 50MHz (Figure 2).  
RF  
LO  
IF  
Note 3: Specifications over the – 40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
5511i  
3
LT5511  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(950MHz Application)  
VCC = 5VDC, EN = High , TA = 25°C, IF Input = 50MHz at –5dBm, LO Input = 1GHz at –10dBm, RF Output Measured at 950MHz, unless  
otherwise noted. For 2-Tone Measurements: 2nd IF Input = 51MHz at –5dBm. (Test Circuit Shown in Figure 2).  
RF Output Power and 3rd Order  
Intermodulation vs IF Input Power  
(Two Input Tones)  
RF Output Power and 2nd Order  
Intermodulation vs IF Input Power  
(Single Input Tone)  
Conversion Gain vs IF Input  
Power (Single Input Tone)  
10  
0
10  
0
5
4
P
OUT  
T
= –40°C  
T
= 25°C  
A
A
T
A
= 25°C  
T
= –40°C  
A
3
T
A
= 85°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
T = 85°C  
A
IM3  
P
OUT  
2
T
= –40°C  
A
T
= 25°C  
A
1
0
T = 25°C  
A
T
= 85°C  
A
–1  
–2  
–3  
–4  
–5  
T
A
= 85°C  
T
= 85°C  
T
A
= –40°C  
A
T
= –40°C  
A
T
= 25°C  
A
IM2  
–15  
5
–10  
–5  
0
–15  
5
–10  
–5  
0
–15  
–10  
–5  
0
5
IF INPUT POWER (dBm/TONE)  
IF INPUT POWER (dBm)  
IF INPUT POWER (dBm)  
5511 G02  
5511 G01  
5511 G03  
Conversion Gain and IIP3  
vs LO Power  
IIP2 vs LO Power  
LO to RF Leakage vs LO Power  
–5  
–15  
–25  
–35  
–45  
–55  
60  
50  
40  
30  
20  
10  
0
8
6
19  
IIP3  
T
= –40°C  
A
T
A
= 25°C  
17  
15  
13  
11  
9
T
= 25°C  
A
T
A
= –40°C  
T
A
= 85°C  
T
= 85°C  
A
4
2
GAIN  
T
= 85°C  
T
A
= –40°C  
A
T
A
= 25°C  
T
= –40°C  
A
0
T
A
= 85°C  
T
= 25°C  
A
–2  
–15  
–10  
LO POWER (dBm)  
–5  
–20  
–15  
–10  
LO POWER (dBm)  
–5  
–20  
–15  
–10  
LO POWER (dBm)  
–5  
0
–20  
0
0
5511 G06  
5511 G04  
5511 G05  
Conversion Gain and LO to RF  
Leakage vs Output Frequency  
SSB Noise Figure vs  
Output Frequency  
IIP3 and IIP2  
vs Output Frequency  
IIP2  
60  
50  
40  
30  
20  
10  
0
2
0
–5  
20  
18  
16  
14  
12  
10  
T
= –40°C  
T
= 25°C  
A
A
T
= 85°C  
A
–15  
–25  
–35  
–45  
–55  
–65  
GAIN  
T = 25°C  
A
T
= –40°C  
A
T
= 85°C  
–2  
–4  
–6  
–8  
–10  
A
T
= 25°C  
A
T
= 85°C  
A
T
= –40°C  
A
IIP3  
T
= 85°C  
A
T
= 25°C  
A
T
= –40°C  
LO LEAKAGE  
A
T
= 25°C  
A
IF = 50MHz, LO SWEPT FROM  
400MHz TO 1300MHz AT –10dBm  
IF = 50MHz, LO SWEPT FROM  
400MHz TO 1300MHz AT –10dBm  
IF = 50MHz, LO SWEPT FROM  
400MHz TO 1300MHz AT –10dBm  
300  
500  
700  
900  
1100  
1300  
300 500 700 900  
1100  
1300  
300 500 700 900  
1100  
1300  
RF OUTPUT FREQUENCY (MHz)  
RF OUTPUT FREQUENCY (MHz)  
RF OUTPUT FREQUENCY (MHz)  
5511 G08  
5511 G07  
5511 G09  
5511f  
4
LT5511  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(950MHz Application)  
VCC = 5VDC, EN = High , TA = 25°C, IF Input = 50MHz at –5dBm, LO Input = 1GHz at –10dBm, RF Output Measured at 950MHz, unless  
otherwise noted. For 2-Tone Measurements: 2nd IF Input = 51MHz at –5dBm. (Test Circuit Shown in Figure 2).  
LO and RF Port Return Loss  
vs Frequency  
Conversion Gain  
vs Supply Voltage  
IIP3 and IIP2  
vs Supply Voltage  
6
4
35  
30  
25  
20  
15  
10  
60  
50  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
T
= 25°C  
IIP2  
A
T
= –40°C  
A
RF PORT  
LO PORT  
T
= 85°C  
A
2
T
= –40°C  
A
T
= 25°C  
A
0
T
= 85°C  
T
= 85°C  
A
A
T
= 25°C  
IIP3  
A
T
A
= –40°C  
–2  
–4  
4.8  
4.0 4.2 4.4 4.6  
SUPPLY VOLTAGE (V)  
5.0 5.2 5.4 5.6  
4.8  
4.0 4.2 4.4 4.6  
SUPPLY VOLTAGE (V)  
5.0 5.2 5.4 5.6  
900  
700  
FREQUENCY(MHz)  
300  
500  
1100  
1300  
5511 G11  
5511 G12  
5511 G10  
(1.9GHz Application)  
VCC = 5VDC, EN = High , TA = 25°C, IF Input = 50MHz at –5dBm, LO Input = 1.95GHz at –10dBm, RF Output Measured at 1900MHz,  
unless otherwise noted. For 2-Tone Measurements: 2nd IF Input = 51MHz at –5dBm. (Test Circuit Shown in Figure 3).  
RF Output Power and 3rd Order  
Intermodulation vs IF Input  
Power (Two Input Tones)  
RF Output Power and 2nd Order  
Intermodulation vs IF Input Power  
(Single Input Tone)  
Conversion Gain vs IF Input  
Power (Single Input Tone)  
10  
0
10  
0
5
4
P
OUT  
P
OUT  
T
A
= –40°C  
T
A
= –40°C  
T = 25°C  
A
T
= 25°C  
A
3
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
IM3  
T
= 85°C  
T
= 85°C  
A
A
2
T
= –40°C  
A
1
T
= –40°C  
0
A
IM2  
T
A
= 25°C  
–1  
–2  
–3  
–4  
–5  
T
A
= 25°C  
T
A
= 85°C  
T
= –40°C  
A
T
= 85°C  
A
T
= 85°C  
A
T
= 25°C  
A
–15  
–10  
–5  
0
5
–15  
5
–15  
5
–10  
–5  
0
–10  
–5  
0
IF INPUT POWER (dBm)  
IF INPUT POWER (dBm/TONE)  
IF INPUT POWER (dBm)  
5511 G15  
5511 G14  
5511 G13  
5511i  
5
LT5511  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(1.9GHz Application)  
VCC = 5VDC, EN = High , TA = 25 ºC, IF Input = 50MHz at –5dBm, LO Input = 1.95GHz at –10dBm. RF Output Measured at 1900MHz,  
unless otherwise noted. For 2-Tone Measurements: 2nd IF Input = 51MHz at –5dBm. (Test Circuit Shown in Figure 3).  
Conversion Gain and IIP3  
vs LO Input Power  
LO to RF Leakage  
vs LO Input Power  
IIP2 vs LO Input Power  
6
4
17  
15  
13  
11  
9
5
–5  
60  
50  
40  
30  
20  
10  
0
IIP3  
T
= 85°C  
A
T
= 25°C  
A
T
= 25°C  
A
T
= –40°C  
A
–15  
–25  
–35  
–45  
–55  
T
= –40°C  
A
T
= 85°C  
A
2
GAIN  
T
= –40°C  
A
T
= –40°C  
A
T
0
T
= 85°C  
A
T
= 25°C  
A
–2  
–4  
T
= 85°C  
A
= 25°C  
A
7
–15  
–10  
LO INPUT POWER (dBm)  
–5  
–25  
–20  
0
–25  
–20  
–15  
–10  
–5  
0
–25  
–20  
–15  
–10  
–5  
0
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5511 G18  
5511 G16  
5511 G17  
SSB Noise Figure  
vs Output Frequency  
Conversion Gain and LO to RF  
Leakage vs RF Output Frequency  
IIP3 and IIP2 vs Output Frequency  
60  
50  
40  
30  
20  
10  
0
2
0
–5  
20  
18  
16  
14  
12  
10  
IIP2  
T
T
= 25°C  
A
T
= 25°C  
A
T
= –40°C  
= 85°C  
A
A
GAIN  
–15  
–25  
–35  
–45  
–55  
T
A
= 25°C  
= 85°C  
T
= –40°C  
A
T
A
–2  
–4  
–6  
–8  
IIP3  
T
= 25°C  
A
T
A
= 25°C  
LO LEAKAGE  
T
= 85°C  
A
T
A
= 85°C  
T
= –40°C  
T = –40°C  
A
A
IF = 50MHz, LO SWEPT  
FROM 1600MHz TO 2350MHz  
IF = 50MHz, LO SWEPT  
FROM 1600MHz TO 2350MHz  
IF = 50MHz, LO SWEPT  
FROM 1600MHz TO 2350MHz  
1500 1700 1900  
2100  
2300  
1500  
1700 1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
RF OUTPUT FREQUENCY (MHz)  
RF OUTPUT FREQUENCY (MHz)  
RF OUTPUT FREQUENCY (MHz)  
5511 G20  
5511 G19  
5511 G21  
LO and RF Port Return Loss  
vs Frequency  
Conversion Gain  
vs Supply Voltage  
IIP3 and IIP2 vs Supply Voltage  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
4
2
T
= –40°C  
A
IIP2  
T
= 25°C  
A
–5  
–10  
–15  
–20  
–25  
–30  
LO PORT  
T = 85°C  
A
T
A
= –40°C  
0
T
= 25°C  
A
IIP3  
RF PORT  
T
= 85°C  
A
T
A
= 85°C  
T
= 25°C  
A
–2  
–4  
–6  
T
= –40°C  
A
4.8  
SUPPLY VOLTAGE (V)  
5.0 5.2 5.4 5.6  
4.0 4.2 4.4 4.6  
2100  
FREQUENCY(MHz)  
1500  
1700  
1900  
2300  
4.8  
4.0 4.2 4.4 4.6  
SUPPLY VOLTAGE (V)  
5.0 5.2 5.4 5.6  
5511 G24  
5511 G22  
5511 G23  
5511f  
6
LT5511  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Table 1. Typical S-Parameters for the IF, RF and LO Ports (referenced to 50). VCC = 5VDC, EN = High , TA = 25ºC.  
For each Port Measurement, the other Ports are Terminated as Shown in Figure 2.  
Frequency  
(MHz)  
10  
Differential IF Port  
Differential RF Port  
Differential LO Port  
Single LO Port  
Mag.  
0.65  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
Mag.  
Ang.  
179.2  
176.2  
173.3  
170.6  
168.5  
166.7  
165.0  
164.1  
162.7  
162.2  
161.3  
160.6  
160.0  
160.6  
167.8  
162.3  
150.0  
141.4  
137.2  
135.1  
135.6  
136.5  
136.9  
135.3  
131.0  
124.4  
116.1  
108.1  
110.2  
127.5  
121.5  
122.0  
126.7  
132.0  
138.9  
142.4  
50  
0.648  
0.645  
0.627  
0.626  
0.619  
0.617  
0.609  
0.597  
0.586  
0.567  
0.527  
0.484  
0.438  
0.451  
0.554  
0.581  
0.574  
0.567  
0.557  
0.540  
0.520  
0.495  
0.462  
0.432  
0.405  
0.390  
0.366  
0.310  
0.417  
0.489  
0.491  
0.472  
0.445  
0.412  
0.375  
0.644  
0.643  
0.642  
0.642  
0.639  
0.635  
0.632  
0.629  
0.626  
0.623  
0.622  
0.620  
0.617  
0.615  
0.613  
0.611  
0.607  
0.602  
0.594  
0.585  
0.576  
0.567  
0.557  
0.548  
0.540  
0.529  
0.521  
0.513  
0.503  
0.495  
0.486  
0.479  
0.472  
0.468  
0.463  
–0.8  
0.814  
0.836  
0.804  
0.823  
0.803  
0.815  
0.806  
0.804  
0.805  
0.798  
0.797  
0.799  
0.804  
0.808  
0.814  
0.817  
0.813  
0.811  
0.805  
0.795  
0.790  
0.789  
0.791  
0.793  
0.795  
0.796  
0.796  
0.790  
0.782  
0.765  
0.748  
0.731  
0.721  
0.720  
0.722  
–0.6  
0.788  
0.808  
0.780  
0.789  
0.779  
0.773  
0.777  
0.760  
0.776  
0.749  
0.746  
0.750  
0.753  
0.756  
0.763  
0.765  
0.755  
0.751  
0.743  
0.731  
0.727  
0.726  
0.728  
0.728  
0.728  
0.724  
0.718  
0.703  
0.687  
0.668  
0.656  
0.652  
0.663  
0.680  
0.701  
–1.0  
100  
–2.0  
–0.8  
–1.5  
150  
–3.0  
–1.0  
–2.1  
200  
–4.0  
–1.6  
–3.0  
250  
–5.0  
–1.8  
–3.7  
300  
–6.1  
–2.5  
–4.7  
350  
–7.2  
–2.9  
–5.9  
400  
–8.3  
–3.8  
–7.2  
450  
–9.5  
–4.4  
–8.9  
500  
–10.7  
–13.0  
–15.4  
–18.0  
–20.3  
–22.4  
–24.6  
–26.6  
–28.6  
–30.7  
–32.9  
–35.3  
–37.8  
–40.7  
–43.8  
–47.0  
–50.2  
–53.9  
–57.4  
–61.4  
–65.3  
–69.0  
–73.2  
–76.8  
–80.4  
–83.1  
–5.2  
–10.0  
–12.9  
–15.7  
–18.0  
–19.5  
–20.5  
–21.6  
–22.7  
–24.7  
–27.7  
–31.2  
–35.3  
–39.3  
–42.6  
–45.0  
–46.7  
–48.0  
–49.8  
–52.4  
–56.5  
–62.7  
–70.5  
–78.7  
–85.9  
–91.2  
–94.2  
600  
–6.6  
700  
–7.8  
800  
–8.9  
900  
–9.6  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
1700  
1800  
1900  
2000  
2100  
2200  
2300  
2400  
2500  
2600  
2700  
2800  
2900  
3000  
–10.2  
–10.7  
–11.2  
–12.2  
–13.7  
–15.6  
–18.0  
–20.6  
–22.9  
–24.8  
–26.2  
–27.3  
–28.4  
–29.8  
–31.8  
–34.8  
–38.8  
–43.3  
–48.3  
–52.5  
–55.9  
5511i  
7
LT5511  
U
U
U
PI FU CTIO S  
LO, LO+ (Pins 1, 16): Differential Inputs for the Local  
Oscillator Signal. They can also be driven single-ended by  
connecting one to an RF ground through a DC blocking  
capacitor. For single-ended drive, use LO+ for the signal  
input, as this results in less interference from unwanted  
coupling of the LO signal to other pins. These pins are  
internally biased to about 1.4V; thus, DC blocking capaci-  
tors are required. An impedance transformation is re-  
quired to match the LO input to 50(or 75). At frequen-  
cies below 1.5GHz this input can be resistively matched  
with a shunt resistor.  
VCCBIAS(Pin7):SupplyVoltagefortheLOBufferBiasand  
Enable Circuits. This pin should be connected to VCC and  
have appropriate RF bypass capacitors. Care should be  
taken to ensure that RF signal leakage to the VCC line is  
minimized.  
EN (Pin 10): Chip Enable/Disable. When the applied volt-  
age is greater than 3V, the IC is enabled. When the applied  
voltage is less than 0.5V, the IC is disabled and the DC  
current drops to about 1µA. Under no conditions should  
the voltage on this pin exceed VCC + 0.3V, even at power  
on.  
RF, RF+ (Pins 12, 13): Differential Outputs for the RF  
Output Signal. An impedance transformation may be  
required to match the outputs. These pins are also used to  
connect the mixer to the DC supply through impedance-  
matchinginductors, RFchokesortransformercenter-tap.  
Care should be taken to ensure that the RF signal leakage  
to VCCLO and VCCBIAS is minimized.  
NC (Pins 2, 9): Not Connected Internally. Connect to  
ground for improved isolation between pins.  
GND (Pins 3, 6, 8,11, 14): Internal Grounds. These pins  
are used to improve isolation and are not intended as DC  
or RF grounds for the IC. Connect these pins to ground for  
best performance.  
IF+, IF(Pins 4, 5): Differential Inputs for the IF Signal. A  
differential signal must be applied to these pins. These  
pins are internally biased to about 1.2V, and thus require  
DC blocking capacitors. These pins should be DC isolated  
from each other for best LO suppression. Imbalances in  
amplitude or phase between these two signals will de-  
grade the linearity of the mixer.  
VCCLO (Pin 15): Supply Voltage for the LO Buffer Ampli-  
fier. This pin should be connected to VCC and have appro-  
priate RF bypass capacitors. Care should be taken to  
ensure that RF signal leakage to the VCC line is minimized.  
GROUND(BacksideContact)(Pin17):DCandRFGround  
Return for the Entire IC. This contact must be connected  
to a low impedance ground plane for proper operation.  
W
BLOCK DIAGRA  
+
LO  
LO  
1
16  
NC  
2
3
4
15  
V
LO  
CC  
GND  
14 GND  
LO  
BUFFER  
+
+
IF  
13 RF  
IF  
5
6
7
12 RF  
BIAS  
CIRCUITS  
GND  
BIAS  
11 GND  
V
EN  
10  
CC  
8
17  
9
GND  
GND  
(BACKSIDE)  
NC  
5511 BD  
5511f  
8
LT5511  
TEST CIRCUIT  
LO  
R1  
V
V
CC  
CC  
C1  
C4  
C5  
C7  
LT5511  
1
2
3
4
5
6
7
8
16  
+
LO  
LO  
15  
14  
13  
12  
11  
10  
9
NC  
V
LO  
CC  
IF  
T1  
T2  
3
1
4
GND  
GND  
L1  
3
2
1
4
5
R2  
C11  
C8  
C10  
C13  
C12  
+
+
1x  
C15  
4x  
IF  
RF  
5
C9  
RF  
IF  
RF  
4x  
1x  
R3  
GND  
GND  
EN  
L2  
C14  
R5  
V
V
BIAS  
EN  
CC  
CC  
C17  
GND  
NC  
EXPOSED  
PAD GND  
5511F02  
Component  
Value  
22pF  
Comments  
0402  
C1, C9, C11, C15  
C5, C7, C17  
100pF  
0.1µF  
220pF  
1000pF  
1.5pF  
6.8nH  
62Ω  
0402  
C4  
0402  
C8  
0402  
C10, C12, C13  
0402  
C14  
L1, L2  
R1  
0402  
0402  
0402  
R2, R3  
R5  
75, 0.1%  
10kΩ  
4:1  
0603  
0402  
T1  
Coilcraft TTWB-4-A  
M/A-Com ETC1.6-4-2-3  
T2  
4:1  
Figure 2. Test Circuit and Evaluation Board Schematic for 950MHz Application.  
5511i  
9
LT5511  
TEST CIRCUIT  
LO  
C1  
V
V
CC  
CC  
C2  
+
L3  
C5  
C4  
C7  
LT5511  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
LO  
LO  
NC  
V LO  
CC  
IF  
T1  
T2  
3
1
4
GND  
GND  
L1  
3
2
1
4
5
R2  
C11  
C8  
C10  
C13  
C12  
+
+
1x  
C15  
L4  
4x  
IF  
RF  
5
C9  
RF  
IF  
RF  
4x  
1x  
R3  
GND  
GND  
EN  
L2  
R5  
V
CC  
V
BIAS  
EN  
CC  
C17  
GND  
NC  
5511 F03  
EXPOSED  
PAD GND  
Component  
Value  
22pF  
Comments  
0402  
0402  
0402  
0402  
0402  
0402  
0402  
0402  
0402  
0603  
0402  
C1, C9, C11, C15  
C5, C7, C17  
100pF  
0.1µF  
220pF  
1000pF  
1.2pF  
6.8nH  
4.7nH  
1.8nH  
75, 0.1%  
10kΩ  
4:1  
C4  
C8  
C10, C12, C13  
C2  
L3  
L1, L2  
L4  
R2, R3  
R5  
T1  
Coilcraft TTWB-4-A  
M/A-Com ETC1.6-4-2-3  
T2  
4:1  
Figure 3. Test Circuit and Evaluation Board Schematic for 1.9GHz Application.  
5511f  
10  
LT5511  
U
W U U  
APPLICATIO S I FOR ATIO  
TheLT5511consistsofadouble-balancedmixerdrivenby  
a high-performance, differential, limiting LO buffer. The  
mixer has been optimized for high linearity and high signal  
level operation. The LT5511 is intended for applications  
with LO frequencies of 0.4GHz to 2.7GHz and IF input  
frequencies from 10MHz to 300MHz, but can be used at  
other frequencies with excellent results. The LT5511 can  
be used in applications using either a low side or high side  
LO.  
IF Input Port  
The IF+ and IFpins are the differential inputs to the mixer.  
These inputs drive the emitters of the switching transis-  
tors, and thus have a low impedance. The DC current  
through these transistors is set by external resistors from  
each IF pin to ground. The typical internal voltage on the  
emitters is 1.2V; thus, the current through each IF pin is  
approximately:  
IIF = 1.2/RIF  
LO Input Port  
RIF is the value of the external resistors to ground. Best  
performance is obtained when the IF inputs are perfectly  
balanced and 0.1% tolerance resistors are recommended  
here. The LT5511 has been characterized with 75Ω  
resistors on each of the IF inputs.  
The LO buffer on the LT5511 consists of differential high  
speed amplifiers and limiters that are designed to drive the  
mixer quad to achieve high linearity and performance at  
high IF input signal levels. The LO+ and LOpins are the  
differential inputs to the LO buffer. Though the LO signal  
can be applied differentially, the LO buffer performs well  
with only one input driven, thus eliminating the need for a  
balun. In this case, a capacitor should be connected  
between the unused LO input pin and ground. The LO pins  
are biased internally to about 1.4V, and thus must be DC  
isolated from the external LO signal source.  
The IF signal to the mixer must be differential. To realize  
this,anRFbaluntransformerorlumpedelementbaluncan  
be used. The RF transformer is recommended, as it is  
easier to realize broadband operation, and also does not  
have the component sensitivity issues of a lumped ele-  
ment balun.  
The differential input impedance of the IF input is approxi-  
mately 12.5; therefore, a 4:1 impedance transformation  
is required to match to 50. Selecting a transformer with  
this impedance ratio will reduce the amount of additional  
components required, as the full impedance transforma-  
tion is realized by the transformer. DC-isolating trans-  
formers or transmission-line transformers can be used,  
as could lumped element transformation networks. Be-  
cause the IF ports are internally biased, they must be DC  
isolated from the IF source. Additionally, IF+ and IFmust  
be DC isolated from each other in order to maintain good  
LO suppression.  
The LO input should be matched to 50. The impedance  
match can be accomplished through the use of a reactive  
impedance matching network. However, for lower LO  
frequencies (below about 1.5GHz), an easier approach is  
to use a shunt 62resistor to resistively match the port.  
(The resistor must be DC isolated from the LO input pin).  
This method is broadband and requires LO power levels of  
only10dBm. Athigherfrequencies, abettermatchcanbe  
realized with reactive components. Transmission lines  
and parasitics should be considered when designing the  
matching circuits. Typical S-parameter data for the LO  
input is included in Table 1 to facilitate the design of the  
matching network.  
5511i  
11  
LT5511  
U
W U U  
APPLICATIO S I FOR ATIO  
On the evaluation board (Figure 4), 1nF DC-blocking  
capacitorsareusedontheIFinputpins. A220pFcapacitor  
on the 50source side of the input balun is used to tune  
outtheexcessinductancetoimprovethematchat50MHz.  
Toshiftthematchhigherinfrequency, thiscapacitorvalue  
should be reduced.  
optimum performance. These pins are biased at the  
supply voltage, which can be applied through the center  
tapoftheoutputtransformer.(ThecentertapshouldbeRF  
bypassedforbestperformance). Apairofseriesinductors  
can be used to match RF+ and RFto the high impedance  
(200) side of a 4:1 balun.  
The output balun has a significant impact on the perfor-  
mance of the mixer. A broadband balun provides better  
rejection of the 2fLO spur. If the level of that spur is not  
critical, a less expensive and smaller balun can be used.  
The amplitude and phase balances of the balun will affect  
the LO suppression.  
RF Output Port  
The RF outputs, RF+ and RF, are internally connected to  
the collectors of the mixer switching transistors. These  
differential output signals should be combined externally  
throughanRFbaluntransformeror180°hybridtoachieve  
(4b) Top Layer Metal  
(4a) Top Layer Silkscreen  
Figure 4. Evaluation Board Layout.  
5511f  
12  
LT5511  
U
W U U  
APPLICATIO S I FOR ATIO  
SPECTRUM  
ANALYZER  
POWER  
SUPPLY  
RF  
OUT  
GND  
10dB  
PAD  
E3  
E2  
E1  
T2  
LO  
IN  
LT5511  
IC  
LO SIGNAL  
GENERATOR 3  
DMM  
T1  
SW1  
IF  
IN  
RF SIGNAL  
GENERATOR 1  
POWER  
SUPPLY  
+
(OR PULSE GENERATOR  
FOR TURN-ON AND  
TURN-OFF MEASUREMENTS)  
RF SIGNAL  
GENERATOR 2  
5511 F05  
Figure 5. Test Set-Up for Mixer Measurements  
5511i  
13  
LT5511  
U
TYPICAL APPLICATIO S  
LO  
C1  
V
V
CC  
CC  
C11  
+
L1  
C5  
C4  
C7  
LT5511  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
LO  
LO  
NC  
V LO  
CC  
C10  
C9  
RF  
L6  
T2  
+
IF  
3
2
1
GND  
GND  
TL1  
TL2  
(50)  
R2  
R3  
+
+
C2  
IF  
RF  
C12  
EN  
C13  
L7  
IF  
(50)  
IF  
RF  
5
4
GND  
GND  
EN  
V
V BIAS  
CC  
CC  
R5  
C18  
GND  
NC  
5511 F06  
EXPOSED  
PAD GND  
Component  
C1, C9  
C5, C7, C18  
C4  
Value  
Comments  
0402  
22pF  
100pF  
0.1µF  
0402  
0402  
C2  
12pF  
0402  
C10, C12, C13  
1000pF  
1pF  
0402  
C11  
L1  
0402  
5.2nH  
5.6nH  
75, 0.1%  
10kΩ  
1:1  
0402  
L6, L7  
R2, R3  
R5  
0402  
0603  
0402  
T2  
MURATA LDB15C500A2400  
Transmission Lines  
TL1, TL2  
Z = 80Ω  
O
L = 16° AT 2.4GHz  
Figure 6. Test Circuit Schematic for 2.4GHz RF Application with 300MHz IF Input Frequency  
5511f  
14  
LT5511  
U
TYPICAL APPLICATIO S  
IIP3 and IIP2 vs Output Frequency  
(Figure 6)  
Conversion Gain and LO to RF Leakage  
vs Output Frequency (Figure 6)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–8  
–13  
IIP2  
–18  
GAIN  
–23  
f
f
P
f
= 300MHz AT –8dBm  
= 301MHz AT –8dBm  
= –10dBm  
IF1  
IF2  
LO  
–28  
–33  
–38  
–43  
–48  
–53  
–58  
f
f
P
f
= 300MHz AT –8dBm  
= 301MHz AT –8dBm  
= –10dBm  
IF1  
IF2  
LO  
SWEPT FROM 1900MHz TO 2300MHz  
LO  
SWEPT FROM 1900MHz TO 2300MHz  
LO  
IIP3  
LO LEAKAGE  
0
2200  
2300  
2400  
2500  
2600  
2200  
2300  
2400  
2500  
2600  
RF OUTPUT FREQUENCY (MHz)  
RF OUTPUT FREQUENCY (MHz)  
5511 F06a  
5511 F06a  
5511i  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT5511  
U
PACKAGE DESCRIPTIO  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation BA  
4.90 – 5.10*  
(.193 – .201)  
2.74  
(.108)  
2.74  
(.108)  
16 1514 13 12 1110  
9
6.60 ±0.10  
4.50 ±0.10  
2.74  
(.108)  
SEE NOTE 4  
2.74  
(.108)  
6.40  
BSC  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.45 – 0.75  
0.09 – 0.20  
0.05 – 0.15  
(.018 – .030)  
(.0036 – .0079)  
(.002 – .006)  
0.195 – 0.30  
(.0077 – .0118)  
FE16 (BA) TSSOP 0203  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT5500  
LT5502  
1.8GHz to 2.7GHz Receiver-Front End  
1.8V to 5.25V Supply, Dual-Gain LNA, Mixer, LO Buffer  
400MHz Quadrature IF Demodulator with RSSI  
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain,  
90db RSSI Range  
LT5503  
1.2GHz to 2.7GHz Direct IQ Modulator  
and Upconverting Mixer  
1.8V to 5.25V Supply, Four-Step RF Power Control,  
120MHz Modulation Bandwidth  
LT5504  
LTC®5505  
LT5506  
LT5507  
LTC5508  
LT5512  
800MHz to 2.7GHz Measuring Receiver  
RF Power Detectors with >40dB Dynamic Range  
500MHz Quadrature Demodulator with VGA  
100kHz to 1GHz RF Power Detector  
80dB Dynamic Range, Temperature Compensated, 2.7V to 5.5V Supply  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
1.8V to 5.25V Supply, –4dB to 57dB Linear Power Gain  
48dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply  
>40dB Dynamic Range, SC70 Package  
300MHz to 7GHz RF Power Detector  
High Signal Level Down Converting Mixer  
Up to 3GHz, 20dBm IIP3, Integrated LO Buffer  
5511f  
LT/TP 0503 1K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY