LT5514EFE#PBF [Linear]

LT5514 - Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C;
LT5514EFE#PBF
型号: LT5514EFE#PBF
厂家: Linear    Linear
描述:

LT5514 - Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C

光电二极管
文件: 总20页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5514  
Ultralow Distortion IF  
Amplifier/ADC Driver with  
Digitally Controlled Gain  
U
FEATURES  
DESCRIPTIO  
TheLT®5514isaprogrammablegainamplifier(PGA)with  
bandwidth extending from low frequency (LF) to 850MHz.  
It consists of a digitally controlled variable attenuator,  
followed by a high linearity amplifier. The amplifier is  
configured with two identical transconductance amplifi-  
ers, hard wired in parallel with individual dedicated enable  
pins. When both amplifiers are enabled (Standard mode),  
the LT5514 offers an OIP3 of +47dBm (at 100MHz).  
Power dissipation can be reduced when a single amplifier  
is enabled (Low Power mode). Four parallel digital inputs  
control the gain over a 22.5dB range with 1.5dB step  
resolution. An on-chip power supply regulator/filter helps  
isolatetheamplifiersignalpathfromexternalnoisesources.  
Output IP3 at 100MHz: 47dBm  
Maximum Output Power: 21dBm  
Bandwidth: LF to 850MHz  
Propagation Delay: 0.8ns  
Maximum Gain: 33dB  
Noise Figure: 7.3dB (Max Gain)  
Gain Control Range: 22.5dB  
Gain Control Step: 1.5dB  
Gain Control Settling Time: 500ns  
Output Noise Floor: –134dBm/Hz (Max Gain)  
Reverse Isolation: –80dB  
Single Supply: 4.75V to 5.25V  
Low Power Mode  
Shutdown Mode  
The LT5514’s open-loop architecture offers stable opera-  
tion for any practical load conditions, including peaking-  
free AC response when driving capacitive loads, and  
excellent reverse isolation.  
Enable/Disable Time: 1µs  
Differential I/O Interface  
20-Lead TSSOP Package  
U
APPLICATIO S  
The LT5514 may be operated broadband, where the out-  
put differential RC time constant sets the bandwidth, or it  
may be used as a narrowband driver with the appropriate  
output filter.  
High Linearity ADC Driver  
IF Sampling Receivers  
VGA IF Power Amplifier  
50Driver  
Instrumentation Applications  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Output IP3 vs Frequency  
(Standard Mode)  
56  
53  
50  
5V  
CHOKE  
CHOKE  
0.1µF  
0.1µF  
0.1µF  
R
OUT  
= 200  
47  
44  
41  
38  
35  
IF  
AMP  
RF  
INPUT  
IF  
BPF  
100Ω  
LT5514  
ADC  
R = 100Ω  
OUT  
5514 TA01  
LO  
0.1µF  
GAIN CONTROL  
4 LINES  
50  
100  
FREQUENCY (MHz)  
200  
0
150  
5514 TA02  
5514f  
1
LT5514  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Notes 1, 2)  
TOP VIEW  
Power Supply Voltage (VCC1, VCC2) .......................... 6V  
Output Supply Voltage (OUT+, OUT) ....................... 8V  
Control Input Voltage (ENA, ENB, PGAx) .. –0.5V to VCC  
Signal Input Voltage (IN+, IN) ................... –0.5V to 3V  
Operating Ambient Temperature Range.. – 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
ORDER PART  
NUMBER  
ENA  
1
2
3
4
5
6
7
8
9
20 ENB  
V
19  
V
CC2  
CC1  
LT5514EFE  
GND  
18 GND  
17 GND  
GND  
+
IN  
16 OUT  
15 OUT  
21  
+
IN  
GND  
GND  
14 GND  
13 GND  
12 PGA3  
11 PGA2  
PGA0  
PGA1 10  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
TJMAX = 150°C, θJA = 38°C/W  
EXPOSED PAD (PIN 21) IS GND  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
W
U
ODES OF OPERATIO  
MODES  
ENA  
High  
High  
Low  
Low  
ENB  
High  
Low  
High  
Low  
AMP A  
On  
AMP B  
On  
LT5514 STATE  
1
2
3
4
Full Power (Standard)  
Low Power A  
Low Power B  
Shutdown  
Enable Amp A and Amp B  
Enable Amp A  
On  
Off  
Off  
On  
Enable Amp B  
Off  
Off  
Sleep, All Amps Disabled  
W W  
U
U
PROGRA ABLE GAI SETTI GS  
POWER GAIN  
ATTENUATION STEP  
RELATIVE TO MAX GAIN  
0dB  
PGA0  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
PGA1  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
PGA2  
PGA3  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
STANDARD MODE*  
LOW POWER MODE**  
30.0dB  
1
2
High  
High  
High  
High  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
33.0dB  
31.5dB  
–1.5dB  
28.5dB  
3
–3.0dB  
30.0dB  
27.0dB  
4
–4.5dB  
28.5dB  
25.5dB  
5
–6.0dB  
27.0dB  
24.0dB  
6
–7.5dB  
25.5dB  
22.5dB  
7
–9.0dB  
24.0dB  
21.0dB  
8
–10.5dB  
–12.0dB  
–13.5dB  
–15.0dB  
–16.5dB  
–18.0dB  
–19.5dB  
–21.0dB  
–22.5dB  
22.5dB  
19.5dB  
9
21.0dB  
18.0dB  
10  
11  
12  
13  
14  
15  
16  
19.5dB  
16.5dB  
18.0dB  
15.0dB  
16.5dB  
13.5dB  
15.0dB  
12.0dB  
13.5dB  
10.5dB  
12.0dB  
9.0dB  
10.5dB (Note 3)  
7.5dB (Note 3)  
*R  
OUT  
= 200**R  
= 400Ω  
OUT  
5514f  
2
LT5514  
DC ELECTRICAL CHARACTERISTICS  
VCC = 5V, VCCO = 5V, ENA = ENB = 3V, TA = 25°C, unless otherwise  
noted. (Note 7) (Test circuits shown in Figures 9 and 10)  
SYMBOL PARAMETER  
Normal Operating Conditions  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Supply Voltage (Pins 2, 19)  
(Note 4)  
4.75  
3
5
5
5.25  
6
V
V
CC  
+
+
OUT , OUT Output Pin DC Common Mode Voltage OUT , OUT Connected to V  
via  
OSUP  
CCO  
Choke Inductors or Resistors (Note 5)  
+
V
OUT , OUT Pin Instantaneous Voltage with  
Respect to GND  
Min/Max Limits Apply  
2
8
V
OUT  
Shutdown DC Characteristics, ENA = ENB = 0.6V  
+
V
IN , IN Bias Voltage  
Max Gain (Note 6)  
1.15  
1.3  
44  
1.5  
20  
V
µA  
µA  
µA  
µA  
IN(BIAS)  
IL(PGA)  
IH(PGA)  
OUT  
I
I
I
I
PGAO, PGA1, PGA2, PGA3 Input Current  
V
V
= 0.6V  
= 5V  
IN  
IN  
PGAO, PGA1, PGA2, PGA3 Input Current  
20  
+
OUT , OUT Current  
Supply Current  
All Gain Settings  
20  
V
All Gain Settings (Note 4)  
100  
CC  
CC  
Enable and PGA Inputs DC Characteristics  
V
V
ENA, ENB and PGAx Input Low Voltage  
ENA, ENB and PGAx Input High Voltage  
PGAO, PGA1, PGA2, PGA3 Input Current  
PGAO, PGA1, PGA2, PGA3 Input Current  
ENA, ENB Input Current  
x = 0, 1, 2, 3  
x = 0, 1, 2, 3  
0.6  
V
V
IL  
3
IH  
I
I
I
I
V
V
V
= 0.6V  
20  
30  
20  
µA  
µA  
µA  
IL(PGA)  
IH(PGA)  
IL(EN)  
IH(EN)  
IN  
IN  
IN  
= 3V and 5V  
= 0.6V  
15  
4
ENA, ENB Input Current  
V
V
= 3V  
= 5V  
18  
38  
µA  
µA  
IN  
IN  
100  
Standard Mode DC Characteristics, ENA = ENB = 3V  
+
V
IN , IN Bias Voltage  
Max Gain (Note 6)  
All Gain Settings (DC)  
Max Gain  
1.34  
33  
1.49  
108  
0.3  
1.65  
V
IN(BIAS)  
R
Input Differential Resistance  
IN  
g
Amplifier Transconductance  
S
m
+
I
I
I
OUT , OUT Quiescent Current  
Output Current Mismatch  
All Gain Settings, V  
= 5V  
40  
47  
mA  
µA  
OUT  
OUT  
+
All Gain Settings, IN , IN Open  
200  
OUT(OFFSET)  
CC  
V
+ V  
Supply Current  
Max Gain (Note 4)  
Min Gain (Note 4)  
64  
68  
75  
80  
mA  
mA  
CC1  
CC2  
I
Total Supply Current  
I
+ 2 • I (Max Gain)  
OUT  
148  
174  
mA  
CC(TOTAL)  
CC  
Low Power Mode DC Characteristics, ENA = O.6V, ENB = 3V or ENA = 3V, ENB = 0.6V  
+
V
IN , IN Bias Voltage  
Max Gain (Note 6)  
All Gain Settings (DC)  
Max Gain  
1.34  
17  
1.48  
122  
0.15  
20  
1.65  
V
IN(BIAS)  
R
Input Differential Resistance  
IN  
g
Amplifier Transconductance  
S
m
+
I
I
I
OUT , OUT Quiescent Current  
Output Current Mismatch  
All Gain Settings, V  
= 5V  
24  
mA  
µA  
OUT  
OUT  
+
All Gain Settings, IN , IN Open  
100  
OUT(OFFSET)  
CC  
V
+ V  
Supply Current  
Max Gain (Note 4)  
Min Gain (Note 4)  
34  
36  
40  
43  
mA  
mA  
CC1  
CC2  
I
Total Supply Current  
I
+ 2 • I (Max Gain)  
OUT  
76  
91  
mA  
CC(TOTAL)  
CC  
5514f  
3
LT5514  
AC ELECTRICAL CHARACTERISTICS (Standard Mode)  
V
CC = 5V, VCCO = 5V, ENA = ENB = 3V, TA = 25°C, ROUT = 200. Maximum gain specifications are with respect to differential inputs  
and differential outputs, unless otherwise noted. (Note 7) (Test circuits shown in Figures 9 and 10)  
SYMBOL PARAMETER  
Dynamic Performance  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BW  
Large-Signal –3dB Bandwidth  
All Gain Settings (Note 8)  
R
OUT  
R
OUT  
= 100Ω  
LF to 850  
LF to 500  
MHz  
MHz  
= 200; L1, L2 = 33nH (Figure 9)  
P
Clipping Limited Maximum Sinusoidal  
Output Power  
All Gain Settings, Single Tone, R  
= 150Ω  
21  
dBm  
OUT(MAX)  
OUT  
f
= 100MHz (Note 10)  
IN  
g
Amplifier Transconductance  
Max Gain, f = 100MHz  
0.30  
0.21  
S
S
m
IN  
PGA1 = Low, f = 100MHz  
IN  
S12  
t , t  
Reverse Isolation  
f
f
= 100MHz (Note 9)  
= 400MHz (Note 9)  
–92  
–78  
dB  
dB  
IN  
IN  
Step Response Rise and Fall Time  
Group Delay  
All Gain Settings, 10% to 90%, R  
OUT  
= 100Ω  
500  
800  
±50  
ps  
ps  
ps  
r
f
All Gain Settings, R  
= 100Ω  
OUT  
Group Delay Variation  
30MHz to 300MHz Frequency Range,  
R
OUT  
= 100Ω  
PGA Settling Time  
500  
600  
ns  
ns  
Enable/Disable Time  
Distortion and Noise  
OIP3  
Output Third Order Intercept Point for  
PGA0 = High (PGA1, PGA2, PGA3 Any State)  
P
P
= 9dBm (Each Tone), 200kHz Tone Spacing  
= 100MHz  
= 200MHz  
OUT  
f
IN  
f
IN  
+47.0  
+40.5  
dBm  
dBm  
Output Third Order Intercept Point for  
= 9dBm (Each Tone), 200kHz Tone Spacing  
OUT  
PGA0 = Low (PGA1, PGA2, PGA3 Any State)  
f
IN  
f
IN  
= 100MHz  
= 200MHz  
+42.0  
+37.5  
dBm  
dBm  
HD2  
HD3  
Second Harmonic Distortion  
Third Harmonic Distortion  
P
P
= 11dBm (Single Tone), f = 50MHz  
–82  
–72  
dBc  
dBc  
OUT  
OUT  
IN  
= 11dBm (Single Tone), f = 50MHz  
IN  
N
FLOOR  
Output Noise Floor  
(PGAO, PGA2, PGA3 Any State)  
PGA1 = High, f = 100MHz  
–134  
–136  
dBm/Hz  
dBm/Hz  
IN  
PGA1 = Low, f = 100MHz  
IN  
NF  
Noise Figure  
Max Gain, f = 100MHz  
7.4  
7.7  
dB  
dB  
IN  
–3dB Step, f = 100MHz  
IN  
Amplifier Power Gain and Gain Step  
G
G
G
Maximum Gain  
Minimum Gain  
Gain Step Size  
f
f
f
f
= 20MHz and 200MHz  
= 20MHz and 200MHz  
= 20MHz and 200MHz  
= 20MHz and 200MHz  
33  
dB  
dB  
dB  
dB  
MAX  
MIN  
IN  
IN  
IN  
IN  
10.5  
1.5  
1.05  
1.95  
STEP  
Gain Step Accuracy  
±0.1  
Amplifier I/O Impedance (Parallel Values Specified Differentially)  
R
Input Resistance  
Input Capacitance  
Output Resistance  
Output Capacitance  
f
f
f
f
= 100MHz  
= 100MHz  
= 100MHz  
= 100MHz  
108  
2.8  
3.4  
1.9  
pF  
IN  
IN  
IN  
IN  
IN  
IN  
C
R
O
kΩ  
pF  
C
O
5514f  
4
LT5514  
AC ELECTRICAL CHARACTERISTICS (Low Power Mode)  
V
CC = 5V, VCCO = 5V, ENA = 3V, ENB = 0.6V, TA = 25°C, ROUT = 200. Maximum gain specifications are with respect to differential  
inputs and differential outputs, unless otherwise noted. (Note 7) (Test circuits shown in Figures 9 and 10)  
SYMBOL PARAMETER  
Dynamic Performance  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BW  
Large-Signal –3dB Bandwidth  
All Gain Settings (Note 8),  
R
OUT  
= 100Ω  
LF to 540  
16  
MHz  
dBm  
P
Clipping Limited Maximum Sinusoidal  
Output Power  
All Gain Settings, Single Tone,  
= 100MHz (Note 10)  
OUT(MAX)  
f
IN  
g
Amplifier Transconductance  
Reverse Isolation  
Max Gain, f = 100MHz  
0.15  
–92  
S
m
IN  
S12  
f
= 100MHz (Note 9)  
dB  
IN  
Distortion and Noise  
OIP3  
Output Third Order Intercept Point for  
PGA0 = High (PGA1, PGA2, PGA3 Any State)  
P
f
= 4dBm (Each Tone), 200kHz Tone Spacing,  
OUT  
= 100MHz  
+40  
dBm  
IN  
Output Third Order Intercept Point for  
PGA0 = Low (PGA1, PGA2, PGA3 Any State)  
P
= 4dBm (Each Tone), 200kHz Tone Spacing,  
OUT  
= 100MHz  
f
+36  
–76  
–72  
dBm  
dBc  
dBc  
IN  
HD2  
HD3  
Second Harmonic Distortion  
Third Harmonic Distortion  
P
P
= 5dBm (Single Tone), f = 50MHz  
IN  
OUT  
OUT  
= 5dBm (Single Tone), f = 50MHz  
IN  
N
FLOOR  
Output Noise Floor  
(PGAO, PGA2, PGA3 Any State)  
PGA1 = High, f = 100MHz  
–138  
–140  
dBm/Hz  
dBm/Hz  
IN  
PGA1 = Low, f = 100MHz  
IN  
NF  
Noise Figure  
Max Gain Setting, f = 100MHz  
8.6  
dB  
IN  
Amplifier Power Gain and Gain Step  
G
G
G
Maximum Gain  
Minimum Gain  
Gain Step Size  
f
f
f
f
= 20MHz and 200MHz  
= 20MHz and 200MHz  
= 20MHz and 200MHz  
= 20MHz and 200MHz  
27  
4.5  
dB  
dB  
dB  
dB  
MAX  
MIN  
IN  
IN  
IN  
IN  
1.05  
1.5  
1.95  
STEP  
Gain Step Accuracy  
±0.1  
Amplifier I/O Impedance  
R
Input Resistance  
Input Capacitance  
Output Resistance  
Output Capacitance  
f
= 100MHz, Parallel Values Specified  
122  
2
pF  
IN  
IN  
Differentially  
f = 100MHz, Parallel Values Specified  
IN  
Differentially  
C
IN  
R
O
f
= 100MHz, Parallel Values Specified  
5
kΩ  
pF  
IN  
Differentially  
C
f
= 100MHz, Parallel Values Specified  
1.7  
O
IN  
Differentially  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 2: All voltage values are with respect to ground.  
Note 3: Default state for open PGA inputs.  
Note 7: Specifications over the –40°C to 85°C operating temperature  
range are assured by design, characterization and correlation with  
statistical process controls. Gain always refers to power gain. Input  
matching is assumed. P is the available input power. P  
is the power  
IN  
OUT  
into the external load, R , as seen by the LT5514 differential outputs. All  
OUT  
Note 4: V  
and V  
(Pins 2 and 19) are internally connected.  
CC2  
CC1  
dBm figures are with respect to 50.  
Note 5: External V  
is adjusted such that V  
output pin common  
OSUP  
CCO  
Note 8: High frequency operation is limited by the RC time constants at  
the input and output ports. The low frequency (LF) roll-off is set by I/O  
interface choice.  
Note 9: Limited by package and board isolation.  
Note 10: See “Clipping Free Operation” in the Applications Information  
mode voltage is as specified when resistors are used. For choke inductors  
or transformer, V = V = 5V typ.  
OSUP  
CCO  
Note 6: Internally generated common mode input bias voltage requires  
capacitive or transformer coupling to the signal source.  
section. Refer to Figure 7.  
5514f  
5
LT5514  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Standard Mode) TA = 25°C, VCC = 5V, VCCO = 5V,  
ENA = ENB = 3V, control input levels VIL = 0.6V, VIH = 3V unless otherwise noted. (Test circuit shown in Figure 9)  
Max Gain Frequency Response  
Frequency Response for All Gain  
Steps, ROUT = 100Ω  
Frequency Response for All Gain  
Steps, ROUT = 200Ω  
with COUT as Parameter,  
ROUT = 200Ω  
33  
30  
27  
24  
21  
18  
15  
12  
9
36  
33  
30  
27  
24  
21  
18  
15  
12  
9
36  
33  
30  
27  
24  
21  
18  
15  
12  
9
C
C
C
C
C
= OPEN  
= 2.2pF  
= 4.7pF  
= 10pF  
= 22pF  
OUT  
OUT  
OUT  
OUT  
OUT  
6
6
6
3
3
3
0
0
0
10  
100  
1000  
10  
100  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
5514 G01  
5514 G02  
5514 G03  
Frequency Response at 3dB  
Attenuation Step with COUT as  
Parameter, ROUT = 200Ω  
Gain Error vs Attenuation at  
Gain Error vs Attenuation at  
25MHz, ROUT = 200Ω  
100MHz, ROUT = 200Ω  
36  
33  
30  
27  
24  
21  
18  
15  
12  
9
0.8  
0.6  
0.8  
0.6  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
C
C
C
C
C
= OPEN  
= 2.2pF  
= 4.7pF  
= 10pF  
= 22pF  
OUT  
OUT  
OUT  
OUT  
OUT  
6
3
0
12  
ATTENUATION STEP (dB)  
12  
ATTENUATION STEP (dB)  
0
3
6
9
15  
18  
21  
0
3
6
9
15  
18  
21  
10  
100  
FREQUENCY (MHz)  
1000  
5514 G04  
1544 G05  
1544 G06  
Maximum Gain vs Frequency,  
ROUT = 100and 200Ω  
Minimum Gain vs Frequency,  
ROUT = 100and 200Ω  
POUT vs PIN at 50MHz, Max Gain  
36  
33  
30  
27  
13  
10  
7
25  
20  
15  
10  
5
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
STANDARD  
OUT  
R
= 200Ω  
OUT  
R
= 200Ω  
= 100Ω  
R
= 100Ω  
OUT  
STANDARD  
= 200Ω  
R
OUT  
LOW POWER  
= 200Ω  
R
= 100Ω  
OUT  
R
R
OUT  
OUT  
0
4
–5  
–16 –13  
10  
100  
1000  
10  
100  
1000  
–31 –28 –25 –22 –19  
–10 –7  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
P
IN  
(dBm)  
5514 G07  
5514 G08  
5514 G09  
5514f  
6
LT5514  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Standard Mode) TA = 25°C, VCC = 5V, VCCO = 5V,  
ENA = ENB = 3V, control input levels VIL = 0.6V, VIH = 3V unless otherwise noted. (Test circuit shown in Figure 9)  
Harmonic Distortion vs  
Minimum Gain vs VCC at 120MHz,  
ROUT = 100Ω  
Maximum Gain vs VCC at  
120MHz, ROUT = 100Ω  
Attenuation Step at POUT = 7dBm,  
Freq = 50MHz, ROUT = 200Ω  
30.4  
30.2  
30.0  
29.8  
29.6  
29.4  
29.2  
29.0  
7.8  
7.6  
–72  
–75  
–78  
–81  
FIGURE 10 TEST CIRCUIT  
HD3  
PGA0 = LOW  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
HD3  
PGA0 = HIGH  
–40°C  
–40°C  
25°C  
25°C  
85°C  
HD2  
–84  
–87  
–90  
85°C  
4.7  
4.9  
5.1  
(V)  
5.5  
4.7  
4.9  
5.1  
(V)  
5.5  
4.5  
5.3  
4.5  
5.3  
12  
ATTENUATION STEP (dB)  
18  
21  
0
3
6
9
15  
V
CC  
V
CC  
5514 G11  
5514 G10  
5514 G12  
Harmonic Distortion vs Attenuation  
Step at POUT = 7dBm,  
Freq = 50MHz, ROUT = 200Ω  
Harmonic Distortion vs POUT at  
50MHz, Max Gain, ROUT = 200Ω  
Harmonic Distortion vs POUT at  
50MHz, Max Gain, ROUT = 100Ω  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–72  
–75  
–78  
–81  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
HD3  
PGA0 = LOW  
HD3  
HD2  
HD3  
HD2  
HD3  
–84  
–87  
–90  
PGA0 = HIGH  
HD2  
HD5  
HD4  
HD5  
HD4  
7
10  
–5 –2  
1
4
P
13 16 19  
12  
6
ATTENUATION STEP (dB)  
18  
21  
9
12  
0
3
9
15  
–3  
0
3
6
P
15 18 21  
(dBm)  
(dBm)  
OUT  
OUT  
5514 G15  
5514 G12  
5514 G14  
NF vs Attenuation Step at  
Freq = 100MHz  
Output Noise Floor vs Attenuation  
Step, Freq = 100MHz, ROUT = 200Ω  
Noise Figure vs Frequency  
30  
27  
24  
21  
18  
15  
12  
9
–133  
–134  
–135  
–136  
–137  
–138  
–139  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
FIGURE 10 TEST CIRCUIT  
FIGURE 10 TEST CIRCUIT  
FIGURE 10 TEST CIRCUIT  
1.5dB ATTENUATION STEP  
(PGA0 = LOW)  
PGA1 = HIGH  
PGA1 = LOW  
MAX GAIN  
3dB ATTENUATION STEP  
6
(PGA1 = LOW)  
3
0
250 300  
0
50 100 150 200  
350 400  
0
3
6
9
12  
15  
18  
21  
0
6
9
12 15 18 21  
3
FREQUENCY (MHz)  
ATTENUATION STEP (dB)  
ATTENUATION STEP (dB)  
5514 G16  
5514 G17  
5514 G18  
5514f  
7
LT5514  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Standard Mode) Two tones, 200kHz spacing,  
TA = 25°C, ENA = ENB = 5V, VCC = 5V, VCCO = 3V, control input levels VIL = 0.6V, VIH = 3V unless otherwise noted. (Test circuit shown  
in Figure 10)  
OIP3 vs Frequency at PIN = –23dBm  
OIP3 vs Frequency at PIN = –23dBm  
Max Gain, ROUT = 200Ω  
OIP3 vs Frequency at PIN = –23dBm  
Max Gain, ROUT = 100Ω  
Max Gain and 1.5dB Attenuation  
Step, ROUT = 200Ω  
57  
54  
51  
57  
54  
51  
57  
54  
51  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
MAX GAIN  
48  
45  
42  
39  
36  
48  
45  
42  
39  
36  
48  
45  
42  
39  
36  
1.5dB  
ATTENUATION  
STEP  
50  
100  
200  
50  
100  
200  
50  
100  
200  
0
150  
0
150  
0
150  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
5514 G19  
5514 G20  
5514 G21  
OIP3 vs Attenuation Step at  
Freq = 100MHz, PIN = –23dB,  
ROUT = 200Ω  
ICC Shutdown Current vs VCC  
,
Total ICC vs Attenuation Step  
ENA = ENB = 0.6V  
160  
155  
150  
145  
140  
135  
130  
49  
48  
47  
46  
45  
44  
43  
42  
41  
70  
60  
85°C  
25°C  
50  
40  
30  
20  
10  
0
85°C  
25°C  
3dB ATTENUATION STEP  
(PGA0 = HIGH)  
–40°C  
1.5dB ATTENUATION STEP  
(PGA0 = LOW)  
–40°C  
12  
ATTENUATION STEP (dB)  
0
3
6
9
15  
18  
21  
4.7  
4.9  
5.1  
5.5  
0
6
9
12 15 18 21  
4.5  
5.3  
3
ATTENUATION STEP (dB)  
INPUT V (V)  
CC  
1544 G22  
5514 G24  
5514 G23  
Single-Ended Output Current  
vs Attenuation Step  
VIN(BIAS) vs Attenuation Step  
41  
40  
39  
38  
1.60  
1.55  
1.50  
1.45  
1.40  
85°C  
25°C  
–40°C  
25°C  
85°C  
–40°C  
0
6
9
12 15 18 21  
3
0
6
9
12 15 18 21  
3
ATTENUATION STEP (dB)  
ATTENUATION STEP (dB)  
5514 G25  
5514 G26  
5514f  
8
LT5514  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Standard Mode) TA = 25°C, VCC = 5V, VCCO = 5V,  
ENA = ENB = 3V, control input levels VIL = 0.6V, VIH = 3V unless otherwise noted. Test circuit shown in Figure 10 unless otherwise  
noted. Note 1: Subtract 0.75ns calibration delay from output plots to estimate the LT5514 group delay. Note 2: When specified, COUT  
is connected differentially across the LT5514 OUT+, OUToutput pins.  
Pulse Response vs COUT at Max  
Gain. Output Level is 2VP-P into  
50External Load  
Pulse Response vs Output Level at  
Max Gain. Indicated Voltage  
Levels are into 50External Load  
Pulse Response vs Attenuation,  
Output Level is 4VP-P at Max Gain  
into 50External Load  
C
OUT  
= 0.82pF  
0pF  
C
OUT  
0pF  
1pF  
1.8pF  
3.3pF  
4.7pF  
6.8pf  
10pF  
11pF  
18pF  
INPUT  
22pF TO  
GROUND  
EACH  
OUTPUT  
R
= 255Ω  
MATCH  
2ns/DIV  
5514 G27  
2ns/DIV  
5514 G28  
1ns/DIV  
5514 G29  
Pulse Response vs Attenuation,  
Output Level is 2VP-P at Max Gain  
into 50External Load  
Pulse Response vs Attenuation,  
Output Level is 2VP-P at Max Gain  
into 50External Load  
R
= 255  
R
= 255, C  
= 1.8pF  
OUT  
MATCH  
MATCH  
1ns/DIV  
5514 G30  
1ns/DIV  
5514 G31  
Pulse Response vs Attenuation,  
LT5514 Levels are: VIN = 66mVP-P  
VOUT = 2VP-P at Max Gain  
Pulse Response vs Attenuation,  
LT5514 Levels are: VIN = 66mVP-P  
VOUT = 4VP-P at Max Gain  
,
,
R
= 100Ω  
R
= 200Ω  
OUT  
OUT  
FIGURE 9 TEST CIRCUIT  
1ns/DIV  
FIGURE 9 TEST CIRCUIT  
1ns/DIV  
5514 G32  
5514 G33  
5514f  
9
LT5514  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (Low Power Mode) TA = 25°C, VCC = 5V, VCCO = 5V,  
ENA = 3V, ENB = 0.6V or ENA = 0.6V, ENB = 3V, control input levels VIL = 0.6V, VIH = 3V unless otherwise noted. (Test circuit shown in  
Figure 10)  
OIP3 vs Frequency at Pin = –23dBm,  
Harmonic Distortion vs POUT at  
50MHz, Max Gain, ROUT = 200Ω  
Max Gain and 1.5dB Attenuation  
Noise Figure vs Frequency  
Step, ROUT = 200Ω  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
54  
51  
48  
45  
42  
39  
36  
33  
30  
1.5dB ATTENUATION STEP  
(PGA0 = LOW)  
MAX GAIN  
HD3  
HD2  
MAX GAIN  
1.5dB  
ATTENUATION  
STEP  
3dB ATTENUATION STEP  
(PGA1 = LOW)  
HD5  
6
HD4  
12  
250 300  
0
50 100 150 200  
350 400  
–6  
0
3
9
15  
–3  
100  
0
50  
150  
200  
FREQUENCY (MHz)  
P
OUT  
(dBm)  
FREQUENCY (MHz)  
5514 G36  
5514 G35  
5514 G34  
Pulse Response vs Output Level at  
Max Gain. Indicated Voltage Levels  
are into 50External Load  
NF vs Attenuation Step at  
Freq = 100MHz  
Output Noise Floor vs Attenuation  
Step, Freq = 100MHz, ROUT = 200Ω  
30  
27  
24  
21  
18  
15  
12  
9
–136  
–137  
–138  
–139  
–140  
–141  
–142  
C
= 0.82pF  
OUT  
PGA1 = HIGH  
PGA1 = LOW  
6
3
0
0
3
6
9
12  
15  
18  
21  
0
6
9
12 15 18 21  
3
2ns/DIV  
5514 G39  
ATTENUATION STEP (dB)  
ATTENUATION STEP (dB)  
5514 G37  
5514 G38  
Single-Ended Output Current  
vs Attenuation Step  
Total ICC vs VCC  
V
IN(BIAS) vs Attenuation Step  
80  
78  
75  
73  
70  
68  
65  
1.60  
1.55  
1.50  
1.45  
1.40  
21.0  
20.5  
20.0  
19.5  
19.0  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
25°C  
85°C  
–40°C  
0
6
9
12 15 18 21  
0
6
9
12 15 18 21  
3
0
6
9
12 15 18 21  
3
3
ATTENUATION STEP (dB)  
ATTENUATION STEP (dB)  
ATTENUATION STEP (dB)  
5514 G40  
5514 G42  
5514 G41  
5514f  
10  
LT5514  
U
U
U
PI FU CTIO S  
ENA (Pin 1): Enable Pin for Amplifier A. When the input  
voltage is higher than 3V, amplifier A is turned on. When  
the input voltage is less than or equal to 0.6V, amplifier A  
is turned off. This pin is internally pulled to ground if not  
connected.  
Input is high when input voltage is greater than 3V. Input  
islowwheninputvoltageislessthanorequalto0.6V. This  
pin is internally pulled to ground if not connected.  
PGA3 (Pin 12): Amplifier PGA Control Input Pin for 12dB  
Attenuation Step (see Programmable Gain table). Input is  
high when input voltage is greater than 3V. Input is low  
when input voltage is less than or equal to 0.6V. This pin  
is internally pulled to ground if not connected.  
V
CC1(Pin2):PowerSupply.Thispinisinternallyconnected  
toVCC2 (Pin19).Decouplingcapacitors(1000pFand0.1µF  
for example) may be required in some applications.  
GND (Pins 3, 4, 7, 8, 13, 14, 17, 18): Ground.  
IN+ (Pin 5): Positive Signal Input Pin with Internal DC  
Bias.  
IN(Pin 6): Negative Signal Input Pin with Internal DC  
Bias.  
OUT+ (Pin 15): Positive Amplifier Output. A transformer  
with center tap tied to VCC or a choke inductor is recom-  
mended to source the DC quiescent current.  
OUT(Pin 16): Negative Amplifier Output. A transformer  
with center tap tied to VCC or a choke inductor is recom-  
mended to source the DC quiescent current.  
PGA0 (Pin 9): Amplifier PGA Control Input Pin for the  
1.5dB Attenuation Step (see Programmable Gain table).  
Input is high when input voltage is greater than 3V. Input  
islowwheninputvoltageislessthanorequalto0.6V. This  
pin is internally pulled to ground if not connected.  
VCC2 (Pin 19): Power Supply. This pin is internally con-  
nected to VCC1 (Pin 2).  
ENB (Pin 20): Enable Pin for Amplifier B. When the input  
voltage is higher than 3V, amplifier B is turned on. When  
the input voltage is less than or equal to 0.6V, amplifier B  
is turned off. This pin is internally pulled to ground if not  
connected.  
PGA1 (Pin 10): Amplifier PGA Control Input Pin for the  
3dB Attenuation Step (see Programmable Gain table).  
Input is high when input voltage is greater than 3V. Input  
islowwheninputvoltageislessthanorequalto0.6V. This  
pin is internally pulled to ground if not connected.  
Exposed Pad (Pin 21): Ground. This pin must be soldered  
to the printed circuit board ground plane for good heat  
transfer.  
PGA2 (Pin 11): Amplifier PGA Control Input Pin for the  
6dB Attenuation Step (see Programmable Gain table).  
W
BLOCK DIAGRA  
LT5514  
AMPLIFIER A  
+
ATTENUATOR  
IN  
IN  
OUT  
5
6
16  
R
IN  
100  
+
OUT  
15  
AMPLIFIER B  
VOLTAGE REGULATOR  
AND BIAS  
GAIN CONTROL  
LOGIC  
ENABLE  
CONTROL  
GND (3, 4, 7, 8  
13, 14, 17, 18)  
V
CC1  
V
PGA3 PGA2 PGA1 PGA0  
12 11 10  
ENB  
ENA  
CC2  
21  
2
19  
9
20  
1
5514 F01  
Figure 1. Functional Block Diagram  
5514f  
11  
LT5514  
W U U  
U
APPLICATIO S I FOR ATIO  
Circuit Operation  
where:  
The LT5514 is a high linearity amplifier with high imped-  
ance output (Figure 1). It consists of the following  
sections:  
gm is the LT5514 transconductance = 0.3S in Standard  
mode (0.15S in Low Power mode).  
RIN is the LT5514 differential input impedance 108Ω  
in Standard mode (122in Low Power mode). Input  
impedance matching is assumed.  
• An input variable attenuator “gain-control” block with  
100input impedance  
• Two parallel, differential transconductance amplifiers,  
each with independent enable inputs  
ROUT is the external differential output impedance as  
seen by the LT5514’s differential outputs. ROUT should  
bedistinguishedfromtheactualloadimpedance,RLOAD  
,
• An internal bias block with internal voltage regulator  
• A gain control logic block  
which will typically be coupled to the LT5514 output by  
an impedance transformation network.  
The LT5514 amplifier provides amplification with very low  
distortion using a linearized open-loop architecture. In  
contrast with high linearity amplifiers employing negative  
feedback, the LT5514 offers:  
The power gain as a function of ROUT is plotted in Figure 2.  
The ideal curves are straight lines. The curved lines  
indicate the roll-off due to the finite (noninfinite) output  
resistance of the LT5514.  
45  
40  
35  
30  
25  
20  
15  
• Stable operation for any practical load  
• A capacitive output reactance (not inductive) that pro-  
vides peaking free AC response to capacitive loads  
• Exceptional reverse isolation of –100dB at 50MHz and  
–78dB at 300MHz (package and board leakage limited)  
TheLT5514isatransconductanceamplifieranditsopera-  
tion can be understood conceptually as consisting of two  
steps: First, the input signal voltage is converted to an  
output current. The intermodulation distortion (in dBc) of  
the LT5514 output current is determined by the input  
signal level, and is almost independent of the output load  
conditions. Thus, the LT5514’s input IP3 is also nearly  
independent of the output load.  
STANDARD MODE  
10  
LOW POWER MODE  
STD WITH R  
5
O
LP WITH R  
O
0
20  
100  
1000 2000  
R
()  
OUT  
5514 F02  
Figure 2. Power Gain as a Function of ROUT  
Next, the external output load (ROUT) converts the output  
current to output voltage (or power). The LT5514’s volt-  
The actual available output power (as well as power gain  
andOIP3)willbereducedbylossesintheoutputinterface,  
consisting of:  
age and power gain both increase with increasing ROUT  
.
Accordingly, the output power and output IP3 also im-  
prove with increasing ROUT. The actual output linearity  
performance in the application will thus be set by the  
choice of output load, as well as by the output network.  
• The insertion loss of the output impedance transforma-  
tion network (for example the transformer insertion  
loss in Figure 6)  
• About –3dB loss if a matching resistor (RMATCH in  
Figure 6) is used to provide output load impedance  
back-matching (for example when driving transmis-  
sion lines)  
Maximum Gain Calculation  
The maximum power gain (with the 0dB attenuation step)  
is:  
GPWR(dB) = 10 • log(gm2 • RIN • ROUT  
)
5514f  
12  
LT5514  
W U U  
APPLICATIO S I FOR ATIO  
Input Interface  
U
V
OSUP  
C3  
C1  
R1  
51  
R2  
51Ω  
R
For the lowest noise and highest linearity, the LT5514  
should be driven with a differential input signal. Single-  
ended drive will severely degrade linearity and noise  
performance.  
LOAD  
LT5514  
+
50Ω  
IN  
R
IN  
R
R
LOAD  
C2  
OUT  
100Ω  
50Ω  
IN  
+
LT5514 F05  
Example input matching networks are shown in Figures 3  
and 4.  
Figure 5. Output Impedance-Matched  
and Capacitively Coupled to a Differential Load  
Input matching network design criteria are:  
Note: In Figure 5, (choke) inductors may be placed in  
parallel with or used to replace resistors R1 and R2, thus  
eliminating the DC voltage drop across these resistors.  
• DC block the LT5514 internal bias voltage (see Input  
Bias Voltage section for DC coupling information)  
• MatchthesourceimpedancetotheLT5514,RIN 108Ω  
V
OSUP  
C1  
• Provide well balanced differential input drive (capacitor  
C2 in Figure 4)  
R
MATCH  
255Ω  
R
LOAD  
50Ω  
T2  
4:1  
LT5514  
+
(OPTIONAL)  
IN  
• Minimize insertion loss to avoid degrading the noise  
figure (NF)  
R
IN  
R
OUT  
100Ω  
IN  
+
LT5514 F06  
R1  
C1  
LT5514  
+
50Ω  
IN  
IN  
Figure 6. Output Impedance-Matched and  
Transformer-Coupled to a Single-Ended Load  
R
IN  
R2  
50Ω  
V
C2  
SRC  
100Ω  
+
LT5514 F03  
Output network design criteria are:  
• Provide DC isolation between the LT5514 DC output  
voltage and RLOAD  
• ProvideapathfortheoutputDCcurrentfromtheoutput  
voltage source VOSUP  
Figure 3. Input Capacitively-Coupled to a Differential Source  
.
R
T1  
1:2  
SRC  
LT5514  
+
50Ω  
.
IN  
IN  
R
IN  
V
SRC  
• Provide an impedance transformation, if required, be-  
tween the load impedance, RLOAD, and the optimum  
100Ω  
+
LT5514 F04  
C2  
0.33µF  
ROUT loading.  
• Set the bandwidth of the output network.  
Figure 4. Input Transformer-Coupled to a Single-Ended Source  
• Optional: Provide board output impedance matching  
using resistor RMATCH (when driving a transmission  
line).  
Output Interface  
The output interface network provides an impedance  
transformationbetweentheactualloadimpedance,RLOAD  
andtheLT5514outputloading, ROUT, chosentomaximize  
powerorlinearity,ortominimizeoutputnoise,orforsome  
other criteria as explained in the following sections.  
,
• Use high linearity passive parts to avoid introducing  
noninearity.  
Note that there is a noise penalty of up to 6dB when using  
power delivered by only one output in Figure 5.  
Two examples of output matching networks are shown in  
Figures 5 and 6 (as implemented in the LT5514 demo  
boards).  
5514f  
13  
LT5514  
W U U  
U
APPLICATIO S I FOR ATIO  
Clipping Free Operation  
bandwidthand,whenthefrequencyisgreaterthan50MHz,  
reduced output power.  
The LT5514 is a class A amplifier. To avoid signal distor-  
tion, the user must ensure that the LT5514 outputs do not  
enterintocurrentorvoltagelimiting.Thefollowingdiscus-  
sionappliestostandardmodeoperationatmaximumgain.  
Input Bias Voltage  
The LT5514 IN+, INsignal inputs are internally biased to  
1.48V common mode when enabled, and to 1.26V in  
shutdown mode. These inputs are typically coupled by  
means of a capacitor or a transformer to a signal source,  
and impedance matching is assumed. In shutdown mode,  
the internal bias can handle up to 1µA leakage on the input  
coupling capacitors. This reduces the turn-on delay due to  
the input coupling RC time constant when exiting shut-  
down mode.  
To avoid current clipping, the output signal current should  
not exceed the DC quiescent current, IOUT = 40mA (typi-  
cal). Correspondingly, the maximum input voltage,  
V
IN(MAX), is IOUT/gm = 133mV (peak). In power terms,  
PIN(MAX) = –10.8dBm (assuming RIN = 108).  
To avoid output voltage clipping (due to LT5514 output  
stage saturation or breakdown), the single-ended output  
voltage swing should stay within the specified limits; i.e.,  
2V VOUT 8V. For a DC output bias of 5V, the maximum  
single ended swing will be 3Vpeak and the maximum  
differential swing will be 6Vpeak. The simultaneous onset  
of both current and voltage limiting occurs when ROUT  
6Vpeak/40mA =150(typ) for a maximum POUT  
20.8dBm. This calculation applies for a sinusoidal signal.  
For nonsinusoidal signals, use the appropriate crest fac-  
tor to calculate the actual maximum power that avoids  
output clipping.  
If DC coupling to the input is required, the external  
common mode bias should track the LT5514’s internal  
common mode level. The DC current from the LT5514  
inputsshouldnotexceedIIN(SINK) =400µAandIIN(SOURCE)  
= 800µA in Standard mode and half of these values in Low  
Power mode.  
=
=
Stability Considerations  
The LT5514’s open-loop architecture allows it to drive any  
practical load. Note that LT5514 gain is proportional to the  
load impedance, and may exceed the reverse isolation at  
frequencies above 1GHz if the LT5514’s outputs are left  
unloaded,withinstabilityastheundesirableconsequence.  
Insuchcases, placingaresistivedifferentialload(e.g., 2k)  
or a small capacitor at the LT5514 outputs can be used to  
limit the maximum gain.  
For nonoptimal ROUT values, the maximum available out-  
putpowerwillbelowerandcanbecalculated(considering  
current limiting for ROUT < 150, and voltage limiting for  
ROUT > 150). The result of this calculation is shown in  
Figure 7.  
The LT5514 input should not be overdriven (PIN  
–10dBm). The consequences of overdrive are reduced  
>
The LT5514 has about 30GHz gain-bandwidth product.  
Hence, attention must be paid to the printed circuit board  
layout to avoid output pin to input pin signal coupling (the  
evaluation board layout is a good example). Due to the  
LT5514’s internal power supply regulator, external supply  
decouplingcapacitorstypicallyarenotrequired. Likewise,  
decoupling capacitors on the LT5514 control inputs typi-  
cally are not needed. Note, however, that the Exposed Pad  
ontheLT5514packagemustbesolderedtoagoodground  
plane on the PCB.  
25  
V
= V  
= 5V  
CCO  
CC  
CURRENT  
LIMIT  
VOLTAGE  
LIMIT  
20  
15  
10  
5
STANDARD MODE  
LOW POWER MODE  
0
PGA Function, Linearity and NF  
20  
100  
1000 2000  
R
()  
OUT  
As described in the Circuit Operation section, the LT5514  
5514 F07  
consists of a variable (step) attenuator followed by a high  
Figure 7. Maximum Output Power as a Function of ROUT  
5514f  
14  
LT5514  
W U U  
APPLICATIO S I FOR ATIO  
U
gain output amplifier. The overall gain of the LT5514 is  
digitally controlled by means of four gain control pins with  
internal pull-down. Minimum gain is programmed when  
the gain control pins are set low or left floating. In  
shutdown mode, these PGA inputs draw <10µA leakage  
current, regardless of the applied voltage.  
values. AsolutionisoutlinedintheBandpassApplications  
section.  
The LT5514 linearity degrades when common mode sig-  
nal is present. The input transformer center tap should be  
decoupled to ground to provide a balanced input differen-  
tial signal and to avoid linearity degradation for high  
attenuationsteps.Whenthesignalfrequencyislowerthan  
50MHz, and there is significant common mode signal,  
then high attenuation settings may result in degraded  
linearity.  
The6dBand12dBattenuationsteps(PGA2andPGA3)are  
implemented by switching the amplifier inputs to an input  
attenuator tap. The 3dB attenuation step (PGA1) changes  
theamplifiertransconductance.TheoutputIP3isapproxi-  
mately independent of the PGA1, PGA2 and PGA3 gain  
settings. However, the 1.5dB attenuation step utilizes a  
currentsteeringtechniquethatdisablestheinternallinear-  
ity compensation circuit, and the OIP3 can be reduced by  
as much as 6dB when PGA0 is low. Therefore, to achieve  
the LT5514’s highest linearity performance, the PGA0 pin  
should be set high.  
At signal frequencies below 100MHz, the LT5514’s inter-  
nal linearity compensation circuitry may provide “sweet  
spots” with very high OIP3, in excess of +60dBm. This  
almost perfect distortion correction cannot be sustained  
over the full operating temperature range and with varia-  
tions of the LT5514 output load (complex impedance  
ZOUT). Users are advised to rely on data shown in the  
TheLT5514noisefigureis7.3dBinthemaximumgainstate.  
Forthe3dBattenuationsetting,theNFis7.6dB.Thenoise  
figure increases in direct proportion to the amount of pro-  
grammedgainreductionforthe1.5dB,6dBand12dBsteps.  
Typical Performance Characteristics curves to estimate  
the dependable linearity performance.  
Wideband Applications  
Atlowfrequencies, thevalueofthedecouplingcapacitors,  
choke inductors and choice of transformer will set the  
minimum frequency of operation. Output DC coupling is  
possible, but this typically reduces the LT5514’s output  
DC bias voltage, and thus the output swing and available  
power.  
The output noise floor is proportional to the output load  
impedance, ROUT. It is almost constant for PGA1 = high  
and for any PGA0, PGA2, PGA3 state. When PGA1 = low,  
the output noise floor is 2.7dB lower (see Typical Perfor-  
mance Characteristics).  
Other Linearity Considerations  
At high frequencies, the output RC time constants set an  
upper limit to the maximum frequency of operation in the  
case of the wideband output networks presented so far.  
ForexampletheLT5514outputcapacitance,COUT =1.9pF,  
and a pure resistive load, ROUT = 200, will set the –3dB  
bandwidth to about 400MHz. In an actual application, the  
RLOAD • CLOAD product may be even more restrictive. The  
use of wideband output networks will not only limit the  
bandwidth, but will also degrade linearity because part of  
the available power is wasted driving the capacitive load.  
LT5514 linearity is a strong function of signal frequency.  
OIP3 decreases about 13dB for every octave of frequency  
increase above 100MHz.  
As noted in the Circuit Operation section, at any given  
frequency and input level, the LT5514 provides a current  
output with fairly constant intermodulation distortion fig-  
ure in dBc, regardless of the output load value. For higher  
ROUT values, more gain and output power is available, and  
better OIP3 figures can be achieved. However, high ROUT  
values are not easily implemented in practice, limited by  
theavailabilityofhighratiooutputimpedancetransforma-  
tion networks.  
The LT5514’s output reactance is capacitive. Therefore  
improvedACresponseispossiblebyusingexternalseries  
output inductors. When driving purely resistive loads, an  
inductor in series with the LT5514 output may help to  
achieve maximally flat AC response as exemplified in the  
Linearity can also be limited by the output RC time con-  
stant (bandwidth limitations), particularly for high ROUT  
characterization setup schematic (Figure 9).  
5514f  
15  
LT5514  
W U U  
U
APPLICATIO S I FOR ATIO  
For example, for ROUT = 200, L1, L2 = 33nH results in  
500MHz bandwidth.  
The LC network is a bandpass filter, a useful feature in  
many applications.  
The series inductor can extend the application bandwidth,  
but it provides no improvement in linearity performance.  
A variety of bandpass matching network configurations  
are conceivable, depending on the requirements of the  
particular application. The design of these networks is  
facilitated by the fact that the LT5514 outputs are not  
destabilized by reactive loading.  
Series inductance may also produce peaking in the AC  
response. This can be the case when (high Q) choke  
inductors are used in an output interface such as in  
Figure 5, and the PCB trace (connection) to the load is too  
long. Since the LT5514’s output impedance is relatively  
high, the PCB trace acts as a series inductor. The most  
direct solution is to shorten the connection lines by  
placing the driver closer to the load. Another solution to  
flatten the AC response is to place resistance close to the  
LT5514 outputs. In this way the connection line behaves  
more like a terminated transmission line, and the AC  
peaking due to the capacitive load can be removed.  
Note that these LC networks may distort the output signal  
if their amplitude and phase response exhibit nonlinear  
behavior. For example, if resistors R1 and R2 in Figure 5  
are replaced with LC resonant tank circuits, then severe  
OIP3degradationmayoccur(e.g.,4dBto6dBat200MHz).  
Low Output Noise Floor Applications  
In some applications the maximum output noise floor is  
specified. The LT5514 outputnoise flooris elevated above  
the available noise power (–174dBm/Hz into 50) by the  
NF+Gain. Consequently, reductionoftheLT5514’spower  
gain is the only way to reduce the output noise floor.  
Bandpass Applications  
For narrow band IF applications, the LT5514’s output  
capacitance and the application load capacitance can be  
incorporated as part of an LC impedance transformation  
network, giving improved linearity performance for signal  
frequencies greater than 100MHz. Figure 8 is an example  
of such a network.  
In fixed gain applications, the LT5514 can be set to 3dB  
attenuation relative to maximum gain. As shown in the  
Typical Performance Characteristics, this gives a 2.8dB  
reduction in the output noise floor with no loss of linearity.  
In general, the output noise floor can be reduced by  
decreasing ROUT (and hence power gain), at the cost of  
reduced OIP3.  
The network consists of two parallel resonant LC tank  
circuits critically coupled by capacitors C1 and C2. The  
ROUT to RLOAD transformation ratio in this particular  
implementation is 2. The choice of impedance transfor-  
mation ratio is more flexible than in the wideband case.  
In some situations, it may be feasible to use two LT5514  
parts in parallel. In this case, the effective gm doubles,  
NOTE:  
C3 + C  
C4 + C  
= 12pF  
= 12pF  
LOAD  
LOAD  
ENA ENB  
V
OSUP  
C7  
0.1µF  
V
CC  
L5  
L6  
C1  
C8  
L3  
56nH  
56nH  
56nH  
C3  
12pF  
0.1µF  
T1  
LT5514  
1:2  
+
R
IN  
LOAD  
C
C
LOAD  
50Ω  
R
C6  
2.2pF  
C5  
5.6pF L4  
56nH  
R
OUT  
LOAD  
100  
DUT  
C2  
12pF  
200Ω  
100Ω  
R
SRC  
IN  
+
50Ω  
C9  
0.33µF  
R
LOAD  
TC2-1T  
V
LOAD  
SRC  
C4  
50Ω  
GAIN = 33dB  
OIP3 (LOAD) = +41dBm  
UP TO 9dBm PER TONE  
1dB BANDWIDTH:  
f
f
= 130MHz  
= 220MHz  
L
U
PGA0 PGA1 PGA2 PGA3  
5514 F08  
Figure 8. Bandpass Output Transformation Network Example  
5514f  
16  
LT5514  
W U U  
APPLICATIO S I FOR ATIO  
U
allowingallimpedancestobescaleddownwardbyafactor  
of two. The NF and power gain remain the same in this  
case, but the OIP3 increases by 3dB. Then, with a further  
reduction of ROUT by a factor of two, the gain and output  
noise floor decrease by 3dB, while yielding the same  
linearity as for one part. As an added benefit, two LT5514  
parts in parallel can drive an ROUT reduced by a factor of  
four, thus relaxing or eliminating the need in some cases  
for an output impedance transformation network.  
refers to circuit operation with only a single block enabled.  
An amplifier in Low Power mode will have the same basic  
characteristics as in Standard mode (both gain blocks  
enabled),exceptthatthegm decreasesfrom0.3Sto0.15S,  
and the maximum output current is halved. In Low Power  
mode, the standard LT5514 evaluation board will produce  
about6dBlessgain,(becausetheLT5514’sgm isreduced,  
while RIN and ROUT are the same) and 6dB lower OIP3.  
LT5514 Characterization  
Low Power Mode  
The LT5514’s typical performance data are based on the  
test circuits shown in Figures 9 and 10. Figure 9 does not  
necessarily reflect the use of the LT5514 in an actual  
application. (For that, see the Application Boards section.)  
As described in the Circuit Operation section, the LT5514  
consists of two parallel gain blocks. These blocks are in-  
dependently enabled or disabled. “Low Power mode”  
ENA ENB  
V
V
OSUP  
CC  
C4  
C3  
4.7µF  
C2  
R1  
R1  
0.1µF  
R10  
R9  
0.1µF  
2525Ω  
C1  
35.7Ω  
35.7Ω  
0.33µF  
C
OUT  
C7  
47nF  
C5  
47nF  
L1  
R3  
37.4Ω  
R7  
(OPT)  
(OPT)  
LT5514  
T1  
1:1  
35.7Ω  
T1  
1:1  
+
IN  
DUT  
C8  
47nF  
C6  
47nF  
R
R
L2  
(OPT)  
LOAD  
R8  
OUT  
R4  
37.4Ω  
50Ω  
35.7Ω  
R
50Ω  
SRC  
IN  
+
C
ETC-1-  
1-13  
ATT =  
7.7dB  
ETC-1-  
1-13  
OUT  
R5  
R6  
(OPT)  
V
51k 51k  
SRC  
R
R3, R4 ATT  
OUT  
10037.49dB  
20087.412dB  
V
CCO  
PGA0 PGA1 PGA2 PGA3  
MONITOR  
5514 F09  
Figure 9. Characterization Board (Simplified Schematic)  
V
CC  
C2  
ENA  
ENB  
20  
V
OSUP  
0.1µF  
1
2
3
4
5
6
7
8
9
C4  
0.1µF  
C3  
4.7µF  
ENA  
ENB  
V
CC2  
GND  
IF  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
CC1  
OUT  
IF  
IN  
T2  
4:1  
T1  
1:2  
GND  
GND  
LT5514  
GND  
+
R
LOAD  
IN  
IN  
OUT  
OUT  
R
R
MATCH  
OUT  
50Ω  
+
255Ω  
100Ω  
GND  
GND  
PGA0  
PGA1  
GND  
GND  
PGA3  
PGA2  
C1  
0.47µF  
J2  
0
J1  
0
TC4-1W  
TC2-1T  
10  
PGA0 PGA1  
PGA2 PGA3  
TRANSFORMER DEMO BOARD  
5514 F10  
Figure 10. Output Transformer Application Board (Simplified Schematic)  
5514f  
17  
LT5514  
W U U  
U
APPLICATIO S I FOR ATIO  
Rather, it represents a compromise that most accurately  
measures the actual operation of the part by itself,  
undistortedbytheartifactsoftheimpedancetransformation  
network, or by external bandwidth limiting factors. Balun  
transformers are used to interface with single-ended test  
equipment. Input and output resistive attenuators (not  
shown) provide broadband I/O impedance control. The  
L1, L2 inductors are selected for maximally flat AC output  
response. COUT (normally open) shows the placement of  
capacitive loading when this is specified as a  
characterization variable. The VCCO monitor pin allows  
setting the output DC level (5V typical) by adjusting  
in that case, T1 should be changed to a 1:1 center-tap  
transformer to preserve 50input matching. The demo  
board is shipped with optional output back-matching  
resistor RMATCH = 255. This results in a net output load,  
ROUT = 100, presented to the LT5514.  
The Output Transformer Application Board (Figure 10) is  
one example of an output impedance transformation  
(T2 transformer). For the Typical Performance Character-  
istics curves, all linearity tests are performed on this  
board. By removing RMATCH, the performance with ROUT  
= 200can be evaluated (provided the lack of impedance  
back-matching is suitably remedied). Measured OIP3 for  
bothcases,ROUT=100and200,isshowninFigure12.  
voltage VOSUP  
.
Application (Demo) Boards  
58  
DUT R  
= 255Ω  
MATCH  
BOARD R  
= 255Ω  
MATCH  
55  
52  
49  
46  
43  
40  
37  
34  
The LT5514 demo boards are provided in the versions  
shown in Figure 10 (with output transformer) and Fig-  
ure 11 (without output transformer). All I/O signal ports  
are matched to 50. Moreover, 1k resistors (not shown)  
connect all six control pins (ENA, ENB, PGA0, PGA1,  
PGA2, PGA3) to VCC, such that the LT5514 is shipped in  
maximum gain state and with both amplifier blocks en-  
abled (Standard mode).  
DUT R  
= OPEN  
MATCH  
BOARD R  
= OPEN  
MATCH  
The gain setting can be changed by connecting the control  
pins to ground. Test points (TP1, TP2, TP3) are provided  
to monitor the input and output DC bias voltage. Jumper  
J1 can be removed when differential input is desired, but  
100  
FREQUENCY (MHz)  
0
50  
150  
200  
5514 F12  
Figure 12. Typical OIP3 for Transformer Board  
V
CC  
ENA  
ENB  
20  
C2  
V
0.1µF  
OSUP  
1
2
3
4
5
6
7
8
9
C4  
0.1µF  
C3  
4.7µF  
ENA  
ENB  
V
CC2  
GND  
R1  
R2  
IF  
OUT  
19  
18  
17  
16  
15  
14  
13  
12  
11  
5050Ω  
V
IF  
IN  
CC1  
T1  
1:2  
GND  
GND  
LT5514  
GND  
+
C5  
47nF  
R
LOAD  
IN  
IN  
OUT  
OUT  
R
OUT  
100Ω  
+
50Ω  
GND  
GND  
PGA0  
PGA1  
GND  
GND  
PGA3  
PGA2  
C1  
0.47µF  
J1  
0
TC2-1T  
J2  
0PEN  
C6  
47nF  
10  
DIFFERENTIAL OUTPUT  
RESISTIVE DEMO BOARD  
PGA0 PGA1  
PGA2 PGA3  
5514 F11  
Figure 11. Wideband Differential Output Application Board (Simplified Schematic)  
5514f  
18  
LT5514  
W U U  
APPLICATIO S I FOR ATIO  
U
At high frequency, the difference between the top and  
bottom curves in Figure 12 is simply power loss. Starting  
from the LT5514 intrinsic performance at ROUT = 200Ω  
(top curve), the next lower curve takes into account the  
transformer insertion loss. The next curve below this  
shows the LT5514 OIP3 with ROUT = 100. The bottom  
curve in the plot includes the effects of transformer  
insertion loss, with ROUT = 100, and the additional effect  
The Wideband Differential Output Application Board (Fig-  
ure 11) is an example of direct coupling (no transformer)  
to the load, and has wider output bandwidth. This board  
gives direct access to the LT5514’s output pins, and was  
used for stability tests. Higher VOSUP (7V) is required to  
compensate for the DC voltage drop on R1 and R2. Use  
TP2, TP3 to monitor the actual LT5514 output bias volt-  
age. ByreplacingR1andR2withinductors, thisboardcan  
operate with a 5V supply. However, this may limit the  
minimum signal frequency. For example, an 820nH choke  
inductor will limit the lowest signal frequency to 40MHz.  
of loss due to RMATCH  
.
The transformer board can provide a differential output  
when Jumper J2 is removed.  
U
PACKAGE DESCRIPTIO  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation CB  
6.40 – 6.60*  
(.252 – .260)  
3.86  
(.152)  
3.86  
(.152)  
20 1918 17 16 15 14 1312 11  
6.60 ±0.10  
2.74  
(.108)  
4.50 ±0.10  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE20 (CB) TSSOP 0204  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
5514f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT5514  
RELATED PARTS  
PART NUMBER DESCRIPTION  
Infrastructure  
COMMENTS  
LT5511  
LT5512  
LT5515  
LT5516  
LT5517  
LT5519  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC to 3GHz, 21dBm IIP3, Integrated LO Buffer  
20dBm IIP3, Integrated LO Quadrature Generator  
21.5dBm IIP3, Integrated LO Quadrature Generator  
21dBm IIP3, Integrated LO Quadrature Generator  
DC-3GHz High Signal Level Downconverting Mixer  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator  
40MHz to 900MHz Quadrature Demodulator  
0.7GHz to 1.4GHz High Linearity Upconverting Mixer  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω  
Matching, Single-Ended LO and RF Ports Operation  
LT5520  
LT5522  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω  
Matching, Single-Ended LO and RF Ports Operation  
600MHz to 2.7GHz High Signal Level Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB,  
50Single-Ended RF and LO Ports  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
80dB Dynamic Range, Temperature Compensated,  
2.7V to 5.25V Supply  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
RF Power Detectors with >40dB Dynamic Range  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
300MHz to 3GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Precision V  
Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
Low Voltage RF Building Blocks  
LT5500  
LT5502  
1.8GHz to 2.7GHz Receiver Front End  
1.8V to 5.25V Supply, Dual-Gain LNA, Mixer, LO Buffer  
400MHz Quadrature IF Demodulator with RSSI  
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain,  
90dB RSSI Range  
LT5503  
LT5506  
LT5546  
1.2GHz to 2.7GHz Direct IQ Modulator and  
Upconverting Mixer  
1.8V to 5.25V Supply, Four-Step RF Power Control,  
120MHz Modulation Bandwidth  
500MHz Quadrature IF Demodulator with VGA  
1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB  
Linear Power Gain, 8.8MHz Baseband Bandwidth  
500MHz Ouadrature IF Demodulator with  
VGA and 17MHz Baseband Bandwidth  
17MHz Baseband Bandwidth, 40MHz to 500MHz IF, 1.8V to 5.25V  
Supply, –7dB to 56dB Linear Power Gain  
5514f  
LT/TP 0504 1K • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT5514EFE#TR

LT5514 - Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5514EFE#TRPBF

LT5514 - Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5515

40MHz to 900MHz Quadrature Demodulator
Linear

LT5515EUF

1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator
Linear

LT5516

800MHz to 1.5GHz Direct Conversion Quadrature Demodulator
Linear

LT5516EUF

800MHz to 1.5GHz Direct Conversion Quadrature Demodulator
Linear

LT5516EUF#PBF

LT5516 - 800MHz to 1.5GHz Direct Conversion Quadrature Demodulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5516EUF#TR

LT5516 - 800MHz to 1.5GHz Direct Conversion Quadrature Demodulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5517

40MHz to 900MHz Quadrature Demodulator
Linear

LT5517EUF

40MHz to 900MHz Quadrature Demodulator
Linear

LT5517EUF#PBF

LT5517 - 40MHz to 900MHz Quadrature Demodulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5517EUF#TRPBF

LT5517 - 40MHz to 900MHz Quadrature Demodulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear