LT5516EUF#TR [Linear]

LT5516 - 800MHz to 1.5GHz Direct Conversion Quadrature Demodulator; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C;
LT5516EUF#TR
型号: LT5516EUF#TR
厂家: Linear    Linear
描述:

LT5516 - 800MHz to 1.5GHz Direct Conversion Quadrature Demodulator; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C

射频 微波
文件: 总12页 (文件大小:157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5516  
800MHz to 1.5GHz Direct  
Conversion Quadrature Demodulator  
U
DESCRIPTIO  
FEATURES  
Frequency Range: 800MHz to 1.5GHz  
High IIP3: 21.5dBm at 900MHz  
High IIP2: 52dBm  
Noise Figure: 12.8dB at 900MHz  
Conversion Gain: 4.3dB at 900MHz  
I/Q Gain Mismatch: 0.2dB  
Shutdown Mode  
The LT®5516 is an 800MHz to 1.5GHz direct conversion  
quadrature demodulator optimized for high linearity re-  
ceiver applications. It is suitable for communications  
receiverswhereanRForIFsignalisdirectlyconvertedinto  
I and Q baseband signals with bandwidth up to 260MHz.  
The LT5516 incorporates balanced I and Q mixers, LO  
buffer amplifiers and a precision, high frequency quadra-  
ture generator.  
16-Lead QFN 4mm × 4mm Package  
with Exposed Pad  
In an RF receiver, the high linearity of the LT5516 provides  
excellent spur-free dynamic range, even with fixed gain  
front end amplification. This direct conversion receiver  
can eliminate the need for intermediate frequency (IF)  
signal processing, as well as the corresponding require-  
ments for image filtering and IF filtering. Channel filtering  
can be performed directly at the outputs of the I and Q  
channels. These outputs can interface directly to channel-  
select filters (LPFs) or to a baseband amplifier.  
U
APPLICATIO S  
Cellular/PCS/UMTS Infrastructure  
High Linearity Direct Conversion I/Q Receiver  
High Linearity I/Q Demodulator  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
I/Q Output Power, IM3 vs  
RF Input Power  
5V  
BPF  
BPF  
V
CC  
LT5516  
+
+
RF  
20  
LNA  
LPF  
I
OUT  
VGA  
VGA  
0
–20  
I
P
OUT  
OUT  
0°  
+
RF  
LO  
DSP  
–40  
LO INPUT  
ENABLE  
IM3  
+
LPF  
V
= 5v  
Q
Q
CC  
= 25°C  
OUT  
–60  
T
A
0°/90°  
P
LO  
= –10dBm  
= 901MHz  
= 899.9MHz  
OUT  
f
f
f
LO  
RF1  
RF2  
–80  
90°  
LO  
EN  
= 900.1MHz  
–100  
5516 F01  
–18  
–14  
–10  
–6  
–2  
2 6  
RF INPUT POWER (dBm)  
5516 TA01  
Figure 1. High Signal-Level I/Q Demodulator for Wireless Infrastructure  
sn5516 5516fs  
1
LT5516  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
Power Supply Voltage ............................................ 5.5V  
Enable Voltage ...................................................... 0, VCC  
LO+ to LODifferential Voltage ............................... ±2V  
(+10dBm Equivalent)  
16 15 14 13  
LT5516EUF  
GND  
1
2
3
4
12 V  
CC  
+
RF  
11 LO  
RF+ to RFDifferential Voltage ................................ ±2V  
(+10dBm Equivalent)  
+
RF  
LO  
V
10  
9
GND  
CC  
5
6
7
8
UF PART  
MARKING  
Operating Ambient Temperature..............–40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Maximum Junction Temperature .......................... 125°C  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
5516  
EXPOSED PAD IS GROUND  
(MUST BE SOLDERED TO PCB)  
TJMAX = 125°C, θJA = 38°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
AC ELECTRICAL CHARACTERISTICS  
TA = 25°C. VCC = 5V, EN = high, fRF1 = 899.9MHz, fRF2 = 900.1MHz,  
fLO = 901MHz, PLO = –10dBm unless otherwise noted. (Notes 2, 3) (Test circuit shown in Figure 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.8 to 1.5  
–13 to 2  
4.3  
MAX  
UNITS  
GHz  
Frequency Range  
LO Power  
dBm  
dB  
Conversion Gain  
Voltage Gain, Load Impedance = 1k  
2
Conversion Gain Variation vs Temperature  
Noise Figure  
40°C to 85°C  
0.01  
dB/°C  
R1 = 8.2  
R1 = 3.3, P = –5dBm  
11.4  
12.8  
dB  
dB  
LO  
Input 3rd Order Intercept  
Input 2nd Order Intercept  
2-Tone, –10dBm/Tone,  
f = 200kHz  
R1 = 8.2Ω  
R1 = 3.3, P = –5dBm  
17.0  
21.5  
dBm  
dBm  
LO  
Input = –10dBm  
R1 = 8.2Ω  
R1 = 3.3, P = –5dBm  
46.0  
52.0  
dBm  
dBm  
LO  
Input 1dB Compression  
Baseband Bandwidth  
I/Q Gain Mismatch  
I/Q Phase Mismatch  
Output Impedance  
LO to RF Leakage  
R1 = 8.2Ω  
6.6  
260  
0.2  
1
dBm  
MHz  
dB  
(Note 4)  
0.7  
(Note 4)  
degree  
Differential  
120  
65  
57  
dBm  
dB  
RF to LO Isolation  
sn5516 5516fs  
2
LT5516  
DC ELECTRICAL CHARACTERISTICS  
TA = 25°C. VCC = 5V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
5.25  
150  
20  
UNITS  
V
Supply Voltage  
Supply Current  
Shutdown Current  
Turn-On Time  
80  
117  
mA  
µA  
ns  
EN = Low  
120  
650  
Turn-Off Time  
ns  
EN = High (On)  
EN = Low (Off)  
EN Input Current  
Output DC Offset Voltage  
1.6  
V
1.3  
25  
V
V
= 5V  
2
1
µA  
mV  
ENABLE  
f
= 901MHz, P = –10dBm  
LO  
LO  
+
+
(
I  
– I  
,
Q  
– Q  
OUT  
)
OUT  
OUT  
OUT  
Output DC Offset Variation vs Temperature  
40°C to 85°C  
20  
µV/°C  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: Tests are performed as shown in the configuration of Figure 2 with  
R1 = 8.2, unless otherwise noted.  
Note 3: Specifications over the 40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
control.  
Note 4: Measured at P = –10dBm and output frequency = 1MHz.  
RF  
sn5516 5516fs  
3
LT5516  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Test circuit optimized for 900MHz operation as shown in Figure 2)  
Conv Gain, NF, IIP3 vs  
RF Input Frequency  
Supply Current vs Supply Voltage  
160  
25  
20  
15  
10  
5
P
A
V
= –10dBm  
R1 = 8.2  
LO  
T
= 25°C  
T
T
T
= 85°C  
= 25°C  
= 40°C  
A
= 5V  
140  
120  
100  
80  
CC  
R1 = 8.2  
IIP3  
NF  
A
A
CONV. GAIN  
1100  
60  
40  
0
4
4.5  
5
5.5  
800  
900  
1000  
1200  
1300  
SUPPLY VOLTAGE (V)  
RF INPUT FREQUENCY (MHz)  
5516 G01  
5516 G02  
I/Q Output Power, IM3 vs  
RF Input Power  
IIP2 vs RF Input Frequency  
20  
0
70  
60  
50  
40  
30  
20  
P
A
V
= –10dBm  
f
= 901MHz  
V = 5V  
CC  
LO  
LO  
T
= 25°C  
= 5V  
R1 = 8.2  
CC  
R1 = 8.2Ω  
OUTPUT POWER  
–20  
–40  
–60  
–80  
–100  
IM3  
T
= 40°C  
A
T
= 25°C  
A
T
= 85°C  
A
800  
900  
1000  
1100  
1200  
1300  
–18  
–14  
–10  
–6  
–2  
2
6
RF INPUT FREQUENCY (MHz)  
RF INPUT POWER (dBm)  
5516 G03  
5516 G04  
I/Q Gain Mismatch vs  
RF Input Frequency  
1.2  
0.8  
T
= 40°C  
A
0.4  
0
T
= 85°C  
T
= 25°C  
A
A
–0.4  
–0.8  
–1.2  
P
f
= –10dBm  
= 1MHz  
= 5V  
LO  
BB  
CC  
V
R1 = 8.2Ω  
800 900 1000 1100 1200 1300 1400 1500  
RF INPUT FREQUENCY (MHz)  
5516 G05  
sn5516 5516fs  
4
LT5516  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Test circuit optimized for 900MHz operation as shown in Figure 2)  
I/Q Phase Mismatch vs  
RF Input Frequency  
NF vs LO Input Power  
6
18  
16  
14  
12  
10  
8
f
= 1300MHz  
RF  
4
T
= 40°C  
A
f
f
= 1100MHz  
= 900MHz  
RF  
RF  
2
0
T
= 25°C  
A
T
= 85°C  
A
–2  
–4  
–6  
P
f
= –10dBm  
= 1MHz  
= 5V  
LO  
BB  
CC  
T
= 25°C  
CC  
A
6
V
V
= 5V  
R1 = 8.2Ω  
R1 = 8.2Ω  
4
–14  
–12  
–10  
–8  
–6  
–4  
–2  
800 900 1000 1100 1200 1300 1400 1500  
RF INPUT FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
5516 G07  
5516 G06  
Conv Gain, IIP3 vs LO Input Power  
IIP2 vs LO Input Power  
20  
16  
12  
8
70  
T
= 85°C  
A
f
= 901MHz  
= 5V  
LO  
CC  
V
65  
60  
55  
50  
45  
40  
35  
30  
R1 = 8.2Ω  
T
= 40°C  
A
IIP3  
= 901MHz  
T
T
= 25°C  
= 25°C  
A
A
T
= 85°C  
A
f
LO  
T
= 40°C  
A
V
= 5V  
CC  
R1 = 8.2Ω  
CONV GAIN  
T
= 25°C  
A
T
T
= 40°C  
= 85°C  
A
A
4
0
–14  
–12  
–10  
–8  
–6  
–4  
–2  
–14  
–12  
–10  
–8  
–6  
–4  
–2  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5516 G08  
5516 G09  
Conv Gain, IIP3 vs Supply Voltage  
20  
16  
12  
8
T
= 85°C  
A
T
= 40°C  
A
T
= 25°C  
= 25°C  
A
A
IIP3  
= 901MHz  
f
LO  
P
= –10dBm  
LO  
R1 = 8.2  
T
CONV GAIN  
T
T
= 40°C  
= 85°C  
A
A
4
0
4
4.5  
5
5.5  
SUPPLY VOLTAGE (V)  
5516 G10  
sn5516 5516fs  
5
LT5516  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Test circuit optimized for 900MHz operation as shown in Figure 2)  
LO-RF Leakage vs LO Input Power  
RF-LO Isolation vs RF Input Power  
80  
70  
60  
50  
40  
30  
20  
–55  
T
= 25°C  
CC  
A
V
= 5V  
f
= 1100MHz  
RF  
R1 = 8.2Ω  
–60  
–65  
–70  
–75  
–80  
f
f
= 1300MHz  
= 900MHz  
RF  
RF  
f
= 900MHz  
RF  
f
f
= 1300MHz  
= 1100MHz  
RF  
RF  
T
= 25°C  
CC  
A
V
= 5V  
R1 = 8.2Ω  
–15 –10  
–5  
0
5
10  
–14  
–12  
–10  
–8  
–6  
–4  
–2  
RF INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5516 G12  
5516 G11  
RF, LO Port Return Loss vs  
Frequency  
Conv Gain vs Baseband Frequency  
0
–5  
8
6
RF  
LO  
T
T
= 40°C  
= 85°C  
A
A
–10  
–15  
–20  
–25  
–30  
4
2
T
= 25°C  
A
0
f
= 1000MHz  
= 5V  
R1 = 8.2Ω  
T
= 25°C  
CC  
LO  
CC  
–2  
–4  
A
V
V
= 5V  
R1 = 8.2Ω  
0
0.5  
1
1.5  
2
2.5  
0.1  
1
10  
100  
1000  
FREQUENCY (GHz)  
BASEBAND FREQUENCY (MHz)  
5516 G13  
5516 G14  
Conv Gain, NF, IIP3 vs R1  
Supply Current, IIP2 vs R1  
150  
130  
110  
90  
25  
20  
15  
10  
T
= 25°C  
CC  
P
LO  
= –5dBm  
LO  
T
= 25°C  
CC  
P
LO  
= –5dBm  
LO  
A
A
V
= 5V  
f
= 901MHz  
V
= 5V  
f
= 901MHz  
SUPPLY CURRENT  
IIP3  
NF  
70  
IIP2  
CONV GAIN  
5
0
50  
30  
3
5
6
7
8
9
4
3
5
6
7
8
9
4
R1 ()  
R1 ()  
5516 G16  
5516 G15  
sn5516 5516fs  
6
LT5516  
U
U
U
PI FU CTIO S  
GND (Pins 1, 4): Ground Pin.  
LO+, LO(Pins 10, 11): Differential Local Oscillator Input  
Pins. These pins are internally biased to 2.44V. They can  
bedrivensingle-endedbyconnectingonetoanACground  
through a 1000pF capacitor. However, differential input  
drive is recommended to minimize LO feedthrough to the  
RF input pins.  
QOUT, QOUT+ (Pins 13, 14): Differential Baseband Output  
Pins of the Q-Channel. The internal DC bias voltage is VCC  
–0.68V for each pin.  
RF+, RF(Pins 2, 3): Differential RF Input Pins. These  
pins are internally biased to 1.54V. They must be driven  
with a differential signal. An external matching network is  
required for impedance transformation.  
VCC (Pins 5, 8, 9, 12): Power Supply Pins. These pins  
should be decoupled using 1000pF and 0.1µF capacitors.  
V
CM (Pin6):CommonModeandDCReturnfortheI-Mixer  
and Q-Mixer. An external resistor must be connected  
between this pin and ground to set the dc bias current of  
the I/Q demodulator.  
IOUT, IOUT+ (Pins 15, 16): Differential Baseband Output  
Pins of the I-Channel. The internal DC bias voltage is VCC  
–0.68V for each pin.  
EN (Pin 7): Enable Pin. When the input voltage is higher  
than 1.6V, the circuit is completely turned on. When the  
input voltage is less than 1.3V, the circuit is turned off.  
GROUND (Pin 17, Backside Contact): Ground Return for  
the Entire IC. This pin must be soldered to the printed  
circuit board ground plane.  
W
BLOCK DIAGRA  
V
V
V
V
CC  
12  
CC  
CC  
CC  
5
8
9
I-MIXER  
+
LPF  
LPF  
16  
15  
I
I
OUT  
RF AMP  
OUT  
+
RF  
RF  
2
3
LO BUFFERS  
0°/90°  
+
14  
13  
Q
Q
OUT  
V
CM  
6
OUT  
Q-MIXER  
17  
BIAS  
7
1
4
10  
+
11  
EN  
GND GND  
LO  
LO  
5516 BD  
sn5516 5516fs  
7
LT5516  
TEST CIRCUITS  
J3  
J4  
J5  
J6  
+
+
I
I
Q
Q
OUT  
OUT  
OUT  
OUT  
T1  
LDB31900M20C-416  
T2  
LDB31900M20C-416  
J1  
J2  
RF  
LO  
GND  
V
CC  
2
3
6
1
6
1
2
3
+
RF  
RF  
LO  
LO  
L1  
33nH  
L4  
27nH  
LT5516  
+
4
4
GND  
V
CC  
C5  
1nF  
C2  
1nF  
C1  
1nF  
V
CC  
R3 1k  
EN  
C7  
1nF  
R1  
8.2Ω  
R2  
100k  
C6  
1nF  
C3  
0.1µF  
C4  
2.2µF  
REFERENCE  
DESIGNATION  
VALUE  
SIZE  
0402  
0402  
3216  
0402  
0402  
0402  
0402  
0402  
PART NUMBER  
AVX 04025C102JAT  
AVX 0402ZD104KAT  
AVX TPSA225M010R1800  
Murata LQP10A  
C1,C2,C5,C6,C7  
C3  
C4  
L1  
L4  
R1  
R2  
R3  
1nF  
0.1µF  
2.2µF  
33nH  
27nH  
8.2Ω  
100k  
1k  
Murata LQP10A  
T1, T2  
1:4  
Murata LDB31900M20C-416  
5516 F02  
Figure 2. 900MHz Evaluation Circuit Schematic  
Figure 3. Component Side Silkscreen of Evaluation Board  
Figure 4. Component Side Layout of Evaluation Board  
sn5516 5516fs  
8
LT5516  
U
W U U  
APPLICATIO S I FOR ATIO  
The LT5516 is a direct I/Q demodulator targeting high  
linearity receiver applications, including wireless infra-  
structure. It consists of an RF amplifier, I/Q mixers, a  
quadrature LO carrier generator and bias circuitry.  
An external resistor (R1) is connected to Pin 6 (VCM) to set  
theoptimumDCcurrentforI/Qmixerlinearity.TheIIP3can  
be improved with a smaller R1 at a price of slightly higher  
NF and ICC. The RF performances of NF, IIP3 and IIP2 vs  
R1 are shown in the Typical Performance Characteristics.  
The RF signal is applied to the inputs of the RF amplifier  
and is then demodulated into I/Q baseband signals using  
quadrature LO signals. The quadrature LO signals are  
internally generated by precision 90° phase shifters. The  
demodulated I/Q signals are lowpass filtered internally  
with a –3dB bandwidth of 265MHz. The differential out-  
puts of the I-channel and Q-channel are well matched in  
amplitude; their phases are 90° apart.  
LO Input Port  
The LO inputs (Pins 10,11) should be driven differentially  
to minimize LO feedthrough to the RF port. This can be  
accomplished by means of a single-ended to differential  
conversion as shown in Figure 2. L4, the 27nH shunt  
inductor, serves to tune out the capacitive component of  
the LO differential input. The resonance frequency of the  
inductor should be greater than the operating frequency.  
A 1:4 transformer is used on the demo board to match the  
200on-chip resistance to a 50source. Figure 6 shows  
the LO input equivalent circuit and the associated match-  
ing network.  
RF Input Port  
Differential drive is highly recommended for the RF inputs  
to minimize the LO feedthrough to the RF port and to  
maximize gain. (See Figure 2.) A 1:4 transformer is used  
on the demonstration board for wider bandwidth match-  
ing. To assure good NF and maximize the demodulator  
gain, a low loss transformer is employed. Shunt inductor  
L1, with high resonance frequency, is required for proper  
impedance matching. Single-ended to differential conver-  
sioncanalsobeimplementedusingnarrowband, discrete  
L-C circuits to produce the required balanced waveforms  
at the RF+ and RFinputs.The differential impedance of  
the RF inputs is listed in Table 1.  
Single-ended to differential conversion at the LO inputs  
can also be implemented using a discrete L-C circuit to  
produce a balanced waveform without a transformer.  
An alternative solution is a simple single-ended termina-  
tion.However,theLOfeedthroughtoRFmaybedegraded.  
EitherLO+ orLOinputcanbeterminatedtoa50source  
with a matching circuit, while the other input is connected  
to ground through a 100pF bypass capacitor.  
Table 1. RF Input Differential Impedance  
Table 2 shows the differential input impedance of the LO  
input port.  
DIFFERENTIAL S11  
FREQUENCY DIFFERENTIAL INPUT  
(MHz)  
IMPEDANCE ()  
169.7-j195.2  
156.1-j181.8  
145.6-j170.0  
137.3-j160.0  
130.7-j152.1  
124.9-j144.7  
119.9-j138.3  
115.7-j133.1  
MAG  
0.779  
0.766  
0.753  
0.740  
0.729  
0.718  
0.707  
0.698  
ANGLE (°)  
–16.9  
–18.3  
–19.6  
–20.9  
–21.9  
–23.0  
–24.0  
–24.9  
Table 2. LO Input Differential Impedance  
800  
DIFFERENTIAL S11  
FREQUENCY DIFFERENTIAL INPUT  
900  
(MHz)  
IMPEDANCE ()  
118.4-j65.1  
110.1-j66.7  
102.2-j67.5  
94.6-j67.2  
MAG  
0.552  
0.517  
0.512  
0.505  
0.498  
0.490  
0.480  
0.469  
ANGLE (°)  
–22.5  
–25.4  
–28.5  
–31.8  
–35.0  
–38.3  
–42.0  
–45.8  
1000  
1100  
1200  
1300  
1400  
1500  
800  
900  
1000  
1100  
1200  
1300  
1400  
1500  
87.5-j66.1  
80.8-j64.4  
The RF+ and RFinputs (Pins 2, 3) are internally biased at  
2.44V. These two pins should be DC blocked when con-  
nected to ground or other matching components. The RF  
input equivalent circuit is shown in Figure 5.  
74.7-j62.1  
69.3-j59.4  
sn5516 5516fs  
9
LT5516  
U
W U U  
APPLICATIO S I FOR ATIO  
I-Channel and Q-Channel Outputs  
The phase relationship between the I-channel output sig-  
nal and Q-channel output signal is fixed. When the LO  
input frequency is larger (or smaller) than the RF input  
frequency, the Q-channel outputs (QOUT+, QOUT) lead (or  
lag) I-channel outputs (IOUT+, IOUT) by 90°.  
Each of the I-channel and Q-channel outputs is internally  
connected to VCC though a 60resistor. The output dc  
biasvoltageisVCC 0.68V.TheoutputscanbeDCcoupled  
or AC coupled to the external loads. The differential output  
impedance of the demodulator is 120in parallel with a  
5pF internal capacitor, forming a lowpass filter with a  
–3dB corner frequency at 265MHz. RLOAD (the single-  
ended load resistance) should be larger than 600to  
assure full gain. The gain is reduced by 20 • log(1 + 120/  
When AC output coupling is used, the resulting highpass  
filter’s –3dB roll-off frequency is defined by the R-C  
constant of the blocking capacitor and RLOAD, assuming  
RLOAD > 600.  
Care should be taken when the demodulator’s outputs are  
DC coupled to the external load, to make sure that the I/Q  
mixers are biased properly. If the current drain from the  
outputs exceeds 6mA, there can be significant degrada-  
tion of the linearity performance. Each output can sink no  
more than 13mA when the outputs are connected to an  
external load with a DC voltage higher than VCC – 0.68V.  
The I/Q output equivalent circuit is shown in Figure 7.  
R
LOAD) in dB when the differential output is terminated by  
LOAD. For instance, the gain is reduced by 6.85dB when  
R
each output pin is connected to a 50load (100differ-  
ential load). The output should be taken differentially (or  
by using differential-to-single-ended conversion) for best  
RF performance, including NF and IM2.  
LT5516  
V
CC  
T1  
LDB31900M20C-416  
J1  
+
1.54V  
RF  
RF  
RF  
2
3
2
3
6
1
L1  
33nH  
1k  
4
1.54V  
C1  
1nF  
5516 F05  
Figure 5. RF Input Equivalent Circuit with External Matching  
sn5516 5516fs  
10  
LT5516  
U
W U U  
APPLICATIO S I FOR ATIO  
V
CC  
V
CC  
60  
60Ω  
60Ω  
60Ω  
+
T2  
I
I
OUT  
OUT  
LDB31900M20C-416  
J2  
16  
15  
+
2.44V  
LO  
LO  
LO  
10  
11  
2
3
6
1
L4  
27nH  
+
5pF  
200  
Q
Q
OUT  
OUT  
14  
13  
4
2.44V  
C2  
1nF  
5pF  
5516 F06  
5516 F07  
Figure 6. LO Input Equivalent Circuit with External Matching  
Figure 7. I/Q Output Equivalent Circuit  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 ±0.05  
4.35 ± 0.05  
2.90 ± 0.05  
2.15 ± 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 ±0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
0.75 ± 0.05  
R = 0.115  
TYP  
0.55 ± 0.20  
4.00 ± 0.10  
(4 SIDES)  
15  
16  
PIN 1  
TOP MARK  
1
2
2.15 ± 0.10  
(4-SIDES)  
(UF) QFN 0802  
0.30 ± 0.05  
0.65 BSC  
0.200 REF  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
sn5516 5516fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT5516  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
RF Power Controllers  
LTC1757A  
LTC1758  
LTC1957  
LTC4400  
LTC4401  
LTC4403  
LT5500  
RF Power Controller  
Multiband GSM/DCS/GPRS Mobile Phones  
RF Power Controller  
Multiband GSM/DCS/GPRS Mobile Phones  
RF Power Controller  
Multiband GSM/DCS/GPRS Mobile Phones  
SOT-23 RF PA Controller  
SOT-23 RF PA Controller  
RF Power Controller for EDGE/TDMA  
RF Front End  
Multiband GSM/DCS/GPRS Phones, 45dB Dynamic Range, 450kHz Loop BW  
Multiband GSM/DCS/GPRS Phones, 45dB Dynamic Range, 250kHz Loop BW  
Multiband GSM/GPRS/EDGE Mobile Phones  
Dual LNA gain Setting +13.5dB/–14dB at 2.5GHz, Double-Balanced Mixer,  
1.8V V  
5.25V  
SUPPLY  
LT5502  
LT5503  
400MHz Quadrature Demodulator with RSSI  
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain, 90dB RSSI Range  
1.8V to 5.25V Supply, Four-Step RF Power Control, 120MHz Modulation Bandwidth  
1.2GHz to 2.7GHz Direct IQ Modulator and  
Up Converting Mixer  
LT5504  
LTC5505  
LT5506  
LTC5507  
LTC5508  
LTC5509  
LT5511  
LT5512  
800MHz to 2.7GHz RF Measuring Receiver  
300MHz to 3.5GHz RF Power Detector  
500MHz Quadrature IF Demodulator with VGA  
100kHz to 1GHz RF Power Detector  
80dB Dynamic Range, Temperature Compensated, 2.7V to 5.5V Supply  
>40dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply  
1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB Linear Power Gain  
48dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply  
SC70 Package  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
High Signal Level Up Converting Mixer  
High Signal Level Down Converting Mixer  
36dB Dynamic Range, SC70 Package  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC-3GHz, 20dBm IIP3, Integrated LO Buffer  
sn5516 5516fs  
LT/TP 0503 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY