LT5568EUF [Linear]

RF/Microwave Modulator/Demodulator, 700 MHz - 1050 MHz RF/MICROWAVE I/Q MODULATOR, 4 X 4 MM, PLASTIC, MO-220WGGC, QFN-16;
LT5568EUF
型号: LT5568EUF
厂家: Linear    Linear
描述:

RF/Microwave Modulator/Demodulator, 700 MHz - 1050 MHz RF/MICROWAVE I/Q MODULATOR, 4 X 4 MM, PLASTIC, MO-220WGGC, QFN-16

射频 微波
文件: 总16页 (文件大小:328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5568  
700MHz – 1050MHz High  
Linearity Direct Quadrature  
Modulator  
U
DESCRIPTIO  
FEATURES  
The LT®5568 is a direct I/Q modulator designed for high  
performance wireless applications, including wireless  
infrastructure. It allows direct modulation of an RF signal  
using differential baseband I and Q signals. It supports  
PHS, GSM, EDGE, TD-SCDMA, CDMA, CDMA2000, W-  
CDMA, and other systems. It may also be configured  
as an image reject upconverting mixer, by applying  
90° phase-shifted signals to the I and Q inputs. The I/Q  
baseband inputs consist of voltage-to-current converters  
that in turn drive double-balanced mixers. The outputs of  
these mixers are summed and applied to an on-chip RF  
transformer, which converts the differential mixer signals  
to a 50Ω single-ended output. The four balanced I and Q  
baseband input ports are intended for DC coupling from a  
source with a common mode voltage level of about 0.5V.  
The LO path consists of an LO buffer with single-ended  
input, and precision quadrature generators that produce  
the LO drive for the mixers. The supply voltage range is  
4.5V to 5.25V.  
Frequency Range: 700MHz to 1050MHz  
High OIP3: +22.9dBm at 850MHz  
Low Output Noise Floor at 5MHz Offset:  
No RF: –160.3dBm/Hz  
P
OUT  
= 4dBm: –154dBm/Hz  
3-Ch CDMA2000 ACPR: –71.4dBc at 850MHz  
Integrated LO Buffer and LO Quadrature Phase  
Generator  
50Ω AC-Coupled Single-Ended LO and RF Ports  
50Ω DC Interface to Baseband Inputs  
Low Carrier Leakage: –43dBm at 850MHz  
High Image Rejection: –46dBc at 850MHz  
16-Lead 4mm × 4mm QFN Package  
U
APPLICATIO S  
Infrastructure Tx for Cellular Bands  
Image Reject Up-Converters for Cellular Bands  
Low-Noise Variable Phase-Shifter for 700MHz to  
1050MHz Local Oscillator Signals  
RFID Reader  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
CDMA2000 ACPR, AltCPR and Noise vs RF  
Output Power at 850MHz for 1 and 3 Carriers  
700MHz to 1050MHz Direct Conversion Transmitter Application  
–50  
–60  
–70  
–80  
–90  
–125  
–135  
–145  
–155  
5V  
100nF  
x2  
DOWNLINK TEST MODEL 64 DPCH  
V
1-CH.  
ACPR  
CC  
LT5568  
RF = 700MHz  
TO 1050MHz  
I-DAC  
V-I  
I-CHANNEL  
3-CH. ACPR  
PA  
0°  
EN  
90°  
3-CH. AltCPR  
1-CH. AltCPR  
1-CH. NOISE  
BALUN  
Q-CHANNEL  
V-I  
Q-DAC  
3-CH. NOISE  
5568 TA01  
BASEBAND  
GENERATOR  
–165  
VCO/SYNTHESIZER  
–30  
–25  
–20  
–15  
–10  
–5  
RF OUTPUT POWER PER CARRIER (dBm)  
5568 TA02  
5568f  
1
LT5568  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Supply Voltage.........................................................5.5V  
Common Mode Level of BBPI, BBMI and  
BBPQ, BBMQ .......................................................2.5V  
Operating Ambient Temperature  
16 15 14 13  
EN  
GND  
LO  
1
2
3
4
12 GND  
11 RF  
17  
(Note 2) ............................................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
Voltage on any Pin  
GND  
GND  
10  
9
GND  
5
6
7
8
Not to Exceed...................... –500mV to V + 500mV  
CC  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
= 125°C, θ = 37°C/W  
T
JMAX  
JA  
EXPOSED PAD (PIN 17) IS GROUND, MUST BE SOLDERED TO PCB  
ORDER PART NUMBER  
UF PART MARKING  
5568  
LT5568EUF  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
VCC = 5V, EN = High, TA = 25°C, fLO = 850MHz, fRF = 852MHz, PLO = 0dBm.  
BBPI, BBMI, BBPQ, BBMQ inputs 0.54VDC, Baseband Input Frequency = 2MHz, I&Q 90° shifted (upper side-band selection).  
PRF, OUT = –10dBm, unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RF Output (RF)  
f
RF Frequency Range  
RF Frequency Range  
3dB Bandwidth  
1dB Bandwidth  
0.6 to 1.2  
0.7 to 1.05  
GHz  
GHz  
RF  
S
S
RF Output Return Loss  
RF Output Return Loss  
RF Output Noise Floor  
EN = High (Note 6)  
EN = Low (Note 6)  
14  
12  
dB  
dB  
22, ON  
22, OFF  
NFloor  
No Input Signal (Note 8)  
160.3  
154  
154  
dBm/Hz  
dBm/Hz  
dBm/Hz  
P
P
= 4dBm (Note 9)  
= 4dBm (Note 10)  
OUT  
OUT  
G
G
Conversion Power Gain  
Conversion Voltage Gain  
Absolute Output Power  
3 • LO Conversion Gain Difference  
Output 1dB Compression  
Output 2nd Order Intercept  
Output 3rd Order Intercept  
Image Rejection  
P
/P  
–9  
6.8  
6.8  
2.8  
23  
8.3  
–3  
dB  
dB  
P
OUT IN, I&Q  
20 • Log (V  
/V  
)
V
OUT, 50Ω IN, DIFF, I or Q  
P
1V  
CW Signal, I and Q  
dBm  
dB  
OUT  
P-P DIFF  
G
(Note 17)  
(Note 7)  
3LO vs LO  
OP1dB  
OIP2  
OIP3  
IR  
dBm  
dBm  
dBm  
dBc  
(Notes 13, 14)  
(Notes 13, 15)  
(Note 16)  
63  
22.9  
46  
LOFT  
Carrier Leakage  
(LO Feedthrough)  
EN = High, P = 0dBm (Note 16)  
43  
65  
dBm  
dBm  
LO  
EN = Low, P = 0dBm (Note 16)  
LO  
5568f  
2
LT5568  
ELECTRICAL CHARACTERISTICS  
VCC = 5V, EN = High, TA = 25°C, fLO = 850MHz, fRF = 852MHz, PLO = 0dBm.  
BBPI, BBMI, BBPQ, BBMQ inputs 0.54VDC, Baseband Input Frequency = 2MHz, I&Q 90° shifted (upper side-band selection).  
PRF, OUT = –10dBm, unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LO Input (LO)  
f
LO Frequency Range  
0.6 to 1.2  
0
GHz  
dBm  
dB  
LO  
P
S
S
LO Input Power  
10  
5
LO  
LO Input Return Loss  
EN = High (Note 6)  
EN = Low (Note 6)  
(Note 5) at 850MHz  
(Note 5) at 850MHz  
(Note 5) at 850MHz  
11.4  
2.7  
12.7  
11, ON  
11, OFF  
LO Input Return Loss  
dB  
NF  
LO Input Referred Noise Figure  
LO to RF Small Signal Gain  
LO Input 3rd Order Intercept  
dB  
LO  
G
23.8  
dB  
LO  
IIP3  
11.5  
dBm  
LO  
Baseband Inputs (BBPI, BBMI, BBPQ, BBMQ)  
BW  
Baseband Bandwidth  
3dB Bandwidth  
(Note 4)  
380  
0.54  
48  
MHz  
V
BB  
V
DC Common Mode Voltage  
Single-Ended Input Resistance  
Carrier Feedthrough on BB  
Input 1dB Compression Point  
I/Q Absolute Gain Imbalance  
I/Q Absolute Phase Imbalance  
CMBB  
Ω
R
(Note 4)  
IN, SE  
P
P
OUT  
= 0 (Note 4)  
38  
4.3  
dBm  
LO2BB  
IP1dB  
Differential Peak-to-Peak (Notes 7, 18)  
V
P-P, DIFF  
ΔG  
0.07  
0.45  
dB  
I/Q  
I/Q  
Δϕ  
Deg  
Power Supply (V  
)
CC  
V
Supply Voltage  
4.5  
80  
5
5.25  
165  
50  
V
mA  
μA  
μs  
CC  
I
I
t
t
Supply Current  
EN = High  
117  
CC, ON  
CC, OFF  
ON  
Supply Current, Sleep Mode  
Turn-On Time  
EN = 0V  
EN = Low to High (Note 11)  
EN = High to Low (Note 12)  
0.3  
1.4  
Turn-Off Time  
μs  
OFF  
Enable (EN), Low = Off, High = On  
Enable  
Input High Voltage  
Input High Current  
EN = High  
EN = 5V  
1.0  
V
230  
0
μA  
Sleep  
Input Low Voltage  
Input Low Current  
EN = Low  
EN = 0V  
0.5  
V
μA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 10: At 5MHz offset from the CW signal frequency.  
Note 11: RF power is within 10% of final value.  
Note 2: Specifications over the 40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
Note 3: Tests are performed as shown in the configuration of Figure 7.  
Note 4: On each of the four baseband inputs BBPI, BBMI, BBPQ and  
Note 12: RF power is at least 30dB lower than in the ON state.  
Note 13: Baseband is driven by 2MHz and 2.1MHz tones. Drive level is set  
in such a way that the two resulting RF tones are –10dBm each.  
Note 14: IM2 measured at LO frequency + 4.1MHz.  
Note 15: IM3 measured at LO frequency + 1.9MHz and LO frequency +  
2.2MHz.  
Note 16: Amplitude average of the characterization data set without image  
or LO feedthrough nulling (unadjusted).  
BBMQ.  
Note 5: V(BBPI) – V(BBMI) = 1V , V(BBPQ) – V(BBMQ) = 1V  
.
DC  
DC  
Note 6: Maximum value within 1dB bandwidth.  
Note 7: An external coupling capacitor is used in the RF output line.  
Note 8: At 20MHz offset from the LO signal frequency.  
Note 9: At 20MHz offset from the CW signal frequency.  
Note 17: The difference in conversion gain between the spurious signal at  
f = 3 • LO – BB versus the conversion gain at the desired signal at f = LO +  
BB for BB = 2MHz and LO = 850MHz.  
Note 18: The input voltage corresponding to the output P1dB.  
5568f  
3
LT5568  
U W  
VCC = 5V, EN = High, TA = 25°C, fLO = 850MHz,  
LO = 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.54VDC, Baseband Input Frequency fBB = 2MHz, I&Q 90° shifted. fRF = fBB + fLO (upper  
TYPICAL PERFOR A CE CHARACTERISTICS  
P
sideband selection). PRF, OUT = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3)  
RF Output Power vs LO Frequency  
at 1VP-P Differential Baseband Drive  
Supply Current vs Supply Voltage  
Voltage Gain vs LO Frequency  
140  
130  
120  
110  
100  
–4  
–6  
0
–2  
85°C  
25°C  
–8  
–10  
–12  
–14  
–4  
–6  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
–8  
–40°C  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
–10  
4.5  
5
5.5  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
LO FREQUENCY (MHz)  
SUPPLY VOLTAGE (V)  
LO FREQUENCY (MHz)  
5568 G03  
5568 G02  
5568 G01  
Output 1dB Compression  
vs LO Frequency  
Output IP3 vs LO Frequency  
Output IP2 vs LO Frequency  
26  
24  
70  
65  
60  
55  
50  
10  
8
f
f
= 2MHz  
= 2.1MHz  
BB, 1  
BB, 2  
f
f
f
= f  
+ f  
+ f  
IM2 BB, 1 BB, 2 LO  
= 2MHz  
BB, 1  
BB, 2  
= 2.1MHz  
22  
20  
18  
16  
6
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
4
5V, 85°C  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
2
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5568 G04  
5568 G06  
5568 G05  
LO Feedthrough to RF Output  
vs LO Frequency  
2 • LO Leakage to RF Output  
vs 2 • LO Frequency  
3 • LO Leakage to RF Output  
vs 3 • LO Frequency  
–40  
–42  
–44  
–46  
–48  
–40  
–45  
–50  
–55  
–60  
–40  
–45  
–50  
–55  
–60  
–65  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
550 650 750 850 950 1050 1150 1250  
LO FREQUENCY (MHz)  
1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5  
2 • LO FREQUENCY (GHz)  
1.65 1.95 2.25 2.55 2.85 3.15 3.45 3.75  
3 • LO FREQUENCY (GHz)  
5568 G07  
5568 G08  
5568 G09  
5568f  
4
LT5568  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VCC = 5V, EN = High, TA = 25°C, fLO = 850MHz,  
LO = 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.54VDC, Baseband Input Frequency fBB = 2MHz, I&Q 90° shifted. fRF = fBB + fLO (upper  
sideband selection). PRF, OUT = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3)  
P
LO and RF Port Return Loss  
vs RF Frequency  
Noise Floor vs RF Frequency  
Image Rejection vs LO Frequency  
–160  
–161  
–162  
–163  
–164  
0
–10  
–20  
–30  
–40  
–30  
–35  
–40  
–45  
–50  
LO PORT, EN = LOW  
f
= 850MHz  
5V, –40°C  
5V, 25°C  
LO  
(FIXED)  
LO PORT, EN = HIGH,  
= 0dBm  
5V, 85°C  
P
LO  
4.5V, 25°C  
5.5V, 25°C  
RF PORT,  
EN = LOW  
5V, –40°C  
5V, 25°C  
LO PORT,  
EN = HIGH,  
5V, 85°C  
P
= –10dBm  
LO  
RF PORT, EN = HIGH, No LO  
4.5V, 25°C  
5.5V, 25°C  
RF PORT, EN = HIGH, P = 0dBm  
LO  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5568 G12  
5568 G10  
5568 G11  
Absolute I/Q Gain Imbalance  
vs LO Frequency  
Absolute I/Q Phase Imbalance  
vs LO Frequency  
Voltage Gain vs LO Power  
–4  
0.2  
0.1  
0
4
3
2
1
0
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
–6  
–8  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
–10  
–12  
–14  
–16  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
–20 –16 –12  
–8  
–4  
0
4
8
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
LO INPUT POWER (dBm)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5568 G15  
5568 G13  
5568 G14  
RF CW Output Power, HD2 and HD3 vs  
Output IP3 vs LO Power  
CW Baseband Voltage and Temperature  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10  
25  
23  
21  
19  
17  
15  
13  
0
RF  
–40°C  
85°C  
–40°C  
85°C  
25°C  
–10  
–20  
–30  
–40  
–50  
–60  
25°C  
25°C  
HD3  
–40°C  
HD2  
5V, –40°C  
5V, 25°C  
85°C  
5V, 85°C  
f
f
= 2MHz  
= 2.1MHz  
4.5V, 25°C  
5.5V, 25°C  
BB, 1  
BB, 2  
0
1
2
3
4
5
–20 –16 –12  
–8  
–4  
0
4
8
I AND Q BASEBAND VOLTAGE (V  
)
P–P, DIFF  
LO INPUT POWER (dBm)  
5568 G16  
HD2 = MAX POWER AT f + 2 • f OR f – 2 • f  
LO  
BB  
LO  
BB  
BB  
HD3 = MAX POWER AT f + 3 • f OR f – 3 • f  
5568 G17  
LO  
BB  
LO  
5568f  
5
LT5568  
U W  
VCC = 5V, EN = High, TA = 25°C, fLO = 850MHz,  
LO = 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.54VDC, Baseband Input Frequency fBB = 2MHz, I&Q 90° shifted. fRF = fBB + fLO (upper  
TYPICAL PERFOR A CE CHARACTERISTICS  
P
sideband selection). PRF, OUT = –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3)  
RF CW Output Power, HD2 and  
LO Feedthrough to RF Output  
vs CW Baseband Voltage  
Image Rejection  
HD3 vs CW Baseband Voltage  
and Supply Voltage  
vs CW Baseband Voltage  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10  
0
–36  
–38  
–40  
–42  
–44  
–35  
–40  
–45  
–50  
–55  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
RF  
5V, 85°C  
5V, 85°C  
5V  
4.5V  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
–10  
–20  
–30  
–40  
–50  
–60  
HD3  
5V  
4.5V  
HD2  
5.5V  
0
1
2
3
4
5
)
0
1
2
3
4
5
)
0
1
2
3
4
5
)
I AND Q BASEBAND VOLTAGE (V  
P–P, DIFF  
I AND Q BASEBAND VOLTAGE (V  
I AND Q BASEBAND VOLTAGE (V  
P–P, DIFF  
P–P, DIFF  
5568 G19  
HD2 = MAX POWER AT f + 2 • f OR f – 2 • f  
5568 G20  
LO  
BB  
LO  
BB  
BB  
HD3 = MAX POWER AT f + 3 • f OR f – 3 • f  
LO  
BB  
LO  
5568 G18  
RF Two-Tone Power (Each Tone),  
IM2 and IM3 vs Baseband Voltage  
and Supply Voltage  
RF Two-Tone Power (Each Tone),  
IM2 and IM3 vs Baseband Voltage  
and Temperature  
Gain Distribution  
10  
0
10  
0
60  
50  
40  
30  
20  
10  
0
–40°C  
25°C  
85°C  
RF  
RF  
–40°C  
25°C  
85°C  
4.5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
4.5V  
5V, 5.5V  
–40°C  
5V, 5.5V  
25°C  
85°C  
25°C  
IM3  
5V  
IM3  
4.5V  
–40°C  
IM2  
5.5V  
IM2  
85°C  
f
f
= 2MHz, 2.1MHz, 0°  
= 2MHz, 2.1MHz, 90°  
f
f
= 2MHz, 2.1MHz, 0°  
= 2MHz, 2.1MHz, 90°  
BBI  
BBQ  
BBI  
BBQ  
0.1  
1
10  
0.1  
1
10  
)
–8  
–7  
–6.5  
–6  
–7.5  
I AND Q BASEBAND VOLTAGE (V  
)
I AND Q BASEBAND VOLTAGE (V  
P–P, DIFF, EACH TONE  
P–P, DIFF, EACH TONE  
GAIN (dB)  
5568 G23  
IM2 = POWER AT f + 4.1MHz  
IM2 = POWER AT f + 4.1MHz  
LO  
LO  
IM3 = MAX POWER AT f + 1.9MHz OR f + 2.2MHz  
IM3 = MAX POWER AT f + 1.9MHz OR f + 2.2MHz  
LO  
LO  
LO  
LO  
Noise Floor Distribution  
LO Leakage Distribution  
Image Rejection Distribution  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
f
= 870MHz  
–40°C  
25°C  
85°C  
P
= –10dBm  
LO  
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
V = 800mV  
BB P-P,DIFF  
NOISE  
NO BASEBAND  
APPLIED  
–160.8  
–160  
–159.6  
–159.2  
–54  
–46  
–42  
–38  
–34  
–160.4  
–50  
< –60  
–52  
–48  
–44  
–56  
NOISE FLOOR (dBm/Hz)  
LO LEAKAGE (dBm)  
IMAGE REJECTION (dBc)  
5568 G26  
5568 G24  
5568 G25  
5568f  
6
LT5568  
U
U
U
PI FU CTIO S  
BBPQ,BBMQ(Pins7,5):BasebandInputsfortheQ-chan-  
nel, each 50Ω input impedance. Internally biased at about  
0.54V. Applied voltage must stay below 2.5V.  
EN (Pin 1): Enable Input. When the enable pin voltage is  
higher than 1V, the IC is turned on. When the input voltage  
is less than 0.5V, the IC is turned off.  
V
(Pins 8, 13): Power Supply. Pins 8 and 13 are con-  
GND (Pins 2, 4, 6, 9, 10, 12, 15): Ground. Pins 6, 9, 15  
and 17 (exposed pad) are connected to each other inter-  
nally. Pins 2 and 4 are connected to each other internally  
and function as the ground return for the LO signal. Pins  
10 and 12 are connected to each other internally and  
function as the ground return for the on-chip RF balun.  
For best RF performance, pins 2, 4, 6, 9, 10, 12, 15 and  
the Exposed Pad 17 should be connected to the printed  
circuit board ground plane.  
CC  
nected to each other internally. It is recommended to use  
0.1μF capacitors for decoupling to ground on each of  
these pins.  
RF (Pin 11): RF Output. The RF output is an AC-coupled  
single-ended output with approximately 50Ω output im-  
pedance at RF frequencies. Externally applied DC voltage  
should be within the range 0.5V to V + 0.5V in order  
to avoid turning on ESD protection diodes.  
CC  
LO(Pin3):LOInput.TheLOinputisanAC-coupledsingle-  
ended input with approximately 50Ω input impedance at  
RF frequencies. Externally applied DC voltage should be  
BBPI, BBMI (Pins 14, 16): Baseband Inputs for the  
I-channel,eachwith50Ωinputimpedance.Internallybiased  
at about 0.54V. Applied voltage must stay below 2.5V.  
within the range 0.5V to V + 0.5V in order to avoid  
CC  
Exposed Pad (Pin 17): Ground. This pin must be soldered  
to the printed circuit board ground plane.  
turning on ESD protection diodes.  
5568f  
7
LT5568  
W
BLOCK DIAGRA  
V
CC  
8
13  
LT5568  
BBPI 14  
BBMI 16  
V-I  
V-I  
11 RF  
0°  
90°  
BALUN  
BBPQ  
BBMQ  
7
5
1
EN  
2
4
6
9
3
10  
12  
15  
17  
5568 BD  
GND  
LO  
GND  
U
W U U  
APPLICATIO S I FOR ATIO  
The LT5568 consists of I and Q input differential voltage-  
to-current converters, I and Q up-conversion mixers, an  
RF output balun, an LO quadrature phase generator and  
LO buffers.  
External I and Q baseband signals are applied to the dif-  
ferential baseband input pins, BBPI, BBMI, and BBPQ,  
BBMQ.Thesevoltagesignalsareconvertedtocurrentsand  
translated to RF frequency by means of double-balanced  
up-converting mixers. The mixer outputs are combined  
in an RF output balun, which also transforms the output  
impedance to 50Ω. The center frequency of the resulting  
RF signal is equal to the LO signal frequency. The LO input  
drives a phase shifter which splits the LO signal into in-  
phaseandquadratureLOsignals.TheseLOsignalsarethen  
applied to on-chip buffers which drive the up-conversion  
mixers. Both the LO input and RF output are single-ended,  
50Ω-matched and AC coupled.  
LT5568  
RF  
= 5V  
C
V
CC  
BALUN  
FROM  
Q
LOMI  
CM  
LOPI  
R1A  
25Ω  
R1B  
23Ω  
R2B  
23Ω  
R2A  
25Ω  
BBPI  
R3  
R4  
12pF  
12pF  
Baseband Interface  
V
REF  
= 540mV  
BBMI  
Thebasebandinputs(BBPI,BBMI),(BBPQ,BBMQ)present  
adifferentialinputimpedanceofabout100Ω.Ateachofthe  
fourbasebandinputs,arst-orderlowpasslterusing25Ω  
5568 F01  
GND  
Figure 1. Simplified Circuit Schematic of the LT5568  
(Only I-Half is Drawn)  
5568f  
8
LT5568  
U
W U U  
APPLICATIO S I FOR ATIO  
and 12pF to ground is incorporated (see Figure 1), which Thebasebandinputsshouldbedrivendifferentially;other-  
limits the baseband bandwidth to approximately 330MHz wise, the even-order distortion products will degrade the  
(–1dB point). The common mode voltage is about 0.54V overall linearity severely. Typically, a DAC will be the signal  
and is approximately constant over temperature.  
source for the LT5568. Reconstruction filters should be  
placedbetweentheDACoutputandtheLT5568’sbaseband  
inputs.InFigure3,anexampleinterfaceschematicshowsa  
commonlyusedDACoutputinterfacefollowedbyapassive  
Itisimportantthattheappliedcommonmodevoltagelevel  
of the I and Q inputs is about 0.54V in order to properly  
bias the LT5568. Some I/Q test generators allow setting  
the common mode voltage independently. In this case, the  
common mode voltage of those generators must be set  
to 0.27V to match the LT5568 internal bias, because for  
DC signals, there is no –6dB source-load voltage division  
(see Figure 2).  
th  
5 order ladder filter. The DAC in this example sources  
a current from 0mA to 20mA. The interface may be DC  
coupled. This allows adjustment of the DAC’s differential  
outputcurrenttominimizetheLOfeedthrough.Optionally,  
transformer T1 can be inserted to improve the current  
balance in the BBPI and BBMI pins. This will improve the  
2nd order distortion performance (OIP2).  
50Ω  
50Ω  
48Ω  
The maximum single sideband CW RF output power at  
850MHz using both I and Q channels with the configura-  
tion shown in Figure 3 is about –3dBm. The maximum  
CW output power can be increased by connecting load  
resistors R5 and R6 to –5V instead of GND, and changing  
their values to 550Ω. In that case, the maximum single  
sideband CW RF output power at 850MHz will be about  
+2dBm. In addition, the ladder filter component values  
require adjustment for a higher source impedance.  
0.27V  
0.54V  
DC  
DC  
+
+
+
DC  
0.54V  
0.54V  
0.54V  
DC  
DC  
50Ω  
GENERATOR  
GENERATOR  
LT5568  
5568 F02  
Figure 2. DC Voltage Levels for a Generator Programmed at  
0.27VDC for a 50Ω Load and the LT5568 as a Load  
V
= 5V  
CC  
LT5568  
LOPI  
RF = –3dBm, MAX  
BALUN  
C
LOMI  
CM  
R1  
R2  
0.5V  
L1A  
L2A  
45Ω  
45Ω  
BBPI  
T1  
1:1  
0mA to 20mA  
0mA to 20mA  
R5, 50Ω  
C1  
R6, 50Ω  
R3  
33Ω  
R4  
33Ω  
DAC  
C2  
L1B  
C3  
L2B  
V
REF  
= 500mV  
15mA  
GND  
0.5V  
BBMI  
5568 F03  
GND  
Figure 3. LT5568 5th Order Filtered Baseband Interface with Common DAC (Only I-Channel is Shown)  
5568f  
9
LT5568  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 1. LO Port Input Impedance vs Frequency for EN = High  
and PLO = 0dBm  
LO Section  
The internal LO input amplifier performs single-ended to  
differential conversion of the LO input signal. Figure 4  
shows the equivalent circuit schematic of the LO input.  
Frequency  
MHz  
Input Impedance  
S
11  
Ω
Mag  
Angle  
95.0  
500  
600  
47.5 + j12.1  
59.4 + j8.4  
0.126  
0.115  
0.140  
0.185  
0.232  
0.252  
0.258  
0.297  
37.8  
V
CC  
700  
800  
900  
1000  
1100  
1200  
66.2 – j1.14  
67.2 – j13.4  
61.1 – j23.9  
53.3 – j26.8  
48.2 – j26.1  
42.0 – j27.4  
–3.41  
–31.7  
–53.2  
–68.7  
–79.4  
–90.0  
20pF  
LO  
INPUT  
51Ω  
5568 F04  
If the part is in shutdown mode, the input impedance of  
the LO port will be different. The LO input impedance for  
EN = Low is given in Table 2.  
Table 2. LO Port Input Impedance vs Frequency for EN = Low and  
PLO = 0dBm  
Figure 4. Equivalent Circuit Schematic of the LO Input  
Theinternal,differentialLOsignalisthensplitintoin-phase  
and quadrature (90° phase shifted) signals that drive LO  
buffer sections. These buffers drive the double balanced  
I and Q mixers. The phase relationship between the LO  
input and the internal in-phase LO and quadrature LO  
signals is fixed, and is independent of start-up conditions.  
The internal phase shifters are designed to deliver accu-  
rate quadrature signals. For LO frequencies significantly  
below 600MHz or above 1GHz, however, the quadrature  
accuracy will diminish, causing the image rejection to  
degrade. The LO pin input impedance is about 50Ω, and  
the recommended LO input power is 0dBm. For lower  
LO input power, the gain, OIP2, OIP3 and noise floor at  
Frequency  
MHz  
Input Impedance  
S
11  
Ω
Mag  
Angle  
85.4  
49.8  
19.6  
–6.8  
–29.6  
–45.5  
–65.6  
–79.7  
500  
600  
700  
800  
900  
1000  
1100  
1200  
33.6 + j41.3  
59.8 + j69.1  
140 + j89.8  
225 – j62.6  
92.9 – j128  
39.8 – j95.9  
22.8 – j72.7  
16.0 – j57.3  
0.477  
0.539  
0.606  
0.659  
0.704  
0.735  
0.755  
0.763  
P
A
= 4dBm will degrade, especially below –5dBm and at  
RF  
RF Section  
T = 85°C. For high LO input power (e.g., +5dBm), the LO  
Afterup-conversion,theRFoutputsoftheIandQmixersare  
combined. An on-chip balun performs internal differential  
tosingle-endedoutputconversion,whiletransformingthe  
output signal impedance to 50Ω. Table 3 shows the RF  
port output impedance vs frequency.  
feedthroughwillincreasewithnoimprovementinlinearity  
or gain. For lower LO input power, e.g., P = –5dBm, the  
LO  
image rejection improves (especially around 950MHz) at  
the cost of 1.5dB degradation of the noise floor at P  
=
RF  
4dBm.HarmonicspresentontheLOsignalcandegradethe  
imagerejectionbecausetheycanintroduceasmallexcess  
phase shift in the internal phase splitter. For the second (at  
1.7GHz) and third harmonics (at 2.55GHz) at –20dBc, the  
resulting signal at the image frequency is about –56dBc  
or lower, corresponding to an excess phase shift of much  
less than 1 degree. For the second and third LO harmonics  
at –10dBc, the introduced signal at the image frequency is  
about –47dBc. Higher harmonics than the third will have  
less impact. The LO return loss typically will be better than  
11dB over the 700MHz to 1.05GHz range. Table 1 shows  
the LO port input impedance vs frequency.  
Table 3. RF Port Output Impedance vs Frequency for EN = High  
and PLO = 0dBm  
Frequency  
MHz  
Input Impedance  
S
22  
Ω
Mag  
Angle  
164.2  
141.3  
117.5  
90.6  
–94.7  
–117.0  
–130.7  
–141.6  
500  
600  
700  
800  
900  
1000  
1100  
1200  
22.0 + j5.7  
28.2 + j12.5  
38.8 + j14.8  
49.4 + j7.2  
49.3 – j5.1  
42.5 – j11.1  
36.7 – j11.7  
33.0 – j10.3  
0.395  
0.317  
0.206  
0.072  
0.051  
0.143  
0.202  
0.238  
5568f  
10  
LT5568  
U
W U U  
APPLICATIO S I FOR ATIO  
The RF output S with no LO power applied is given in Note that an ESD diode is connected internally from  
22  
Table 4.  
the RF output to ground. For strong output RF signal  
levels (higher than 3dBm), this ESD diode can degrade  
the linearity performance if the 50Ω termination imped-  
ance is connected directly to ground. To prevent this, a  
coupling capacitor can be inserted in the RF output line.  
This is strongly recommended during a 1dB compression  
measurement.  
Table 4. RF Port Output Impedance vs Frequency for EN = High  
and No LO Power Applied  
Frequency  
MHz  
Input Impedance  
S
22  
Ω
Mag  
Angle  
164.0  
500  
600  
22.7 + j5.6  
29.7 + j11.6  
40.5 + j11.6  
47.3 + j2.2  
44.1 – j6.7  
38.2 – j9.8  
34.0 – j9.4  
31.5 – j7.8  
0.381  
0.290  
0.164  
0.037  
0.094  
0.171  
0.218  
0.245  
142.0  
700  
121.9  
800  
139.6  
Enable Interface  
900  
–126.9  
–133.9  
–143.1  
–151.6  
Figure 6 shows a simplified schematic of the EN pin in-  
terface. The voltage necessary to turn on the LT5568 is  
1V. To disable (shut down) the chip, the enable voltage  
must be below 0.5V. If the EN pin is not connected, the  
chip is disabled. This EN = Low condition is assured by  
the 75k on-chip pull-down resistor. It is important that  
1000  
1100  
1200  
For EN = Low the S is given in Table 5.  
22  
Table 5. RF Port Output Impedance vs Frequency for EN = Low  
the voltage at the EN pin does not exceed V by more  
CC  
Frequency  
MHz  
Input Impedance  
S
22  
than 0.5V. If this should occur, the supply current could  
be sourced through the EN pin ESD protection diodes,  
which are not designed to carry the full supply current,  
and damage may result.  
Ω
Mag  
Angle  
164.9  
142.5  
118.1  
87.4  
500  
600  
21.2 + j5.4  
26.6 + j12.5  
36.6 + j16.6  
49.2 + j11.6  
52.9 – j2.0  
46.4 – j11.2  
39.3 – j13.2  
34.4 – j12.1  
0.409  
0.340  
0.241  
0.116  
0.034  
0.121  
0.188  
0.231  
700  
800  
900  
–33.1  
–101.1  
–120.6  
–133.8  
1000  
1100  
1200  
V
CC  
V
CC  
EN  
75k  
25k  
21pF  
RF  
OUTPUT  
7nH  
1pF  
51Ω  
5568 F06  
5568 F05  
Figure 6. EN Pin Interface  
Figure 5. Equivalent Circuit Schematic of the RF Output  
5568f  
11  
LT5568  
U
W U U  
APPLICATIO S I FOR ATIO  
Evaluation Board  
R1 (optional) limits the EN pin current in the event that  
the EN pin is pulled high while the V inputs are low. In  
CC  
Figure 7 shows the evaluation board schematic. A good  
ground connection is required for the exposed pad. If this  
is not done properly, the RF performance will degrade. Ad-  
ditionally,theexposedpadprovidesheatsinkingforthepart  
and minimizes the possibility of the chip overheating.  
Figures 8 and 9 the silk screens and the PCB board layout  
are shown.  
J1  
J2  
BBIM  
BBIP  
V
CC  
C2  
16  
BBMI GND BBPI  
EN  
15  
14  
13  
100nF  
R1  
V
CC  
100Ω  
1
2
3
4
12  
GND  
RF  
V
EN  
CC  
J3  
11  
10  
9
RF  
OUT  
GND  
LO  
J4  
LO  
IN  
LT5568  
GND  
GND  
GND  
GND  
17  
BBMQ GND BBPQ  
V
CC  
5
6
7
8
C1  
100nF  
J5  
J6  
BBQM  
GND  
BBQP  
BOARD NUMBER: DC966A  
5568 F07  
Figure 7. Evaluation Circuit Schematic  
Figure 8. Component Side of Evaluation Board  
Figure 9. Bottom Side of Evaluation Board  
5568f  
12  
LT5568  
U
W U U  
APPLICATIO S I FOR ATIO  
Application Measurements  
ment. See Application Note 99. Consult the factory for  
advice on the ACPR measurement, if needed.  
TheLT5568isrecommendedforbase-stationapplications  
usingvariousmodulationformats. Figure10showsatypi-  
cal application. Figure 11 shows the ACPR performance  
for CDMA2000 using 1- and 3-carrier modulation. Figures  
12 and 13 illustrate the 1- and 3-carrier CDMA2000 RF  
spectrum. To calculate ACPR, a correction is made for the  
spectrum analyzer noise floor. If the output power is high,  
theACPRwillbelimitedbythelinearityperformanceofthe  
part. If the output power is low, the ACPR will be limited  
by the noise performance of the part. In the middle, an  
optimum ACPR is observed.  
TheACPRperformanceissensitivetotheamplitudematch  
of the BBIP and BBIM (or BBQP and BBQM) inputs. This  
is because a difference in AC current amplitude will give  
rise to a difference in amplitude between the even-order  
harmonic products generated in the internal V-I converter.  
As a result, they will not cancel out entirely. Therefore, it  
is important to keep the currents in those pins exactly the  
same (but of opposite sign). The current will enter the  
LT5568’s common-base stage, and will flow to the mixer  
upper switches. This can be seen in Figure 1 where the  
internal circuit of the LT5568 is drawn. For best results,  
a high ohmic source is recommended; for example, the  
Because of the LT5568’s very high dynamic range, the test  
equipment can limit the accuracy of the ACPR measure-  
–50  
–60  
–70  
–80  
–90  
–125  
–135  
–145  
–155  
5V  
100nF  
DOWNLINK TEST MODEL 64 DPCH  
3-CH. ACPR  
V
CC 8, 13  
1-CH.  
ACPR  
L5568  
14  
16  
x2  
RF = 700MHz  
TO 1050MHz  
I-DAC  
V-I  
I-CHANNEL  
11  
PA  
0°  
1
EN  
90°  
BALUN  
3-CH. AltCPR  
1-CH. AltCPR  
1-CH. NOISE  
Q-CHANNEL  
V-I  
7
5
Q-DAC  
3-CH. NOISE  
BASEBAND  
GENERATOR  
5568 F10  
3
VCO/SYNTHESIZER  
2, 4, 6, 9, 10, 12, 15, 17  
–165  
–30  
–25  
–20  
–15  
–10  
–5  
RF OUTPUT POWER PER CARRIER (dBm)  
5568 F11  
Figure 10. 700MHz to 1050MHz Direct  
Conversion Transmitter Application  
Figure 11. APCR, AltCPR and Noise  
CDMA2000 Modulation  
–30  
–30  
–40  
DOWNLINK TEST  
DOWNLINK  
TEST  
MODEL 64  
DPCH  
–40  
–50  
–60  
–70  
–80  
–90  
MODEL 64 DPCH  
–50  
–60  
–70  
–80  
UNCORRECTED  
SPECTRUM  
–90  
UNCORRECTED  
SPECTRUM  
CORRECTED  
SPECTRUM  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
CORRECTED  
SPECTRUM  
SPECTRUM ANALYSER  
NOISE FLOOR  
SPECTRUM ANALYSER NOISE FLOOR  
846.25 847.75 849.25 850.75 852.25 853.75  
844  
846  
848  
850  
852  
852  
856  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5568 F13  
5568 F12  
Figure 12. 1-Carrier CDMA2000 Spectrum  
Figure 13. 3-Carrier CDMA2000 Spectrum  
5568f  
13  
LT5568  
U
W U U  
APPLICATIO S I FOR ATIO  
interface circuit drawn in Figure 3, modified by pulling match.Thesecondarycentertapshouldnotbeconnected,  
resistors R5 and R6 to a –5V supply and adjusting their  
whichallowssomevoltageswingifthereisasingle-ended  
input impedance difference at the baseband pins. As a  
result,bothcurrentswillbeequal.Thedisadvantageisthat  
there is no DC coupling, so the LO feedthrough calibration  
cannotbeperformedviatheBBconnections. Aftercalibra-  
tion when the temperature changes, the LO feedthrough  
and the image rejection performance will change. This is  
illustrated in Figure 14. The LO feedthrough and image  
rejection can also change as a function of the baseband  
drive level, as is depicted in Figure 15. In Figures 16 and  
17 the LO feedthrough and image rejection vs LO power  
are shown.  
values to 550Ω, with T1 omitted.  
Another method to reduce current mismatch between  
the currents flowing in the BBIP and BBIM pins (or the  
BBQP and BBQM pins) is to use a 1:1 transformer with  
the two windings in the DC path (T1 in Figure 3). For DC,  
the transformer forms a short, and for AC, the transformer  
will reduce the common mode current component, which  
forcesthetwocurrentstobebettermatched. Alternatively,  
atransformerwith1:2impedanceratiocanbeused, which  
gives a convenient DC separation between primary and  
secondary in combination with the required impedance  
–40  
10  
CALIBRATED WITH P = –10dBm  
RF  
–40°C  
85°C  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
P
RF  
25°C  
IMAGE REJECTION  
–50  
–60  
–70  
–80  
–90  
LOFT  
IR  
LO FEED-  
THROUGH  
–40°C  
–40°C  
85°C  
85°C  
= 5V  
EN = High  
= 850MHz  
V
f
f
f
= 5V  
CC  
V
f
f
f
= 2MHz, 0°  
CC  
BB, 1  
BB, 0  
f
= f + f  
LO  
= 2MHz, 0°  
BBQ  
= 850MHz  
RF BB LO  
= 2MHz, 90°  
BBI  
P
= 0dBm  
= 2MHz, 90°+ϕ  
f
= f + f  
LO  
RF BB LO  
EN = High  
40  
60  
TEMPERATURE (°C)  
P
LO  
25°C  
LO = 0dBm  
–40 –20  
0
20  
80  
0
1
2
3
4
5
I AND Q BASEBAND VOLTAGE (V  
)
5568 F14  
P-P, DIFF  
5568 F15  
Figure 14. LO Feedthrough and Image Rejection  
vs Temperature after Calibration at 25°C  
Figure 15. LO Feedthrough and Image Rejection  
vs Baseband Drive Voltage after Calibration at 25°C  
–42  
–25  
f
LO  
= 850MHz  
f
= 850MHz  
= –10dBm  
LO  
RF  
P
–30  
–35  
–40  
–45  
–50  
–55  
–44  
–46  
–48  
–50  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
–20 –16 –12 –8  
–4  
0
4
8
–20 –16 –12 –8  
–4  
0
4
8
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5568 G16  
5568 G17  
Figure 16. LO Feedthrough vs LO Power  
Figure 17. Image Rejection vs LO Power  
5568f  
14  
LT5568  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 0.05  
4.35 0.05  
2.90 0.05  
2.15 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.35 × 45° CHAMFER  
0.75 0.05  
R = 0.115  
TYP  
4.00 0.10  
(4 SIDES)  
15  
16  
0.55 0.20  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 0.10  
(4-SIDES)  
(UF16) QFN 10-04  
0.200 REF  
0.30 0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5568f  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT5568  
RELATED PARTS  
PART NUMBER  
Infrastructure  
LT5511  
DESCRIPTION  
COMMENTS  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
LT5512  
DC to 3GHz High Signal Level Downconverting DC to 3GHz, 17dBm IIP3, Integrated LO Buffer  
Mixer  
LT5514  
LT5515  
LT5516  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
1.5GHz to 2.5GHz Direct Conversion Quadrature 20dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature 21.5dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
LT5517  
LT5518  
40MHz to 900MHz Quadrature Demodulator  
21dBm IIP3, Integrated LO Quadrature Generator  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended LO and RF  
Ports, 4-Ch W-CDMA ACPR = –64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
LT5524  
LT5526  
LT5527  
LT5528  
0.7GHz to 1.4GHz High Linearity Upconverting 17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Mixer Single-Ended LO and RF Ports Operation  
1.3GHz to 2.3GHz High Linearity Upconverting 15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Mixer  
Single-Ended LO and RF Ports Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO  
Port Operation  
600MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
Low Power, Low Distortion ADC Driver with  
Digitally Programmable Gain  
450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
High Linearity, Low Power Downconverting  
Mixer  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
IIP3 = 23.5dBm and NF = 12.5dB at 1900MHz, 4.5V to 5.25V Supply, I = 78mA  
CC  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband Interface,  
DC  
4-Ch W-CDMA ACPR = –66dBc at 2.14GHz  
RF Power Detectors  
LTC®5505  
RF Power Detectors with >40dB Dynamic  
Range  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
LTC5507  
LTC5508  
LTC5509  
LTC5532  
LT5534  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
300MHz to 7GHz Precision RF Power Detector Precision V  
Offset Control, Adjustable Gain and Offset  
OUT  
50MHz to 3GHz Loq RF Power Detector with  
60dB Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time  
LTC5536  
Precision 600MHz to 7GHz RF Detector with  
Fast Comparater  
25ns Response Time, Comparator Reference Input, Latch Enable Input, –26dBm to  
+12dBm Input Range  
LT5537  
Wide Dynamic Range Loq RF/IF Detector  
Low Frequency to 800MHz, 83dB Dynamic Range, 2.7V to 5.25V Supply  
High Speed ADCs  
LTC2220-1  
12-Bit, 185Msps ADC  
Single 3.3V Supply, 910mW Consumption, 67.5dB SNR, 80dB SFDR, 775MHz Full  
Power BW  
LTC2249  
LTC2255  
14-Bit, 80Msps ADC  
14-Bit, 125Msps ADC  
Single 3V Supply, 222mW Consumption, 73dB SNR, 90dB SFDR  
Single 3V Supply, 395mW Consumption, 72.4dB SNR, 88dB SFDR, 640MHz Full  
Power BW  
5568f  
LT/TP 1005 500 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY