LT5571EUF [Linear]

620MHz - 1100MHz High Linearity Direct Quadrature Modulator; 了620MHz - 1100MHz高线性度直接正交调制器
LT5571EUF
型号: LT5571EUF
厂家: Linear    Linear
描述:

620MHz - 1100MHz High Linearity Direct Quadrature Modulator
了620MHz - 1100MHz高线性度直接正交调制器

文件: 总16页 (文件大小:316K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5571  
620MHz – 1100MHz High  
Linearity Direct Quadrature  
Modulator  
FEATURES  
DESCRIPTION  
The LT®5571 is a direct I/Q modulator designed for high  
performance wireless applications, including wireless  
infrastructure. It allows direct modulation of an RF signal  
using differential baseband I and Q signals. It supports  
RFID,GSM,EDGE,CDMA,CDMA2000,andothersystems.  
It may also be configured as an image reject upconvert-  
ing mixer by applying 90° phase-shifted signals to the I  
and Q inputs. The high impedance I/Q baseband inputs  
consist of voltage-to-current converters that in turn drive  
double-balanced mixers. The outputs of these mixers are  
summed and applied to an on-chip RF transformer, which  
converts the differential mixer signals to a 50Ω single-  
ended output. The four balanced I and Q baseband input  
ports are intended for DC-coupling from a source with a  
common-modevoltageatabout0.5V.TheLOpathconsists  
of an LO buffer with single-ended input, and precision  
quadrature generators that produce the LO drive for the  
mixers. The supply voltage range is 4.5V to 5.25V.  
Direct Conversion from Baseband to RF  
High Output: –4.2dB Conversion Gain  
High OIP3: 21.7dBm at 900MHz  
Low Output Noise Floor at 20MHz Offset:  
No RF: –159dBm/Hz  
P
OUT  
= 4dBm: –153.3dBm/Hz  
Low Carrier Leakage: –42dBm at 900MHz  
High Image Rejection: –53dBc at 900MHz  
3-Ch CDMA2000 ACPR: –70.4dBc at 900MHz  
Integrated LO Buffer and LO Quadrature Phase  
Generator  
50Ω AC-Coupled Single-Ended LO and RF Ports  
High Impedance DC Interface to Baseband Inputs  
with 0.5V Common Mode Voltage  
16-Lead QFN 4mm × 4mm Package  
APPLICATIONS  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
RFID Interrogators  
GSM, CDMA, CDMA2000 Transmitters  
Point-to-Point Wireless Infrastructure Tx  
Image Reject Up-Converters for Cellular Bands  
Low-Noise Variable Phase-Shifter for 620MHz to  
1100MHz Local Oscillator Signals  
TYPICAL APPLICATION  
CDMA2000 ACPR, AltCPR and Noise vs RF  
Output Power at 900MHz for 1 and 3 Carriers  
Direct Conversion Transmitter Application  
–40  
–50  
–60  
–70  
–80  
–90  
–110  
–120  
–130  
–140  
–150  
–160  
5V  
DOWNLINK TEST  
MODEL 64 DPCH  
100nF  
V
LT5571  
×2  
CC  
RF = 620MHz  
TO 1100MHz  
I-DAC  
3-CH ACPR  
V-I  
I-CH  
1-CH  
3-CH AltCPR  
PA  
ACPR  
0°  
EN  
90°  
BALUN  
Q-CH  
V-I  
1-CH NOISE  
Q-DAC  
1-CH AltCPR  
3-CH NOISE  
BASEBAND  
GENERATOR  
5571 TA01a  
–30  
–25  
–20  
–15  
–10  
–5  
0
VCO/SYNTHESIZER  
RF OUTPUT POWER PER CARRIER (dBm)  
5571 TA01b  
5571f  
1
LT5571  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
Supply Voltage.........................................................5.5V  
Common-Mode Level of BBPI, BBMI and  
BBPQ, BBMQ .......................................................0.6V  
Operating Ambient Temperature  
16 15 14 13  
EN  
GND  
LO  
1
2
3
4
12 GND  
11 RF  
17  
(Note 2) ............................................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
Voltage on any Pin  
GND  
GND  
10  
9
GND  
5
6
7
8
Not to Exceed...................... –500mV to V + 500mV  
CC  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
= 125°C, θ = 37°C/W  
Note: The baseband input pins should not be left floating.  
T
JMAX  
JA  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
ORDER PART NUMBER  
LT5571EUF  
UF PART MARKING  
5571  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 900MHz, f = 902MHz,  
DC  
CC  
A
LO  
RF  
P
LO  
= 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 0.5V , Baseband Input Frequency = 2MHz, I & Q 90° shifted (upper  
sideband selection). P  
= –10dBm, unless otherwise noted. (Note 3)  
RF(OUT)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RF Output (RF)  
f
RF  
RF Frequency Range  
RF Frequency Range  
–3dB Bandwidth  
–1dB Bandwidth  
0.62 to 1.1  
0.65 to 1.04  
GHz  
GHz  
S
S
RF Output Return Loss  
RF Output Return Loss  
RF Output Noise Floor  
EN = High (Note 6)  
EN = Low (Note 6)  
12.7  
11.6  
dB  
dB  
22, ON  
22, OFF  
NFloor  
No Input Signal (Note 8)  
–159  
–153.3  
–152.9  
dBm/Hz  
dBm/Hz  
dBm/Hz  
P
P
= 4dBm (Note 9)  
= 4dBm (Note 10)  
OUT  
OUT  
G
Conversion Voltage Gain  
Absolute Output Power  
20 • Log (V  
/V )  
–4.2  
–0.2  
–25.5  
8.1  
dB  
dBm  
dB  
V
OUT, 50Ω IN, DIFF, I or Q  
P
1V  
P-P DIFF  
CW Signal, I and Q  
OUT  
G
3 • LO Conversion Gain Difference  
Output 1dB Compression  
Output 2nd Order Intercept  
Output 3rd Order Intercept  
Image Rejection  
(Note 17)  
(Note 7)  
3LO vs LO  
OP1dB  
OIP2  
OIP3  
IR  
dBm  
dBm  
dBm  
dBc  
(Notes 13, 14)  
(Notes 13, 15)  
(Note 16)  
63.8  
21.7  
–53  
LOFT  
Carrier Leakage (LO Feedthrough)  
EN = High, P = 0dBm (Note 16)  
–42  
–61  
dBm  
dBm  
LO  
EN = Low, P = 0dBm (Note 16)  
LO  
5571f  
2
LT5571  
ELECTRICAL CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 900MHz, f = 902MHz,  
CC A LO RF  
P
= 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 0.5V , Baseband Input Frequency = 2MHz, I & Q 90° shifted (upper  
LO  
DC  
sideband selection). P  
= –10dBm, unless otherwise noted. (Note 3)  
RF(OUT)  
LO Input (LO)  
f
LO Frequency Range  
0.5 to 1.2  
0
GHz  
dBm  
dB  
LO  
P
S
S
LO Input Power  
–10  
5
LO  
LO Input Return Loss  
EN = High (Note 6)  
EN = Low (Note 6)  
at 900MHz (Note 5)  
at 900MHz (Note 5)  
at 900MHz (Note 5)  
–10.9  
–2.6  
11, ON  
11, OFF  
LO Input Return Loss  
dB  
NF  
LO Input Referred Noise Figure  
LO to RF Small Signal Gain  
LO Input 3rd Order Intercept  
14.3  
dB  
LO  
G
18.5  
dB  
LO  
IIP3  
–4.8  
dBm  
LO  
Baseband Inputs (BBPI, BBMI, BBPQ, BBMQ)  
BW  
Baseband Bandwidth  
–3dB Bandwidth  
400  
0.5  
MHz  
V
BB  
V
CMBB  
DC Common-Mode Voltage  
Differential Input Resistance  
Baseband Static Input Current  
Carrier Feedthrough on BB  
Input 1dB Compression Point  
I/Q Absolute Gain Imbalance  
I/Q Absolute Phase Imbalance  
Externally Applied (Note 4)  
0.6  
R
IN  
90  
kΩ  
µA  
I
(Note 4)  
–24  
–42  
2.9  
DC, IN  
P
No Baseband Signal (Note 4)  
Differential Peak-to-Peak (Note 7)  
dBm  
LO-BB  
IP1dB  
V
P-P,DIFF  
ΔG  
0.013  
0.24  
dB  
I/Q  
I/Q  
Δϕ  
Deg  
Power Supply (V  
)
CC  
V
Supply Voltage  
4.5  
5
5.25  
120  
100  
V
mA  
µA  
µs  
CC  
I
I
t
t
Supply Current  
EN = High  
97  
CC(ON)  
CC(OFF)  
ON  
Supply Current, Shutdown Mode  
Turn-On Time  
EN = 0V  
EN = Low to High (Note 11)  
EN = High to Low (Note 12)  
0.4  
1.4  
Turn-Off Time  
µs  
OFF  
Enable (EN), Low = Off, High = On  
Enable  
Input High Voltage  
Input High Current  
EN = High  
EN = 5V  
1
V
µA  
230  
Shutdown  
Input Low Voltage  
EN = Low  
0.5  
V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
Note 9: At 20MHz offset from the CW signal frequency.  
Note 10: At 5MHz offset from the CW signal frequency.  
Note 11: RF power is within 10% of final value.  
Note 12: RF power is at least 30dB lower than in the ON state.  
Note 13: Baseband is driven by 2MHz and 2.1MHz tones. Drive level is set  
in such a way that the two resulting RF tones are –10dBm each.  
Note 14: IM2 measured at LO frequency + 4.1MHz  
Note 15: IM3 measured at LO frequency + 1.9MHz and LO frequency +  
2.2MHz.  
Note 16: Amplitude average of the characterization data set without image  
or LO feed-through nulling (unadjusted).  
Note 17: The difference in conversion gain between the spurious signal at  
f = 3 • LO – BB versus the conversion gain at the desired signal at f = LO +  
BB for BB = 2MHz and LO = 900MHz.  
Note 3: Tests are performed as shown in the configuration of Figure 7.  
Note 4: At each of the four baseband inputs BBPI, BBMI, BBPQ and BBMQ.  
Note 5: V(BBPI) – V(BBMI) = 1V , V(BBPQ) – V(BBMQ) = 1V  
.
DC  
DC  
Note 6: Maximum value within –1dB bandwidth.  
Note 7: An external coupling capacitor is used in the RF output line.  
Note 8: At 20MHz offset from the LO signal frequency.  
5571f  
3
LT5571  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 900MHz,  
CC A LO  
f
RF  
= 902MHz, P = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 0.5V , Baseband Input Frequency f = 2MHz, I & Q 90°  
LO DC BB  
shifted, without image or LO feedthrough nulling. f = f + f (upper sideband selection). P  
= –10dBm (–10dBm/tone for 2-  
RF  
BB  
LO  
RF(OUT)  
tone measurements), unless otherwise noted. (Note 3)  
RF Output Power vs LO Frequency  
at 1V Differential Baseband  
P-P  
Supply Current vs Supply Voltage  
Voltage Gain vs LO Frequency  
Drive  
–2  
–4  
110  
100  
90  
2
0
85°C  
25°C  
–6  
–2  
–8  
–10  
–12  
–14  
–4  
–6  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
–8  
–40°C  
–10  
–16  
–12  
80  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
4.50  
4.75  
5.00  
5.25  
SUPPLY VOLTAGE (V)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5558 G03  
5571 G02  
5571 G01  
Output 1dB Compression vs  
LO Frequency  
Output IP3 vs LO Frequency  
Output IP2 vs LO Frequency  
26  
24  
75  
70  
65  
60  
55  
50  
45  
10  
f
f
= 2MHz  
= 2.1MHz  
f
f
f
= f  
,
+ f  
,
+ f  
LO  
BB, 1  
BB, 2  
IM2 BB  
BB  
BB  
1
BB  
2
,
,
= 2MHz  
1
2
= 2.1MHz  
8
6
22  
20  
18  
16  
14  
4
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
2
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
0
12  
–2  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5571 G04  
5571 G05  
5571 G06  
LO Feedthrough to RF Output vs  
LO Frequency  
2 • LO Leakage to RF Output vs  
2 • LO Frequency  
3 • LO Leakage to RF Output vs  
3 • LO Frequency  
–40  
–40  
–45  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
–50  
–55  
–60  
–65  
–70  
–42  
–44  
–46  
–48  
–45  
–50  
–55  
–60  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
550 650 750 850 950 1050 1150 1250  
1.65 1.95 2.25 2.55 2.85 3.15 3.5 3.75  
1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5  
2 • LO FREQUENCY (GHz)  
LO FREQUENCY (MHz)  
3 • LO FREQUENCY (GHz)  
5571 G07  
5571 G09  
5571 G08  
5571f  
4
LT5571  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 900MHz,  
CC A LO  
f
RF  
= 902MHz, P = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 0.5V , Baseband Input Frequency f = 2MHz, I & Q 90°  
LO DC BB  
shifted, without image or LO feedthrough nulling. f = f + f (upper sideband selection). P  
= –10dBm (–10dBm/tone for 2-  
RF  
BB  
LO  
RF(OUT)  
tone measurements), unless otherwise noted. (Note 3)  
LO and RF Port Return Loss vs  
Frequency  
Noise Floor vs RF Frequency  
Image Rejection vs LO Frequency  
–157  
–158  
–159  
–160  
–161  
–162  
–30  
–35  
–40  
–45  
–50  
–55  
0
–10  
–20  
–30  
–40  
f
= 900MHz (FIXED)  
LO  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
NO BASEBAND SIGNAL  
LO PORT, EN = LOW  
LO PORT, EN = HIGH, P = 0dBm  
LO  
RF PORT,  
EN = LOW  
RF PORT,  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
EN = HIGH,  
P
= 0dBm  
LO  
RF PORT,  
EN = HIGH,  
NO LO  
LO PORT,  
EN = HIGH,  
P
= –10dBm  
LO  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
5571 G10  
5571 G12  
5571 G11  
Absolute I/Q Gain Imbalance vs  
LO Frequency  
Absolute I/Q Phase Imbalance vs  
LO Frequency  
Voltage Gain vs LO Power  
0.3  
0.2  
0.1  
0
3
–2  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
–4  
–6  
2
1
0
–8  
–10  
–12  
–14  
–16  
–18  
–20  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
–20 –16 –12 –8  
–4  
0
4
8
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
5571 G14  
5571 G15  
5571 G13  
Output IP3 vs LO Power  
LO Feedthrough vs LO Power  
Image Rejection vs LO Power  
24  
–38  
–35  
–40  
–45  
–50  
–55  
–60  
22  
20  
18  
16  
14  
12  
10  
–40  
–42  
–44  
–46  
–48  
–50  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
f
= 2MHz  
BB, 1  
f
= 2.1MHz  
BB, 2  
–20 –16 –12 –8  
–4  
0
4
8
–20 –16 –12 –8  
–4  
0
4
8
–20 –16 –12 –8  
–4  
0
4
8
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5571 G16  
5571 G17  
5571 G18  
5571f  
5
LT5571  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 900MHz,  
CC A LO  
f
RF  
= 902MHz, P = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 0.5V , Baseband Input Frequency f = 2MHz, I & Q 90°  
LO DC BB  
shifted, without image or LO feedthrough nulling. f = f + f (upper sideband selection). P  
= –10dBm (–10dBm/tone for 2-  
RF  
BB  
LO  
RF(OUT)  
tone measurements), unless otherwise noted. (Note 3)  
RF CW Output Power, HD2 and  
HD3 vs CW Baseband Voltage and  
Temperature  
RF CW Output Power, HD2 and  
HD3 vs CW Baseband Voltage and  
Supply Voltage  
LO Feedthrough to RF Output vs  
CW Baseband Voltage  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
20  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10  
–30  
–35  
–40  
–45  
RF  
5V, –40°C  
5V, 25°C  
RF  
10  
0
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
0
–10  
–20  
–30  
–40  
–50  
–60  
5V  
HD3  
5.5V  
4.5V  
25°C  
85°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
HD3  
HD2  
HD2  
HD2 = MAX POWER AT  
+ 2 • f OR f – 2 • f  
HD2 = MAX POWER AT  
f
f
+ 2 • f OR f – 2 • f  
LO  
BB  
LO  
BB  
BB  
LO BB LO  
BB  
BB  
HD3 = MAX POWER AT  
HD3 = MAX POWER AT  
f
+ 3 • f OR f – 3 • f  
f
LO  
+ 3 • f OR f – 3 • f  
LO  
BB  
LO  
BB  
LO  
0
1
2
3
4
5
)
0
1
2
3
4
5
)
0
1
2
3
4
5
I AND Q BASEBAND VOLTAGE (V  
I AND Q BASEBAND VOLTAGE (V  
I AND Q BASEBAND VOLTAGE (V  
)
P-P, DIFF  
P-P, DIFF  
P-P, DIFF  
5571 G21  
5571 G19  
5571 G20  
RF Two-Tone Power (Each Tone),  
IM2 and IM3 vs Baseband Voltage  
and Temperature  
RF Two-Tone Power (Each Tone),  
IM2 and IM3 vs Baseband Voltage  
and Supply Voltage  
Image Rejection vs CW Baseband  
Voltage  
–46  
–48  
–50  
–52  
–54  
–56  
–58  
10  
0
10  
0
25°C  
85°C  
5V  
5V, –40°C  
5V, 25°C  
5.5V  
–40°C  
4.5V  
5V, 85°C  
RF  
RF  
IM3  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
4.5V, 25°C  
5.5V, 25°C  
IM3  
IM2 = POWER AT  
IM2 = POWER AT  
f
+ 4.1MHz  
f
LO  
+ 4.1MHz  
LO  
IM3 = MAX POWER  
AT f + 1.9MHz  
IM3 = MAX POWER  
AT f + 1.9MHz  
LO  
LO  
OR f + 2.2MHz  
OR f + 2.2MHz  
LO  
LO  
IM2  
IM2  
f
f
= 2MHz, 2.1MHz, 0°  
= 2MHz, 2.1MHz, 90°  
f
f
= 2MHz, 2.1MHz, 0°  
= 2MHz, 2.1MHz, 90°  
BBI  
BBQ  
BBI  
BBQ  
0
1
2
3
4
5
0.1  
1
10  
0.1  
1
10  
I AND Q BASEBAND VOLTAGE (V  
)
I AND Q BASEBAND VOLTAGE (V  
)
I AND Q BASEBAND VOLTAGE (V  
)
P-P,DIFF  
P-P,DIFF, EACH TONE  
P-P,DIFF, EACH TONE  
5571 G22  
5571 G23  
5571 G24  
Voltage Gain Distribution  
Noise Floor Distribution (no RF)  
LO Leakage Distribution  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
20  
10  
0
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
V
= 400mV  
V
= 400mV  
BB P-P  
BB  
P-P  
0
0
–6.5 –6 –5.5 –5 –4.5 –4 –3.5 –3 –2.5 –2  
–159.9 –159.6 –159.3 –159.0 –158.7  
<–50 –48 –46 –44 –42 –40 –38 –36 –34  
5571 G25  
5571 G26  
5571 G27  
GAIN (dB)  
NOISE FLOOR (dBm/Hz)  
LO LEAKAGE (dBm)  
5571f  
6
LT5571  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 900MHz,  
CC A LO  
f
RF  
= 902MHz, P = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 0.5V , Baseband Input Frequency f = 2MHz, I & Q 90°  
LO DC BB  
shifted, without image or LO feedthrough nulling. f = f + f (upper sideband selection). P  
= –10dBm (–10dBm/tone for 2-  
RF  
BB  
LO  
RF(OUT)  
tone measurements), unless otherwise noted. (Note 3)  
LO Feedthrough and Image  
Rejection vs Temperature After  
Calibration at 25°C  
Image Rejection Distribution  
25  
–40  
–50  
–60  
–70  
–80  
–90  
–40°C  
25°C  
85°C  
V
= 400mV  
P-P  
CALIBRATED WITH P = 0dBm  
RF  
BB  
f
f
= 2MHz, 0°  
BBQ  
BBI  
= 2MHz, 90° + ϕ  
CAL  
20  
15  
10  
5
LO FEEDTHROUGH  
IMAGE REJECTION  
0
<–60 –56 –52 –48 –44 –40 –36  
–40  
–20  
0
20  
40  
60  
80  
5571 G28  
IMAGE REJECTION (dBc)  
TEMPERATURE (°C)  
5571 G29  
PIN FUNCTIONS  
EN (Pin 1): Enable Input. When the Enable pin voltage is  
higher than 1V, the IC is turned on. When the Enable volt-  
age is less than 0.5V or if the pin is disconnected, the IC  
is turned off. The voltage on the Enable pin should never  
BBPQ,BBMQ(Pins7,5):BasebandinputsfortheQ-chan-  
nel with about 90kΩ differential input impedance. These  
pins should be externally biased at about 0.5V. Applied  
common mode voltage must stay below 0.6V.  
exceed V by more than 0.5V, in order to avoid possible  
CC  
V (Pins8,13):PowerSupply.Pins8and13areconnected  
CC  
damage to the chip.  
toeachotherinternally.0.1µFcapacitorsarerecommended  
GND (Pins 2, 4, 6, 9, 10, 12, 15, 17): Ground. Pins 6, 9,  
15 and the Exposed Pad 17 are connected to each other  
internally. Pins 2 and 4 are connected to each other inter-  
nally and function as the ground return for the LO signal.  
Pins 10 and 12 are connected to each other internally and  
functionasthegroundreturnfortheon-chipRFbalun. For  
best RF performance, Pins 2, 4, 6, 9, 10, 12, 15 and the  
Exposed Pad, Pin 17, should be connected to the printed  
circuit board ground plane.  
for decoupling to ground on each of these pins.  
RF (Pin 11): RF Output. The RF output is an AC-coupled  
single-ended output with approximately 50Ω output im-  
pedance at RF frequencies. Externally applied DC voltage  
should be within the range –0.5V to (V + 0.5V) in order  
CC  
to avoid turning on ESD protection diodes.  
BBPI,BBMI(Pins14,16):BasebandinputsfortheI-chan-  
nel with about 90kΩ differential input impedance. These  
pins should be externally biased at about 0.5V. Applied  
common mode voltage must stay below 0.6V.  
LO(Pin3):LOInput.TheLOinputisanAC-coupledsingle-  
ended input with approximately 50Ω input impedance at  
RF frequencies. Externally applied DC voltage should be  
within the range –0.5V to (V + 0.5V) in order to avoid  
turning on ESD protection diodes.  
Exposed Pad (Pin 17): Ground. The Exposed Pad must  
be soldered to the PCB.  
CC  
5571f  
7
LT5571  
BLOCK DIAGRAM  
V
CC  
8
13  
BBPI 14  
BBMI 16  
V-I  
V-I  
11 RF  
0°  
90°  
BALUN  
BBPQ  
BBMQ  
7
5
1
EN  
2
4
6
9
3
10  
12  
15  
17  
5571 BD  
GND  
LO  
GND  
APPLICATIONS INFORMATION  
The LT5571 consists of I and Q input differential voltage-  
to-currentconverters,IandQup-conversionmixers,anRF  
signal combiner/balun, an LO quadrature phase generator  
and LO buffers.  
pins should not be left floating because the internal PNP’s  
base current will pull the common mode voltage higher  
than the 0.6V limit. This condition may damage the part.  
The PNP’s base current is about 24µA in normal opera-  
tion. On the LT5571 demo board, external 50Ω resistors  
to ground are added to each baseband input to prevent  
this condition and to serve as a termination resistance for  
the baseband connections.  
External I and Q baseband signals are applied to the dif-  
ferential baseband input pins, BBPI, BBMI, and BBPQ,  
BBMQ.Thesevoltagesignalsareconvertedtocurrentsand  
translated to RF frequency by means of double-balanced  
up-converting mixers. The mixer outputs are combined  
in an RF output balun, which also transforms the output  
impedance to 50Ω. The center frequency of the resulting  
RF signal is equal to the LO signal frequency. The LO input  
drives a phase shifter which splits the LO signal into in-  
phaseandquadratureLOsignals.TheseLOsignalsarethen  
applied to on-chip buffers which drive the up-conversion  
mixers. Both the LO input and RF output are single-ended,  
50Ω-matched and AC-coupled.  
It is recommended that the I/Q signals be DC-coupled to  
the LT5571. An applied common mode voltage level at the  
I and Q inputs of about 0.5V will maximize the LT5571’s  
dynamic range. Some I/Q generators allow setting the  
common mode voltage independently. For a 0.5V com-  
mon mode voltage setting, the common-mode voltage of  
those generators must be set to 0.5V to create the desired  
0.5V bias, when an external 50Ω is present in the setup  
(See Figure 2).  
Thepartshouldbedrivendifferentially;otherwise,theeven-  
order distortion products will degrade the overall linearity  
severely. Typically, a DAC will be the signal source for the  
LT5571. A reconstruction filter should be placed between  
the DAC output and the LT5571’s baseband inputs.  
Baseband Interface  
Thebasebandinputs(BBPI,BBMI),(BBPQ,BBMQ)present  
a differential input impedance of about 90kΩ. At each of  
the four baseband inputs, a capacitor of 1.8pF to ground  
and a PNP emitter follower is incorporated (see Figure 1),  
which limits the baseband bandwidth to approximately  
200MHz (–1dB point), if driven by a 50Ω source. The  
circuit is optimized for a common mode voltage of 0.5V  
which should be externally applied. The baseband input  
In Figure 3 a typical baseband interface is shown, includ-  
ing a fifth-order low-pass ladder filter. For each baseband  
pin, a 0 to 1V swing is developed corresponding to a DAC  
output current of 0mA to 20mA. The maximum sinusoidal  
single side-band RF output power is about +5.8dBm for  
5571f  
8
LT5571  
APPLICATIONS INFORMATION  
C
LT5571  
RF  
V
= 5V  
CC  
BALUN  
FROM  
Q-CHANNEL  
LOMI  
LOPI  
BBPI  
1.8pF  
1.8pF  
V
= 0.5V  
BBMI  
CM  
5571 F01  
GND  
Figure 1. Simplified Circuit Schematic of the LT5571 (Only I-Half is Drawn)  
50Ω  
50Ω  
LT5571  
0.5V  
0.5005V  
DC  
DC  
50Ω  
EXTERNAL  
LOAD  
+
+
1V  
1V  
20µA  
DC  
DC  
DC  
50Ω  
GENERATOR  
GENERATOR  
5571 F02  
Figure 2. DC Voltage Levels for a Generator Programmed at 0.5V for a 50Ω Load Without and with the LT5571 as a Load  
DC  
C
LT5571  
MAX RF  
+5.8dBm  
V
CC  
BALUN  
5V  
FROM  
Q-CHANNEL  
LOMI  
LOPI  
L1A  
L2A  
0.5V  
0.5V  
0mA TO 20mA  
DC BBPI  
R1A  
R2A  
100Ω  
100Ω  
C1  
L1B  
C2  
L2B  
C3  
DAC  
1.8pF  
1.8pF  
R1B  
100Ω  
R2B  
100Ω  
20mA TO 0mA  
BBMI  
DC  
GND  
5571 F03  
GND  
Figure 3. LT5571 Baseband Interface with 5th Order Filter and 0.5V DAC (Only I Channel is Shown)  
CM  
5571f  
9
LT5571  
APPLICATIONS INFORMATION  
Table 1. Typical Performance Characteristics vs V for f = 900MHz, P = 0dBm  
CM  
LO  
OIP2 (dBm)  
LO  
V
(V)  
0.1  
0.2  
0.25  
0.3  
0.4  
0.5  
0.6  
I
(mA)  
55.3  
G (dB)  
OP1dB (dBm)  
OIP3 (dBm)  
9.2  
NFloor (dBm/Hz)  
–163.6  
LOFT (dBm)  
–53.6  
IR (dBc)  
37.0  
40.4  
43.5  
43.9  
45.1  
45.4  
45.6  
CM  
CC  
V
–4.5  
–3.9  
–3.7  
–3.6  
–3.5  
–3.6  
–3.7  
–1.5  
2.0  
3.4  
4.5  
6.3  
7.9  
8.4  
53.4  
51.7  
51.9  
52.1  
53.1  
53.0  
53.7  
65.3  
70.3  
75.7  
86.4  
97.1  
108.1  
11.2  
13.3  
15.6  
18.7  
20.6  
22.1  
–161.8  
–161.2  
–160.5  
–159.6  
–158.7  
–157.9  
–50.3  
–49.0  
–47.7  
–45.3  
–43.1  
–41.2  
full 0V to 1V swing on each baseband input (2V  
).  
PEAK  
50Ω, and the recommended LO input power window is  
P-P,DIFF  
This maximum RF output level is limited by the 0.5V  
–2dBm to 2dBm. For P < –2dBm input power, the gain,  
LO  
maximum baseband swing possible for a 0.5V com-  
OIP2,OIP3,dynamic-range(indBc/Hz)andimagerejection  
DC  
mon-mode voltage level (assuming no negative supply  
will degrade, especially at T = 85°C.  
A
bias voltage is available).  
HarmonicspresentontheLOsignalcandegradetheimage  
rejection,becausetheyintroduceasmallexcessphaseshift  
in the internal phase splitter. For the second (at 1.8GHz)  
and third harmonics (at 2.7GHz) at –20dBc level, the in-  
troduced signal at the image frequency is about –61dBc  
or lower, corresponding to an excess phase shift much  
less than 1 degree. For the second and third harmonics at  
–10dBc, still the introduced signal at the image frequency  
isabout51dBc. Higherharmonicsthanthethirdwillhave  
less impact. The LO return loss typically will be better than  
11dB over the 750MHz to 1GHz range. Table 2 shows the  
LO port input impedance vs frequency.  
It is possible to bias the LT5571 to a common mode  
voltage level other than 0.5V. Table 1 shows the typical  
performance for different common mode voltages.  
LO Section  
The internal LO input amplifier performs single-ended to  
differential conversion of the LO input signal. Figure 4  
shows the equivalent circuit schematic of the LO input.  
The internal differential LO signal is split into in-phase and  
quadrature (90° phase shifted) signals to drive LO buffer  
sections. These buffers drive the double balanced I and  
Q mixers. The phase relationship between the LO input  
and the internal in-phase LO and quadrature LO signals  
is fixed, and is independent of start-up conditions. The  
phase shifters are designed to deliver accurate quadrature  
signals for an LO frequency near 900MHz. For frequen-  
cies significantly below 750MHz or above 1100MHz, the  
quadrature accuracy will diminish, causing the image  
rejection to degrade. The LO pin input impedance is about  
Table 2. LO Port Input Impedance vs Frequency for EN = High  
and P = 0dBm  
LO  
S
FREQUENCY  
(MHz)  
INPUT IMPEDANCE  
11  
(Ω)  
Mag  
Angle  
97  
40  
500  
600  
700  
800  
900  
1000  
1100  
1200  
47.2 + j11.7  
58.4 + j8.3  
65.0 – j0.6  
66.1 – j12.2  
60.7 – j22.5  
53.3 – j25.1  
48.4 – j25.1  
42.7 – j26.4  
0.123  
0.108  
0.131  
0.173  
0.221  
0.239  
0.248  
0.285  
–2  
–31  
–53  
–69  
–79  
–89  
V
CC  
20pF  
LO  
INPUT  
The return loss S on the LO port can be improved at  
11  
Z
60Ω  
IN  
lower frequencies by adding a shunt capacitor. The input  
impedance of the LO port is different if the part is in  
shut-down mode. The LO input impedance for EN = Low  
is given in Table 3.  
5571 F04  
Figure 4. Equivalent Circuit Schematic of the LO Input  
5571f  
10  
LT5571  
APPLICATIONS INFORMATION  
For EN = Low the S is given in Table 6.  
Table 3. LO Port Input Impedance vs Frequency for EN = Low  
22  
and P = 0dBm  
LO  
Table 6. RF Port Output Impedance vs Frequency for EN = Low  
S
11  
FREQUENCY  
(MHz)  
INPUT IMPEDANCE  
S
22  
FREQUENCY  
(MHz)  
OUTPUT IMPEDANCE  
(Ω)  
Mag  
Angle  
83  
(Ω)  
Mag  
Angle  
166  
144  
120  
89  
–38  
–99  
–117  
–130  
500  
600  
700  
800  
900  
1000  
1100  
1200  
35.6 + j42.1  
65.5 + j70.1  
163 + j76.3  
188 – j95.2  
72.9 – j114  
34.3 – j83.5  
21.6 – j63.3  
16.4 – j50.5  
0.467  
0.531  
0.602  
0.654  
0.692  
0.715  
0.726  
0.727  
500  
600  
700  
800  
900  
1000  
1100  
1200  
21.5 + j5.0  
26.9 + j11.8  
36.5 + j16.0  
48.8 + j11.2  
52.8 – j2.2  
46.6 – j11.5  
39.7 – j13.9  
35.0 – j13.0  
0.403  
0.333  
0.239  
0.113  
0.035  
0.123  
0.191  
0.232  
46  
14  
–13  
–36  
–56  
–73  
–86  
RF Section  
To improve S for lower frequencies, a series capacitor  
22  
can be added to the RF output. At higher frequencies, a  
Afterup-conversion,theRFoutputsoftheIandQmixersare  
combined. An on-chip balun performs internal differential  
tosingle-endedoutputconversion,whiletransformingthe  
output signal impedance to 50Ω. Table 4 shows the RF  
port output impedance vs frequency.  
shunt inductor can improve the S . Figure 5 shows the  
22  
equivalent circuit schematic of the RF output.  
Note that an ESD diode is connected internally from the  
RF output to ground. For strong output RF signal levels  
(higher than 3dBm) this ESD diode can degrade the lin-  
earity performance if an external 50Ω termination imped-  
ance is connected directly to ground. To prevent this, a  
coupling capacitor can be inserted in the RF output line.  
This is strongly recommended during 1dB compression  
measurements.  
Table 4. RF Port Output Impedance vs Frequency for EN = High  
and P = 0dBm  
LO  
S
FREQUENCY  
(MHz)  
OUTPUT IMPEDANCE  
22  
(Ω)  
Mag  
Angle  
165  
143  
119  
91  
500  
600  
700  
800  
900  
1000  
1100  
1200  
22.2 + j5.2  
28.4 + j11.7  
38.8 + j14.3  
49.4 + j6.8  
49.4 – j5.8  
42.7 – j11.7  
36.9 – j12.6  
33.2 – j11.3  
0.390  
0.311  
0.202  
0.068  
0.058  
0.149  
0.207  
0.241  
V
CC  
–92  
21pF  
7nH  
–115  
–128  
–138  
RF  
OUTPUT  
47Ω  
1pF  
5571 F05  
The RF output S with no LO power applied is given in  
22  
Table 5.  
Figure 5. Equivalent Circuit Schematic of the RF Output  
Table 5. RF Port Output Impedance vs Frequency for EN = High  
and No LO Power Applied  
Enable Interface  
S
22  
FREQUENCY  
(MHz)  
OUTPUT IMPEDANCE  
Figure 6 shows a simplified schematic of the EN pin inter-  
face. The voltage necessary to turn on the LT5571 is 1V.  
To disable (shut down) the chip, the enable voltage must  
be below 0.5V. If the EN pin is not connected, the chip is  
disabled. This EN = Low condition is guaranteed by the  
75kΩ on-chip pull-down resistor.  
(Ω)  
Mag  
Angle  
165  
143  
123  
145  
–123  
–131  
–140  
–148  
500  
600  
700  
800  
900  
1000  
1100  
1200  
22.9 + j5.3  
30.0 + j11.2  
40.6 + j11.2  
47.3 + j1.9  
44.2 – j7.4  
38.4 – j10.4  
34.2 – j10.2  
31.7 – j8.7  
0.377  
0.283  
0.160  
0.034  
0.099  
0.175  
0.221  
0.246  
It is important that the voltage at the EN pin does not  
exceed V by more than 0.5V. If this should occur, the  
CC  
5571f  
11  
LT5571  
APPLICATIONS INFORMATION  
V
overheating. R1 (optional) limits the EN pin current in the  
CC  
event that the EN pin is pulled high while the V inputs  
CC  
EN  
are low. The application board PCB layouts are shown in  
Figures 8 and 9.  
75k  
25k  
5571 F06  
Figure 6. EN Pin Interface  
full chip supply current could be sourced through the EN  
pin ESD protection diodes, which are not designed for this  
purpose. Damage to the chip may result.  
Evaluation Board  
Figure 7 shows the evaluation board schematic. A good  
ground connection is required for the LT5571’s Exposed  
Pad. If this is not done properly, the RF performance will  
degrade.Additionally,theExposedPadprovidesheatsink-  
ing for the part and minimizes the possibility of the chip  
J1  
J2  
BBIM  
BBIP  
R2  
49.9Ω  
R5  
49.9Ω  
Figure 8. Component Side of Evaluation Board  
V
CC  
C1  
16 15  
BBMI GND  
EN  
14  
BBPI  
13  
100nF  
R1  
100Ω  
V
CC  
1
2
3
4
12  
V
EN  
GND  
RF  
CC  
J3  
11  
10  
9
RF  
OUT  
GND  
LO  
J4  
LT5571  
LO IN  
GND  
GND  
GND  
GND  
17  
BBMQ GND BBPQ  
V
CC  
5
6
7
8
C2  
100nF  
J5  
J6  
BBQM  
R3  
49.9Ω  
BBQP  
R4  
49.9Ω  
5571 F07  
BOARD NUMBER: DC944A  
Figure 7. Evaluation Circuit Schematic  
Figure 9. Bottom Side of Evaluation Board  
5571f  
12  
LT5571  
APPLICATIONS INFORMATION  
Application Measurements  
The ACPR performance is sensitive to the amplitude  
mismatch of the BBIP and BBIM (or BBQP and BBQM)  
input voltage. This is because a difference in AC voltage  
amplitudewillgiverisetoadifferenceinamplitudebetween  
theeven-orderharmonicproductsgeneratedintheinternal  
V-I converter. As a result, they will not cancel out entirely.  
Therefore,itisimportanttokeeptheamplitudesattheBBIP  
and BBIM (or BBQP and BBQM) as equal as possible.  
TheLT5571isrecommendedforbase-stationapplications  
using various modulation formats. Figure 10 shows a  
typical application.  
Figure 11 shows the ACPR performance for CDMA2000  
usingoneandthreechannelmodulation.Figures12and13  
illustrate the 1- and 3-channel CDMA2000 measurement.  
To calculate ACPR, a correction is made for the spectrum  
analyzer’s noise floor (Application Note 99).  
LO feedthrough and image rejection performance may  
be improved by means of a calibration procedure. LO  
feedthrough is minimized by adjusting the differential DC  
offsets at the I and the Q baseband inputs. Image rejection  
can be improved by adjusting the amplitude and phase  
difference between the I and the Q baseband inputs. The  
LO feedthrough and Image Rejection can also change  
as a function of the baseband drive level, as depicted in  
Figure 14.  
If the output power is high, the ACPR will be limited by the  
linearity performance of the part. If the output power is  
low, the ACPR will be limited by the noise performance of  
the part. In the middle, an optimum ACPR is obtained.  
BecauseoftheLT5571’sveryhighdynamic-range,thetest  
equipment can limit the accuracy of the ACPR measure-  
ment. Consult Design Note 375 or the factory for advice  
on ACPR measurement if needed.  
–40  
–50  
–60  
–70  
–80  
–90  
–110  
–120  
–130  
–140  
–150  
–160  
DOWNLINK TEST  
MODEL 64 DPCH  
5V  
8, 13  
100nF  
3-CH ACPR  
V
CC  
LT5571  
14  
16  
×2  
RF = 620MHz  
TO 1100MvHz  
1-CH  
I-DAC  
V-I  
I-CH  
3-CH AltCPR  
ACPR  
11  
PA  
0°  
1
EN  
90°  
BALUN  
1-CH NOISE  
Q-CH  
V-I  
7
5
1-CH AltCPR  
3-CH NOISE  
Q-DAC  
BASEBAND  
GENERATOR  
5571 F10  
–30  
–25  
–20  
–15  
–10  
–5  
0
3
VCO/SYNTHESIZER  
2, 4, 6, 9, 10, 12, 15, 17  
RF OUTPUT POWER PER CARRIER (dBm)  
5571 F11  
Figure 10. 620MHz to 1.1GHz Direct Conversion Transmitter Application  
Figure 11. CDMA2000 ACPR, ALTCPR and Noise vs  
RF Output Power at 900MHz for 1 and 3 Carriers  
–30  
–40  
–30  
–40  
20  
DOWNLINK  
TEST MODEL  
64 DPCH  
DOWNLINK TEST  
MODEL 64 DPCH  
P
RF  
10  
0
–50  
–50  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–60  
–60  
25°C  
85°C  
–40°C  
SPECTRUM  
ANALYSER  
NOISE  
UN-  
CORRECTED  
SPECTRUM  
–70  
–70  
LO FT  
–80  
–80  
UNCORRECTED  
SPECTRUM  
CORRECTED  
SPECTRUM  
FLOOR  
–90  
–90  
IR  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
f
= 2MHz, 0°  
BBI  
CC  
V
= 5V, f  
= 2MHz, 90°  
BBQ  
EN = HIGH, f = f + f  
RF BB LO  
= 900MHz, P = 0dBm  
CORRECTED SPECTRUM  
f
LO  
SPECTRUM ANALYSER NOISE FLOOR  
LO  
0
1
2
3
4
5
894  
896  
898  
900  
902  
904  
906  
896.25 897.75 899.25 900.75 902.25 903.75  
I AND Q BASEBAND VOLTAGE (V  
)
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
P-P,DIFF  
5571 F13  
5571 F12  
5571 F14  
Figure 12. 1-Channel CDMA2000 Spectrum Figure 13. 3-Channel CDMA2000 Spectrum  
Figure 14. Image Rejection and LO Feed-  
Through vs Baseband Drive Voltage After  
Calibration at 25°C  
5571f  
13  
LT5571  
APPLICATIONS INFORMATION  
Example: RFID Application  
the RFID baseband signals in the fastest mode (TARI =  
6.25µs, see [1]) significantly, and at the same time achiev-  
ing enough alias attenuation while using a 32MHz sampling  
frequency. The resulting Alt80-CPR (the alias frequency at  
897.875MHz falls outside the RF frequency range of Figure  
16a) is –92dBc for TARI = 6.25µs. The SSB-ASK output  
signal spectrum is plotted in Figure 16a, together with the  
Dense-Interrogator Transmit mask [1] for TARI = 25µs. The  
corresponding envelope representation is given in Figure  
Figure 15 shows the interface between a current drive DAC  
and the LT5571 for RFID applications. The SSB-ASK mode  
requiresanI/Qmodulatortogeneratethedesiredspectrum.  
According to [1], the LT5571 is capable of meeting the  
“Dense-Interrogator” requirements with reduced supply  
current. A V = 0.25V was chosen in order to save 30mA  
CM  
current, resulting in a modulator supply current of about  
73mA. This is achieved by sourcing 5mA average DAC  
DC  
16b. The Alt1-CPR can be increased by using a higher V  
CM  
current into 50Ω resistors R1A and R1B. As anti-aliasing  
filter, anRCRClterwaschosenusingR1A, R1B, C1A, C1B,  
R2A, R2B, C2A and C2B. This results in a second-order  
passive low-pass filter with –3dB cutoff at 790kHz. This  
filter cutoff is chosen high enough that it will not affect  
at the cost of extra supply current or a lower baseband drive  
at the cost of lower RF output power. The center frequency  
of the channel is chosen at 865.9MHz (“channel 2”), while  
the LO frequency is chosen at 865.875MHz.  
C
LT5571  
RF  
V
CC  
BALUN  
5V  
FROM  
Q-CHANNEL  
LOMI  
LOPI  
R2A  
250  
0.25V  
0.25V  
0.25V  
0.25V  
0mA TO 10mA  
DC  
DC BBPI  
C1A  
2.2nF  
C2A  
470pF  
R1A  
50Ω  
DAC  
1.8pF  
1.8pF  
GND  
C1B  
2.2nF  
C2B  
470pF  
R1B  
50Ω  
10mA TO 0mA  
BBMI  
DC  
R2B  
250Ω  
DC  
5571 F15  
GND  
Figure 15. Recommended Baseband Interface for RFID Applications (Only I Channel is Drawn)  
0.3  
0.2  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.1  
0
–0.1  
–0.2  
–0.3  
0
50  
100  
150  
200  
250  
865.4  
865.6  
865.8  
FREQUENCY (MHz)  
CH BANDWIDTH: 100kHz ALT1 UP: –71.15dBc  
866.0 866.2 866.4  
TIME (µs)  
5571 F16b  
CH SPACING: 100kHz  
CH PWR: –4.85dBm  
ACP UP: –33.74dBc  
ACP LOW: –37.76dBc  
ALT1 LOW: –64.52dBc  
ALT2 UP: –72.80dBc  
ALT2 LOW: –72.42dBc  
5571 F16a  
Figure 16a and 16b. RFID SSB-ASK Spectrum with Mask and Corresponding RF Envelope for TARI = 25µs  
[1] EPC Radio Frequency Identity Protocols, Class-1 Generation-2 UHF RFID Protocol for  
Communications at 860MHz – 960MHz, version 1.0.9.  
5571f  
14  
LT5571  
PACKAGE DESCRIPTION  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 0.05  
4.35 0.05  
2.90 0.05  
2.15 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.35 × 45° CHAMFER  
0.75 0.05  
R = 0.115  
TYP  
4.00 0.10  
(4 SIDES)  
15  
16  
0.55 0.20  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 0.10  
(4-SIDES)  
(UF16) QFN 10-04  
0.200 REF  
0.30 0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5571f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT5571  
RELATED PARTS  
PART NUMBER  
Infrastructure  
LT5514  
DESCRIPTION  
COMMENTS  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
LT5515  
LT5516  
1.5GHz to 2.5GHz Direct Conversion Quadrature 20dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature 21.5dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
LT5517  
LT5518  
40MHz to 900MHz Quadrature Demodulator  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
21dBm IIP3, Integrated LO Quadrature Generator  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended RF and LO  
Ports, 4-Channel W-CDMA ACPR = –64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
LT5524  
LT5525  
LT5526  
LT5527  
LT5528  
LT5558  
0.7GHz to 1.4GHz High Linearity Upconverting 17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Mixer Single-Ended LO and RF Ports Operation  
1.3GHz to 2.3GHz High Linearity Upconverting 15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Mixer  
Single-Ended LO and RF Ports Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO  
Port Operation  
600MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
Low Power, Low Distortion ADC Driver with  
Digitally Programmable Gain  
450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
High Linearity, Low Power Downconverting  
Mixer  
Single-Ended 50Ω RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28mA  
CC  
High Linearity, Low Power Downconverting  
Mixer  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
IIP3 = 23.5dBm and NF = 12.5dBm at 1900MHz, 4.5V to 5.25V Supply, I = 78mA,  
CC  
Conversion Gain = 2dB.  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 4-Channel W-CDMA ACPR = –66dBc at 2.14GHz  
600MHz to 1100MHz High Linearity Direct  
Quadrature Modulator  
22.4dBm OIP3 at 900MHz, –158dBm/Hz Noise Floor, 3kΩ, 2.1V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –70.4dBc at 900MHz  
LT5560  
LT5568  
Ultra-Low Power Active Mixer  
700MHz to 1050MHz High Linearity Direct  
Quadrature Modulator  
10mA Supply Current, 10dBm IIP3, 10dB NF, Usable as Up- or Down-Converter.  
22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –71.4dBc at 850MHz  
LT5572  
1.5GHz to 2.5GHz High Linearity Direct  
Quadrature Modulator  
21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, High-Ohmic 0.5V Baseband  
DC  
Interface, 4-Ch W-CDMA ACPR = –67.7dBc at 2.14GHz  
RF Power Detectors  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
RF Power Detectors with >40dB Dynamic Range 300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
LTC5530  
LTC5531  
LTC5532  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
LT5534  
50MHz to 3GHz Log RF Power Detector with  
60dB Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time, Log Linear  
Response  
LTC5536  
LT5537  
Precision 600MHz to 7GHz RF Power Detector 25ns Response Time, Comparator Reference Input, Latch Enable Input,  
with Fast Comparator Output  
–26dBm to +12dBm Input Range  
Wide Dynamic Range Log RF/IF Detector  
Low Frequency to 1GHz, 83dB Log Linear Dynamic Range  
5571f  
LT 1206 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5571EUF#PBF

暂无描述
Linear

LT5571EUF#TR

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQCC16, 4 X 4 MM, PLASTIC, MO-220WGGC, QFN-16, Cellular Telephone Circuit
Linear

LT5571EUF#TRPBF

LT5571 - 620MHz - 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5572

1.5GHz to 2.5GHz High Linearity Direct Quadrature Modulator
Linear

LT5572EUF

1.5GHz to 2.5GHz High Linearity Direct Quadrature Modulator
Linear

LT5572EUF#TRPBF

LT5572 - 1.5GHz to 2.5GHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5575

800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator
Linear

LT5575EUF

800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator
Linear

LT5575EUF#PBF

LT5575 - 800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5575EUF#TR

IC,QUADRATURE DEMODULATOR,LLCC,16PIN,PLASTIC
Linear
Linear
Linear