LT5572EUF#TRPBF [Linear]

LT5572 - 1.5GHz to 2.5GHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C;
LT5572EUF#TRPBF
型号: LT5572EUF#TRPBF
厂家: Linear    Linear
描述:

LT5572 - 1.5GHz to 2.5GHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C

文件: 总16页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5572  
1.5GHz to 2.5GHz  
High Linearity Direct  
Quadrature Modulator  
U
DESCRIPTIO  
FEATURES  
Direct Conversion from Baseband to RF  
The LT5572 is a direct I/Q modulator designed for high  
performance wireless applications, including wireless  
infrastructure. It allows direct modulation of an RF signal  
usingdifferentialbasebandIandQsignals.ItsupportsPHS,  
GSM, EDGE, TD-SCDMA, CDMA, CDMA2000, W-CDMA  
and other systems. It may also be configured as an image  
reject up-converting mixer by applying 90° phase-shifted  
signals to the I and Q inputs. The high impedance I/Q  
baseband inputs consist of voltage-to-current converters  
that in turn drive double-balanced mixers. The outputs of  
these mixers are summed and applied to an on-chip RF  
transformer which converts the differential mixer signals  
to a 50Ω single-ended output. The four balanced I and Q  
baseband input ports are intended for DC coupling from a  
source with a common mode voltage level of about 0.5V.  
The LO path consists of an LO buffer with single-ended  
input and precision quadrature generators that produce  
the LO drive for the mixers. The supply voltage range is  
4.5V to 5.25V.  
High Output: –2.5dB Conversion Gain  
High OIP3: +21.6dBm at 2GHz  
Low Output Noise Floor at 20MHz Offset:  
No RF: –158.6dBm/Hz  
P
OUT  
= 4dBm: –152.5dBm/Hz  
Low Carrier Leakage: –39.4dBm at 2GHz  
High Image Rejection: –41.2dBc at 2GHz  
4-Channel W-CDMA ACPR: –67.7dBc at 2.14GHz  
Integrated LO Buffer and LO Quadrature Phase  
Generator  
50Ω AC-Coupled Single-Ended LO and RF Ports  
High Impedance DC Interface to Baseband Inputs  
with 0.5V Common Mode Voltage  
16-Lead QFN 4mm × 4mm Package  
U
APPLICATIO S  
Infrastructure Tx for DCS, PCS and UMTS Bands  
Image Reject Up-Converters for DCS, PCS and UMTS  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Bands  
Low Noise Variable Phase Shifter for 1.5GHz to  
2.5GHz Local Oscillator Signals  
U
TYPICAL APPLICATIO  
W-CDMA ACPR, AltCPR and Noise  
vs RF Output Power at 2.14GHz for  
1, 2 and 4 Channels  
Direct Conversion Transmitter Application  
–50  
–60  
–70  
–80  
–90  
–125  
–135  
–145  
–155  
–165  
5V  
DOWNLINK TEST  
MODEL 64 DPCH  
8, 13  
100nF  
V
LT5572  
14  
16  
×2  
CC  
RF = 1.5GHz  
TO 2.5GHz  
4-CH ACPR  
4-CH AltCPR  
2-CH ACPR  
1-CH  
ACPR  
I-DAC  
V-I  
I-CH  
11  
PA  
0°  
1
EN  
90°  
BALUN  
Q-CH  
V-I  
2-CH AltCPR  
7
5
1-CH AltCPR  
1-CH NOISE  
Q-DAC  
2-CH NOISE  
–15  
BASEBAND  
GENERATOR  
4-CH NOISE  
–25  
–20  
5572 TA01a  
3
VCO/SYNTHESIZER  
2, 4, 6, 9, 10, 12, 15, 17  
–30  
–10  
–5  
RF OUTPUT POWER PER CARRIER (dBm)  
5572 TA01b  
5572f  
1
LT5572  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Supply Voltage.........................................................5.5V  
Common Mode Level of BBPI, BBMI  
and BBPQ, BBMQ.....................................................0.6V  
Voltage on Any Pin  
16 15 14 13  
EN  
GND  
LO  
1
2
3
4
12 GND  
11 RF  
Not to Exceed........................–500mV to (V + 500mV)  
CC  
17  
GND  
GND  
10  
9
Operating Ambient Temperature Range  
GND  
(Note 2).................................................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
5
6
7
8
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
= 125°C, θ = 37°C/W  
T
JMAX  
JA  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
ORDER PART NUMBER  
LT5572EUF  
UF PART MARKING  
5572  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 2GHz, f = 2002MHz, P = 0dBm.  
CC  
A
LO  
RF  
LO  
BBPI, BBMI, BBPQ, BBMQ inputs 0.5V , baseband input frequency = 2MHz, I and Q 90° shifted (upper sideband selection).  
DC  
P
= –10dBm, unless otherwise noted. (Note 3)  
RF(OUT)  
SYMBOL  
RF Output (RF)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
RF  
RF Frequency Range  
–3dB Bandwidth  
–1dB Bandwidth  
1.5 to 2.5  
1.7 to 2.15  
GHz  
GHz  
S
S
RF Output Return Loss  
RF Output Return Loss  
RF Output Noise Floor  
EN = High (Note 6)  
EN = Low (Note 6)  
–13.5  
–12.5  
dB  
dB  
22(ON)  
22(OFF)  
NFloor  
No Input Signal (Note 8)  
–158.6  
–152.5  
–152.2  
dBm/Hz  
dBm/Hz  
dBm/Hz  
P
OUT  
P
OUT  
= 4dBm (Note 9)  
= 4dBm (Note 10)  
G
Conversion Voltage Gain  
Output Power  
20 • Log (V  
/V )  
–2.5  
1.4  
dB  
dBm  
dB  
V
OUT(50Ω) IN(DIFF) I or Q  
P
OUT  
1V  
PP(DIFF)  
CW Signal, I and Q  
G
3 • LO Conversion Gain Difference  
Output 1dB Compression  
Output 2nd Order Intercept  
Output 3rd Order Intercept  
Image Rejection  
(Note 17)  
(Note 7)  
–29.5  
9.3  
3LO VS LO  
OP1dB  
OIP2  
OIP3  
IR  
dBm  
dBm  
dBm  
dBc  
(Notes 13, 14)  
(Notes 13, 15)  
(Note 16)  
53.2  
21.6  
–41.2  
LOFT  
Carrier Leakage  
(LO Feedthrough)  
EN = High, P = 0dBm (Note 16)  
–39.4  
–58  
dBm  
dBm  
LO  
EN = Low, P = 0dBm (Note 16)  
LO  
5572f  
2
LT5572  
ELECTRICAL CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 2GHz, f = 2002MHz, P = 0dBm.  
CC  
A
LO  
RF  
LO  
BBPI, BBMI, BBPQ, BBMQ inputs 0.5V , baseband input frequency = 2MHz, I and Q 90° shifted (upper sideband selection).  
DC  
P
= –10dBm, unless otherwise noted. (Note 3)  
RF(OUT)  
SYMBOL  
LO Input (LO)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
LO Frequency Range  
1.5 to 2.5  
0
GHz  
dBm  
dB  
LO  
P
S
S
LO Input Power  
–10  
5
LO  
LO Input Return Loss  
EN = High, P = 0dBm (Note 6)  
–15  
11(ON)  
11(OFF)  
LO  
LO Input Return Loss  
EN = Low (Note 6)  
at 2GHz (Note 5)  
at 2GHz (Note 5)  
at 2GHz (Note 5)  
–5.3  
14.5  
25  
dB  
NF  
LO Input Referred Noise Figure  
LO to RF Small-Signal Gain  
LO Input 3rd Order Intercept  
dB  
LO  
G
dB  
LO  
IIP3  
–0.5  
dBm  
LO  
Baseband Inputs (BBPI, BBMI, BBPQ, BBMQ)  
BW  
Baseband Bandwidth  
–3dB Bandwidth  
460  
0.5  
MHz  
V
BB  
V
CMBB  
DC Common Mode Voltage  
Differential Input Resistance  
Baseband Static Input Current  
Carrier Feedthrough to BB  
Input 1dB Compression Point  
I/Q Absolute Gain Imbalance  
I/Q Absolute Phase Imbalance  
Externally Applied (Note 4)  
0.6  
R
IN  
90  
kΩ  
µA  
I
(Note 4)  
–20  
–39  
2.8  
DC(IN)  
P
LOBB  
P
OUT  
= 0 (Note 4)  
dBm  
IP1dB  
Differential Peak-to-Peak (Notes 7, 18)  
V
P-P(DIFF)  
ΔG  
0.07  
0.9  
dB  
I/Q  
I/Q  
Δϕ  
Deg  
Power Supply (V  
)
CC  
V
Supply Voltage  
4.5  
5
5.25  
145  
50  
V
mA  
µA  
µs  
CC  
I
I
t
t
Supply Current  
EN = High  
120  
CC(ON)  
CC(OFF)  
ON  
Supply Current, Sleep Mode  
Turn-On Time  
EN = 0V  
EN = Low to High (Note 11)  
EN = High to Low (Note 12)  
0.25  
1.3  
Turn-Off Time  
µs  
OFF  
Enable (EN), Low = Off, High = On  
Enable  
Sleep  
Input High Voltage  
Input High Current  
Input Low Voltage  
EN = High  
EN = 5V  
1
V
µA  
V
230  
EN = Low  
0.5  
Note 11: RF power is within 10% of final value.  
Note 12: RF power is at least 30dB lower than in the ON state.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
Note 3: Tests are performed as shown in the configuration of Figure 7.  
Note 4: At each of the four baseband inputs BBPI, BBMI, BBPQ and BBMQ.  
Note 13: Baseband is driven by 2MHz and 2.1MHz tones. Drive level is set  
in such a way that the two resulting RF tones are –10dBm each.  
Note 14: IM2 measured at LO frequency + 4.1MHz  
Note 15: IM3 measured at LO frequency + 1.9MHz and LO frequency +  
2.2MHz.  
Note 5: V  
– V  
= 1V , V  
– V  
= 1V .  
BBMQ DC  
Note 16: Amplitude average of the characterization data set without image  
BBPI  
BBMI  
DC BBPQ  
or LO feedthrough nulling (unadjusted).  
Note 6: Maximum value within –1dB bandwidth.  
Note 17: The difference in conversion gain between the spurious signal  
at f = 3 • LO – BB versus the conversion gain of the desired signal at  
f = LO + BB for BB = 2MHz and LO = 2GHz.  
Note 7: An external coupling capacitor is used in the RF output line.  
Note 8: At 20MHz offset from the LO signal frequency.  
Note 9: At 20MHz offset from the CW signal frequency.  
Note 10: At 5MHz offset from the CW signal frequency.  
Note 18: The input voltage corresponding to the output P1dB.  
5572f  
3
LT5572  
U W  
V
BB  
= 5V, EN = High, T = 25°C, f = 2.14GHz,  
A LO  
TYPICAL PERFOR A CE CHARACTERISTICS  
CC  
P
= 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.5V , baseband input frequency f = 2MHz, I and Q 90° shifted, without image or  
LO  
DC  
LO feedthrough nulling. f = f + f (upper sideband selection). P  
= –10dBm (–10dBm/tone for 2-tone measurements),  
RF  
BB  
LO  
RF(OUT)  
unless otherwise noted. (Note 3)  
RF Output Power vs LO Frequency  
at 1V Differential Baseband  
P-P  
Voltage Gain vs LO Frequency  
Supply Current vs Supply Voltage  
Drive  
0
–2  
–4  
–6  
140  
130  
120  
110  
100  
4
2
85°C  
0
25°C  
–2  
–8  
–10  
–12  
–4  
–6  
–8  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
–40°C  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
2.1  
LO FREQUENCY (GHz)  
2.5  
2.7  
1.3 1.5  
1.7 1.9  
2.3  
5
2.1  
1.7 1.9  
LO FREQUENCY (GHz)  
2.5  
2.7  
4.5  
5.5  
1.3 1.5  
2.3  
SUPPLY VOLTAGE (V)  
5572 G03  
5572 G01  
5572 G02  
Output 1dB Compression  
vs LO Frequency  
Output IP3 vs LO Frequency  
Output IP2 vs LO Frequency  
26  
12  
10  
8
65  
60  
55  
50  
f
f
= 2MHz  
= 2.1MHz  
f
f
f
= f  
+ f  
+ f  
BB1  
BB2  
IM2 BB1 BB2 LO  
= 2MHz  
BB1  
24  
22  
= 2.1MHz  
BB2  
20  
18  
16  
14  
12  
6
4
2
0
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
10  
45  
1.5 1.7  
2.1 2.3 2.5 2.7  
1.3  
1.9  
2.1  
LO FREQUENCY (GHz)  
2.5  
2.7  
1.3 1.5  
1.7 1.9  
2.3  
1.3 1.5  
1.7 1.9 2.1 2.3 2.5 2.7  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
5572 G04  
5572 G06  
5572 G05  
LO Feedthrough to RF Output  
vs LO Frequency  
2 • LO Leakage to RF Output  
vs 2 • LO Frequency  
3 • LO Leakage to RF Output  
vs 3 • LO Frequency  
–35  
–40  
–45  
–50  
–55  
–60  
–30  
–20  
–35  
–40  
–25  
–30  
–45  
–50  
–55  
–60  
–65  
–35  
–40  
–45  
–50  
–55  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
–70  
–60  
4.5 5.1  
6.3 6.9 7.5 8.1  
3.9  
5.7  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
LO FREQUENCY (GHz)  
2.6  
3
3.4 3.8 4.2 4.6  
5
5.4  
3 • LO FREQUENCY (GHz)  
2 • LO FREQUENCY (GHz)  
5572 G09  
5572 G07  
5572 G08  
5572f  
4
LT5572  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 2.14GHz,  
A LO  
CC  
P
= 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.5V , baseband input frequency f = 2MHz, I and Q 90° shifted, without image or  
LO  
DC BB  
LO feedthrough nulling. f = f + f (upper sideband selection). P  
= –10dBm (–10dBm/tone for 2-tone measurements),  
RF  
BB  
LO  
RF(OUT)  
unless otherwise noted. (Note 3)  
LO and RF Port Return Loss  
vs RF Frequency  
Noise Floor vs RF Frequency  
Image Rejection vs LO Frequency  
–156  
–158  
–160  
–162  
–164  
–166  
–25  
–30  
–35  
–40  
0
–10  
–20  
–30  
–40  
–50  
f
= 2GHz (FIXED)  
LO  
LO PORT, EN = LOW  
LO PORT, EN = HIGH, P = 0dBm  
LO  
LO PORT,  
EN = HIGH,  
= –10dBm  
P
LO  
RF PORT,  
EN = HIGH,  
NO LO  
RF PORT,  
EN = LO  
–45  
–50  
–55  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
RF PORT,  
5V, 85°C  
5V, 85°C  
EN = HIGH,  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
P
= 0dBm  
LO  
2.1  
LO FREQUENCY (GHz)  
2.5 2.7  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
RF FREQUENCY (GHz)  
1.3 1.5 1.7 1.9  
2.3  
1.3 1.5 1.7 1.8 2.1 2.3 2.5 2.7  
RF FREQUENCY (GHz)  
5572 G10  
5572 G11  
5572 G12  
Absolute I/Q Gain Imbalance  
vs LO Frequency  
Absolute I/Q Phase Imbalance  
vs LO Frequency  
Voltage Gain vs LO Power  
5
4
3
2
1
0
–2  
0.2  
0.1  
0
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
–4  
–6  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
–8  
–10  
–12  
–14  
–16  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
–18  
1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7  
LO FREQUENCY (GHz)  
–16 –12  
–4  
0
4
8
1.3 1.5  
1.7 1.9 2.1 2.3 2.5 2.7  
LO FREQUENCY (GHz)  
–20  
–8  
LO INPUT POWER (dBm)  
5572 G14  
5572 G13  
5572 G15  
Output IP3 vs LO Power  
LO Feedthrough vs LO Power  
Image Rejection vs LO Power  
–30  
–35  
–40  
22  
20  
18  
16  
14  
12  
10  
8
–25  
–30  
–35  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
–45  
–50  
–55  
–40  
–45  
–50  
f
f
= 2MHz  
BB1  
BB2  
= 2.1MHz  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
5V, 85°C  
6
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
–60  
–55  
4
–4  
LO INPUT POWER (dBm)  
4
8
–20 –16 –12 –8  
0
–4  
LO INPUT POWER (dBm)  
4
8
–20 –16 –12 –8  
0
–20 –16 –12 –8  
LO INPUT POWER (dBm)  
8
–4  
0
4
5572 G17  
5572 G18  
5572 G16  
5572f  
5
LT5572  
U W  
V
BB  
= 5V, EN = High, T = 25°C, f = 2.14GHz,  
A LO  
TYPICAL PERFOR A CE CHARACTERISTICS  
CC  
P
= 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.5V , baseband input frequency f = 2MHz, I and Q 90° shifted, without image or  
LO  
DC  
LO feedthrough nulling. f = f + f (upper sideband selection). P  
= –10dBm (–10dBm/tone for 2-tone measurements),  
RF  
BB  
LO  
RF(OUT)  
unless otherwise noted. (Note 3)  
RF CW Output Power, HD2 and  
HD3 vs CW Baseband Voltage and  
Temperature  
RF CW Output Power, HD2 and  
HD3 vs CW Baseband and Supply  
Voltage  
LO Feedthrough to RF Output  
vs CW Baseband Voltage  
–30  
–35  
–40  
–45  
–50  
–55  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10  
RF  
RF  
0
0
HD3  
HD3  
–10  
–20  
–30  
–40  
–50  
–60  
–10  
–20  
HD2  
HD2  
5V  
5.5V  
4.5V  
25°C –30  
85°C  
–40°C  
5V, –40°C  
–40  
HD2 = MAX POWER AT  
HD2 = MAX POWER AT  
+ 2 • f OR f – 2 • f  
BB  
5V, 25°C  
f
+ 2 • f OR f – 2 • f  
f
LO  
BB LO  
BB  
BB  
5V, 85°C  
LO  
BB  
LO  
–50  
–60  
HD3 = MAX POWER AT  
HD3 = MAX POWER AT  
4.5V, 25°C  
5.5V, 25°C  
f
LO  
+ 3 • f OR f – 3 • f  
f
+ 3 • f OR f – 3 • f  
BB  
LO  
LO  
BB  
LO  
BB  
0
1
2
3
4
5
1
2
3
5
0
4
1
2
3
5
0
4
I AND Q BASEBAND VOLTAGE (V  
)
I AND Q BASEBAND VOLTAGE (V  
)
I AND Q BASEBAND VOLTAGE (V  
)
P-P,DIFF  
P-P,DIFF  
P-P,DIFF  
5572 G21  
5572 G20  
5572 G19  
RF 2-Tone Power (Each Tone),  
IM2 and IM3 vs Baseband and  
Supply Voltage  
RF 2-Tone Power (Each Tone),  
IM2 and IM3 vs Baseband Voltage  
and Temperature  
Image Rejection vs CW Baseband  
Voltage  
–35  
–40  
–45  
–50  
–55  
10  
0
10  
0
5V  
RF  
25°C  
85°C  
–40°C  
RF  
5.5V  
4.5V  
–10  
–10  
IM3  
IM3  
–20 IM2 = POWER AT  
–20 IM2 = POWER AT  
f
+ 4.1MHz  
f
+ 4.1MHz  
LO  
LO  
IM3 = MAX POWER  
–30  
–40  
–50  
–60  
–70  
IM3 = MAX POWER  
–30  
–40  
–50  
–60  
–70  
AT f + 1.9MHz  
OR f + 2.2MHz  
LO  
AT f + 1.9MHz  
OR f + 2.2MHz  
LO  
LO  
LO  
IM2  
IM2  
5V, –40°C  
5V, 25°C  
5V, 85°C  
f
f
= 2MHz, 2.1MHz, 0°  
= 2MHz, 2.1MHz, 90°  
f
f
= 2MHz, 2.1MHz, 0°  
= 2MHz, 2.1MHz, 90°  
BBI  
BBQ  
4.5V, 25°C  
5.5V, 25°C  
BBI  
BBQ  
0.1  
1
10  
0
1
2
3
4
5
0.1  
1
10  
I AND Q BASEBAND VOLTAGE (V  
)
I AND Q BASEBAND VOLTAGE (V  
)
I AND Q BASEBAND VOLTAGE (V  
)
P-P,DIFF, EACH TONE  
P-P,DIFF, EACH TONE  
P-P,DIFF  
5572 G24  
5572 G22  
5572 G23  
Voltage Gain Distribution  
Noise Floor Distribution  
40  
35  
35  
30  
25  
20  
15  
10  
5
–40°C  
25°C  
85°C  
f
= 2GHz  
–40°C  
25°C  
85°C  
LO  
f
= 2GHz  
NOISE  
30 LO  
f
= 2.02GHz  
25  
20  
15  
10  
5
0
0
–1.6  
–3.2 –2.8 –2.4 –2.0  
VOLTAGE GAIN (dB)  
–1.2  
–159.4 –159 –158.6 –158.2 –157.8  
5572 G26  
5572 G25  
NOISE FLOOR (dBm/Hz)  
5572f  
6
LT5572  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 2.14GHz,  
A LO  
CC  
P
= 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.5V , baseband input frequency f = 2MHz, I and Q 90° shifted, without image or  
LO  
DC BB  
LO feedthrough nulling. f = f + f (upper sideband selection). P = –10dBm (–10dBm/tone for 2-tone measurements),  
RF  
BB  
LO  
RF(OUT)  
unless otherwise noted. (Note 3)  
LO Leakage Distribution  
Image Rejection Distribution  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
–40°C  
25°C  
85°C  
f
= 2GHz  
–40°C  
25°C  
85°C  
f
= 2GHz  
LO  
LO  
30  
25  
20  
15  
10  
5
0
0
<–45  
–41  
–35 –33  
–43  
–39 –37  
<–52  
–40  
IMAGE REJECTION (dBc)  
–36  
–48  
–44  
LO LEAKAGE (dBm)  
5572 G27  
5572 G28  
U
U
U
PI FU CTIO S  
EN(Pin1):EnableInput.WhentheENpinvoltageishigher  
than 1V, the IC is turned on. When the input voltage is less  
than 0.5V, the IC is turned off.  
BBPQ, BBMQ(Pins7, 5):BasebandInputsfortheQchan-  
nel with about 90kΩ differential input impedance. These  
pins should be externally biased at about 0.5V. Applied  
common mode voltage must stay below 0.6V.  
GND (Pins 2, 4, 6, 9, 10, 12, 15, 17): Ground. Pins 6, 9,  
15 and the Exposed Pad, Pin 17, are connected to each  
other internally. Pins 2 and 4 are connected to each other  
internally and function as the ground return for the LO  
signal. Pins 10 and 12 are connected to each other inter-  
nally and function as the ground return for the on-chip RF  
balun. For best RF performance, Pins 2, 4, 6, 9, 10, 12,  
15 and the Exposed Pad, Pin 17, should be connected to  
the printed circuit board ground plane.  
V
(Pins 8, 13): Power Supply. Pins 8 and 13 are con-  
CC  
nected to each other internally. It is recommended to use  
0.1µF capacitors for decoupling to ground on each of  
these pins.  
RF (Pin 11): RF Output. The RF output is an AC-coupled  
single-ended output with approximately 50Ω output im-  
pedance at RF frequencies. Externally applied DC voltage  
should be within the range –0.5V to (V + 0.5V) in order  
CC  
LO(Pin3):LOInput.TheLOinputisanAC-coupledsingle-  
ended input with approximately 50Ω input impedance at  
RF frequencies. Externally applied DC voltage should be  
to avoid turning on ESD protection diodes.  
BBPI, BBMI(Pins14, 16):BasebandInputsfortheIchan-  
nel with about 90kΩ differential input impedance. These  
pins should be externally biased at about 0.5V. Applied  
common mode voltage must stay below 0.6V.  
within the range –0.5V to (V + 0.5V) in order to avoid  
CC  
turning on ESD protection diodes.  
5572f  
7
LT5572  
W
BLOCK DIAGRA  
V
CC  
8
13  
BBPI 14  
BBMI 16  
V-I  
V-I  
11 RF  
0°  
90°  
BALUN  
BBPQ  
BBMQ  
7
5
1
EN  
2
4
6
9
3
10  
12  
15  
17  
5572 BD  
GND  
LO  
GND  
U
W U U  
APPLICATIO S I FOR ATIO  
The LT5572 consists of I and Q input differential voltage-  
to-current converters, I and Q up-conversion mixers, an  
RF output balun, an LO quadrature phase generator and  
LO buffers.  
theinternalPNP’sbasecurrentwillpullthecommonmode  
voltagehigherthanthe0.6Vlimit.Thismaydamagethepart  
if continued indefinitely. The PNP’s base current is about  
20µA in normal operation. On the LT5572 demo board,  
external 50Ω resistors to ground are included at each  
baseband input to prevent this condition and to serve as  
a termination resistance for the baseband connections.  
External I and Q baseband signals are applied to the dif-  
ferential baseband input pins, BBPI, BBMI, and BBPQ,  
BBMQ.Thesevoltagesignalsareconvertedtocurrentsand  
translated to RF frequency by means of double-balanced  
up-converting mixers. The mixer outputs are combined  
in an RF output balun, which also transforms the output  
impedance to 50Ω. The center frequency of the resulting  
RF signal is equal to the LO signal frequency. The LO in-  
put drives a phase shifter which splits the LO signal into  
in-phase and quadrature LO signals. These LO signals  
are then applied to on-chip buffers which drive the up-  
conversion mixers. Both the LO input and RF output are  
single-ended, 50Ω matched and AC coupled.  
The I/Q input signals to the LT5572 should be DC coupled  
with an applied common mode voltage level of about  
0.5V in order to bias the LT5572 at its optimum operating  
point. Some I/Q test generators allow setting the common  
mode voltage independently. In this case, the common  
mode voltage of those generators must be set to 0.5V  
(See Figure 2).  
The baseband inputs should be driven differentially; oth-  
erwise, the even-order distortion products will degrade  
the overall linearity severely. Typically, a DAC will be the  
signalsourcefortheLT5572.Reconstructionltersshould  
be placed between the DAC outputs and the LT5572’s  
baseband inputs.  
Baseband Interface  
The baseband inputs (BBPI, BBMI) and (BBPQ, BBMQ)  
present a differential input impedance of about 90kΩ. At  
each of the four baseband inputs, a capacitor of 1.8pF to  
ground and a PNP emitter follower is incorporated (see  
Figure 1), which limits the baseband –1dB bandwidth to  
approximately 250MHz. The circuit is optimized for an  
externally applied common mode voltage of 0.5V. The  
baseband input pins should not be left floating because  
InFigure3,atypicalbasebandinterfaceisshownincluding  
a5th-orderlowpassladderlterforreconstruction.Foreach  
basebandpin,a0Vto1Vswingisdevelopedcorresponding  
to a DAC output current of 0mA to 20mA. The maximum  
sinusoidal single sideband RF output power at 2.14GHz is  
about +6.2dBm for full 0V to 1V swing on each baseband  
5572f  
8
LT5572  
U
W U U  
APPLICATIO S I FOR ATIO  
C
LT5572  
RF  
V
= 5V  
CC  
BALUN  
FROM  
Q-CHANNEL  
LOMI  
LOPI  
BBPI  
1.8pF  
1.8pF  
V
= 0.5V  
BBMI  
CM  
5572 F01  
GND  
Figure 1. Simplified Circuit Schematic of the LT5572 (Only I Channel is Drawn)  
50Ω  
50Ω  
LT5572  
0.5V  
0.5005V  
DC  
DC  
50Ω  
EXTERNAL  
LOAD  
+
+
1V  
1V  
20µA  
DC  
DC  
DC  
50Ω  
GENERATOR  
GENERATOR  
5572 F02  
Figure 2. DC Voltage Levels for a Generator Programmed at 0.5V for a 50Ω Load Without and With the LT5572 as a Load  
DC  
C
LT5572  
MAX RF  
+6.2dBm  
V
CC  
BALUN  
5V  
FROM  
Q-CHANNEL  
LOMI  
LOPI  
L1A  
L2A  
0.5V  
C3  
0mA TO 20mA  
DC  
BBPI  
R1A  
R2A  
100Ω  
100Ω  
C1  
L1B  
C2  
L2B  
DAC  
1.8pF  
1.8pF  
R1B  
100Ω  
R2B  
100Ω  
0mA TO 20mA  
BBMI  
GND  
5572 F03  
GND  
Figure 3. LT5572 Baseband Interface with 5th Order Filter and 0.5V DAC (Only I Channel is Shown)  
CM  
5572f  
9
LT5572  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 1. Typical Performance Characteristics vs V for f = 2GHz, P = 0dBm  
CM  
LO  
OIP2 (dBm)  
LO  
V
(V)  
I
(mA)  
77  
89  
101  
113  
126  
138  
G (dB)  
OP1dB (dBm)  
OIP3 (dBm)  
8.3  
NFloor (dBm/Hz)  
–163.2  
LOFT (dBm)  
–45.6  
IR (dBc)  
–42.2  
–36.2  
–37.0  
–39.3  
–41.5  
–44.4  
CM  
CC  
V
0.1  
–1.3  
–2.7  
–2.1  
–2.0  
–1.9  
–1.9  
0.0  
4.7  
7.1  
8.6  
9.3  
9.1  
47  
45  
49  
51  
52  
52  
0.2  
0.3  
0.4  
0.5  
0.6  
11.4  
15.0  
18.2  
21.2  
–162.2  
–160.9  
–160.2  
–159.2  
–42.6  
–42.0  
–42.4  
–42.4  
21.1  
–158.6  
–42.1  
input(2V  
). ThismaximumRFoutputlevelislimited  
maximum baseband swing possible for a  
to degrade. The LO pin input impedance is about 50Ω and  
the recommended LO input power is 0dBm. For lower LO  
input power, the gain, OIP2, OIP3 and dynamic range will  
P-P,DIFF  
by the 0.5V  
PEAK  
0.5V common mode voltage level (assuming no extra  
DC  
negative supply voltage available).  
degrade, especially below –5dBm and at T = 85°C. For  
A
high LO input power (e.g., 5dBm), the LO feedthrough  
will increase, without improvement in linearity or gain.  
Harmonics present on the LO signal can degrade the  
image rejection, because they introduce a small excess  
phase shift in the internal phase splitter. For the second (at  
4GHz) and third harmonics (at 6GHz) at –20dBc level, the  
introduced signal at the image frequency is about –57dBc  
or lower, corresponding to an excess phase shift much  
less than 1 degree. For the second and third harmonics at  
–10dBc, still the introduced signal at the image frequency  
isabout47dBc. Higherharmonicsthanthethirdwillhave  
less impact. The LO return loss typically will be better than  
14dB over the 1.7GHz to 2.4GHz range. Table 2 shows the  
LO port input impedance vs frequency.  
It is possible to bias the LT5572 to a common mode base-  
bandvoltagelevelotherthan0.5V.Table1showsthetypical  
performance for different common mode voltages.  
LO section  
The internal LO input amplifier performs single-ended to  
differential conversion of the LO input signal. Figure 4  
shows the equivalent circuit schematic of the LO input.  
The internal, differential LO signal is split into in-phase  
and quadrature (90° phase shifted) signals that drive LO  
buffer sections. These buffers drive the double balanced I  
andQmixers.ThephaserelationshipbetweentheLOinput  
and the internal in-phase LO and quadrature LO signals  
is fixed, and is independent of start-up conditions. The  
phase shifters are designed to deliver accurate quadrature  
signals for an LO frequency near 2GHz. For frequencies  
significantly below 1.8GHz or above 2.4GHz, the quadra-  
ture accuracy will diminish, causing the image rejection  
Table 2. LO Port Input Impedance vs Frequency for EN = High  
and P = 0dBm  
LO  
S
FREQUENCY  
(MHz)  
INPUT IMPEDANCE  
11  
(Ω)  
Mag  
Angle  
95  
9.4  
–22  
–44  
–61  
–75  
–97  
–126  
1000  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
45.9+j15.7  
60.8+j2.1  
63.2-j6.0  
61.8-j14.2  
56.4-j16.8  
51.7-j14.7  
47.3-j11.3  
42.5-j8.6  
0.167  
0.099  
0.128  
0.163  
0.165  
0.144  
0.119  
0.122  
V
CC  
20pF  
LO  
INPUT  
Z
IN  
56Ω  
The input impedance of the LO port is different if the part  
is in shutdown mode. The LO input impedance for EN =  
Low is given in Table 3.  
5572 F04  
Figure 4. Equivalent Circuit Schematic of the LO Input  
5572f  
10  
LT5572  
U
W U U  
APPLICATIO S I FOR ATIO  
For EN = Low the S is given in Table 6.  
Table 3. LO Port Input Impedance vs Frequency for EN = Low  
22  
and P = 0dBm  
LO  
Table 6. RF Port Output Impedance vs Frequency for EN = Low  
S
FREQUENCY  
(MHz)  
INPUT IMPEDANCE  
11  
S
FREQUENCY  
(MHz)  
OUTPUT IMPEDANCE  
22  
(Ω)  
Mag  
Angle  
64  
–4.5  
–30  
–51  
–69  
–87  
–108  
–130  
(Ω)  
Mag  
Angle  
154  
120  
95  
63  
28  
-172  
160  
146  
1000  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
51.2+j45.6  
133-j11.8  
97.8-j65.8  
58.6-j67.8  
39.0-j55.6  
29.6-j43.2  
23.7-j30.8  
19.7-j20.5  
0.409  
0.456  
0.502  
0.534  
0.540  
0.527  
0.506  
0.503  
1000  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
20.3+j9.7  
30.6+j20.2  
41.8+j23.6  
55.6+j18.5  
58.3+j49.1  
48.8-j0.1  
0.440  
0.338  
0.264  
0.181  
0.089  
0.012  
0.112  
0.205  
40.4+j3.1  
34.7+j8.3  
RF Section  
To improve S for lower frequencies, a shunt capacitor  
22  
can be added to the RF output. At higher frequencies, a  
Afterup-conversion,theRFoutputsoftheIandQmixersare  
combined. An on-chip balun performs internal differential  
tosingle-endedoutputconversion,whiletransformingthe  
output signal impedance to 50Ω. Table 4 shows the RF  
port output impedance vs frequency.  
shunt inductor can improve the S . Figure 5 shows the  
22  
equivalent circuit schematic of the RF output.  
Note that an ESD diode is connected internally from  
the RF output to ground. For strong output RF signal  
levels (higher than 3dBm) this ESD diode can degrade  
the linearity performance if the 50Ω termination imped-  
ance is connected directly to ground. To prevent this, a  
coupling capacitor can be inserted in the RF output line.  
This is strongly recommended for 1dB compression  
measurements.  
Table 4. RF Port Output Impedance vs Frequency for EN = High  
and P = 0dBm  
LO  
S
22  
FREQUENCY  
(MHz)  
OUTPUT IMPEDANCE  
(Ω)  
Mag  
Angle  
153  
117  
90  
56  
10  
176  
153  
140  
1000  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
20.7+j9.9  
32.2+j20.3  
44.9+j21.8  
56.4+j12.2  
52.6+j0.5  
43.0+j0.5  
36.8+j5.6  
32.9+j11.0  
0.434  
0.319  
0.230  
0.129  
0.025  
0.075  
0.164  
0.243  
V
CC  
20pF  
3nH  
RF  
OUTPUT  
52.5  
2.1pF  
The RF output S with no LO power applied is given in  
5572 F05  
22  
Table 5.  
Figure 5. Equivalent Circuit Schematic of the RF Output  
Table 5. RF Port Output Impedance vs Frequency for EN = High  
and No LO Power Applied  
Enable Interface  
S
22  
FREQUENCY  
(MHz)  
OUTPUT IMPEDANCE  
(Ω)  
Mag  
Angle  
153  
117  
97  
114  
157  
147  
134  
126  
Figure 6 shows a simplified schematic of the EN pin  
interface. The voltage necessary to turn on the LT5572  
is 1V. To disable (shut down) the chip, the enable voltage  
must be below 0.5V. If the EN pin is not connected, the  
chip is disabled. This EN = Low condition is guaranteed  
by the 75k on-chip pull-down resistor. It is important  
1000  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
21.2+j10.1  
35.3+j18.4  
46.1+j14.1  
47.4+j5.0  
42.0+j3.0  
37.5+j6.8  
34.8+j11.8  
32.8+j16.1  
0.424  
0.270  
0.150  
0.057  
0.093  
0.162  
0.224  
0.279  
that the voltage at the EN pin does not exceed V by  
CC  
more than 0.5V. If this should occur, the full-chip supply  
5572f  
11  
LT5572  
U
W U U  
APPLICATIO S I FOR ATIO  
V
CC  
event that the EN pin is pulled high while the V inputs  
CC  
are low. The application board PCB layouts are shown in  
Figures 8 and 9.  
EN  
75k  
25k  
5572 F06  
Figure 6. EN Pin Interface  
current could be sourced through the EN pin ESD pro-  
tection diodes, which are not designed for this purpose.  
Damage to the chip may result.  
Evaluation Board  
Figure 7 shows the evaluation board schematic. A good  
ground connection is required for the Exposed Pad. If this  
is not done properly, the RF performance will degrade.  
Additionally, the Exposed Pad provides heat sinking for  
the part and minimizes the possibility of the chip over-  
heating. R1 (optional) limits the EN pin current in the  
J1  
J2  
Figure 8. Component Side of Evaluation Board  
BBIM  
BBIP  
R2  
49.9Ω  
R5  
49.9Ω  
V
CC  
C1  
16 15  
BBMI GND  
EN  
14  
BBPI  
13  
100nF  
R1  
100Ω  
V
CC  
1
2
3
4
12  
V
EN  
GND  
RF  
CC  
J3  
11  
10  
9
RF  
OUT  
GND  
LO  
J4  
LT5572  
LO IN  
GND  
GND  
GND  
GND  
17  
BBMQ GND BBPQ  
V
CC  
5
6
7
8
C2  
100nF  
J5  
J6  
BBQM  
R3  
49.9Ω  
BBQP  
R4  
49.9Ω  
5572 F07  
BOARD NUMBER: DC945A  
Figure 9. Bottom Side of Evaluation Board  
Figure 7. Evaluation Circuit Schematic  
5572f  
12  
LT5572  
U
W U U  
APPLICATIO S I FOR ATIO  
measurement. TocalculateACPR, acorrectionismadefor  
the spectrum analyzer noise floor (Application Note 99).  
Application Measurements  
The LT5572 is recommended for basestation applications  
usingvariousmodulationformats.Figure10showsatypical  
application. Figure 11 shows the ACPR performance for  
W-CDMA using 1-, 2- or 4-channel modulation. Figures  
12, 13 and 14 illustrate the 1-, 2- and 4-channel W-CDMA  
If the output power is high, the ACPR will be limited by the  
linearity performance of the part. If the output power is  
low, the ACPR will be limited by the noise performance of  
the part. In the middle, an optimum ACPR is obtained.  
–50  
–60  
–70  
–80  
–90  
–125  
–135  
–145  
–155  
–165  
DOWNLINK TEST  
MODEL 64 DPCH  
5V  
8, 13  
100nF  
4-CH ACPR  
4-CH AltCPR  
2-CH ACPR  
1-CH  
V
LT5572  
14  
16  
×2  
CC  
RF = 1.5GHz  
TO 2.5GHz  
ACPR  
I-DAC  
V-I  
I-CH  
11  
PA  
0°  
1
EN  
90°  
2-CH AltCPR  
1-CH AltCPR  
1-CH NOISE  
BALUN  
Q-CH  
V-I  
7
5
Q-DAC  
2-CH NOISE  
–15  
4-CH NOISE  
–25  
–20  
BASEBAND  
GENERATOR  
5572 TA01a  
3
VCO/SYNTHESIZER  
2, 4, 6, 9, 10, 12, 15, 17  
–30  
–10  
–5  
RF OUTPUT POWER PER CARRIER (dBm)  
5572 TA01b  
Figure 10. 1.5GHz to 2.4GHz Direct Conversion Transmitter Application  
Figure 11. W-CDMA ACPR, ALTCPR and Noise vs RF  
Output Power at 2140MHz for 1, 2 and 4 Channels  
–30  
–30  
–40  
–30  
DOWNLINK  
TEST MODEL  
64 DPCH  
DOWNLINK TEST  
MODEL 64 DPCH  
–40  
–50  
–40  
–50  
–50  
–60  
–60  
–60  
SPECTRUM  
ANALYSER  
SPECTRUM  
ANALYSER  
NOISE  
–70  
–70  
–70  
SPECTRUM  
NOISE FLOOR  
ANALYSER  
NOISE  
–80  
–80  
–80  
–90  
FLOOR  
CORRECTED  
SPECTRUM  
UNCORRECTED  
SPECTRUM  
CORRECTED  
SPECTRUM  
–90  
–90  
FLOOR  
–100  
–110  
–100  
–110  
–100  
–110  
UNCORRECTED SPECTRUM  
UNCORRECTED SPECTRUM  
–120  
–120  
–120  
2.1275  
2.1475 2.1525  
2.125 2.13 2.135 2.14  
RF FREQUENCY (GHz)  
2.155  
2.115  
2.155 2.165  
2.1325 2.1375 2.1425  
RF FREQUENCY (GHz)  
2.145 2.15  
2.125  
2.135  
2.145  
RF FREQUENCY (GHz)  
5572 F12  
5572 F13  
5572 F14  
Figure 12. 1-Channel W-CDMA Spectrum  
Figure 13. 2-Channel W-CDMA Spectrum  
Figure 14. 4-Channel W-CDMA Spectrum  
5572f  
13  
LT5572  
U
W U U  
APPLICATIO S I FOR ATIO  
Because of the LT5572’s very high dynamic range,  
the test equipment can limit the accuracy of the ACPR  
measurement.ConsultthefactoryforadviceontheACPR  
measurement if needed.  
As a result, they will not cancel out entirely. Therefore, it  
is important to keep the amplitudes at the BBIP and BBIM  
(or BBQP and BBQM) inputs as equal as possible.  
When the temperature is changed after calibration, the  
LO feedthrough and the image rejection performance will  
change.ThisisillustratedinFigure15.TheLOfeedthrough  
and image rejection can also change as a function of the  
baseband drive level as depicted in Figure 16.  
TheACPRperformanceissensitivetotheamplitudematch  
of the BBIP and BBIM (or BBQP and BBQM) input voltage.  
This is because a difference in AC voltage amplitude will  
giverisetoadifferenceinamplitudebetweentheeven-order  
harmonic products generated in the internal V-I converter.  
–40  
10  
CALIBRATED WITH  
RF  
P
RF  
P
= –10dBm  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
V
f
BBQ  
= 5V  
f
= 2GHz  
CC  
BBI  
LO  
= 2MHz, 0°  
f
= f + f  
–50  
–60  
–70  
RF BB LO  
IMAGE  
REJECTION  
f
= 2MHz, 90° EN = HIGH  
EN = HIGH  
P
= 0dB  
LO  
LO FT  
V
BBI  
= 5V  
CC  
f
= 2MHz, 0°  
f
= 2MHz, 90°  
BBQ  
f
= 2GHz  
LO  
LO FEEDTHROUGH  
–80  
–90  
IR  
f
= f + f  
RF BB LO  
EN = HIGH  
25°C  
85°C  
P
= 0dB  
LO  
–40°C  
–80  
–40  
0
20  
40  
60  
80  
–20  
0
4
5
1
2
3
TEMPERATURE (°C)  
I AND Q BASEBAND VOLTAGE (V  
)
P-P(DIFF)  
5572 F15  
5572 F16  
Figure 15. LO Feedthrough and Image Rejection  
vs Temperature After Calibration at 25°C  
Figure 16. RF Output Power, Image Rejection and  
LO Feedthrough vs Baseband Drive Voltage After  
Calibration at 25°C  
5572f  
14  
LT5572  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 0.05  
4.35 0.05  
2.90 0.05  
2.15 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.35 × 45° CHAMFER  
0.75 0.05  
R = 0.115  
TYP  
4.00 0.10  
(4 SIDES)  
15  
16  
0.55 0.20  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 0.10  
(4-SIDES)  
(UF16) QFN 10-04  
0.200 REF  
0.30 0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5572f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT5572  
RELATED PARTS  
PART NUMBER  
Infrastructure  
LT5511  
DESCRIPTION  
COMMENTS  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
LT5512  
DC to 3GHz High Signal Level Downconverting DC to 3GHz, 17dBm IIP3, Integrated LO Buffer  
Mixer  
LT5514  
LT5515  
LT5516  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
1.5GHz to 2.5GHz Direct Conversion Quadrature 20dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature 21.5dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
LT5517  
LT5518  
40MHz to 900MHz Quadrature Demodulator  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
21dBm IIP3, Integrated LO Quadrature Generator  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended RF and LO  
Ports, 4-Channel W-CDMA ACPR = –64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
LT5524  
LT5525  
LT5526  
LT5527  
LT5528  
0.7GHz to 1.4GHz High Linearity Upconverting 17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Mixer Single-Ended LO and RF Ports Operation  
1.3GHz to 2.3GHz High Linearity Upconverting 15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Mixer  
Single-Ended LO and RF Ports Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO  
Port Operation  
600MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
Low Power, Low Distortion ADC Driver with  
Digitally Programmable Gain  
450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
High Linearity, Low Power Downconverting  
Mixer  
Single-Ended 50Ω RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28mA  
CC  
High Linearity, Low Power Downconverting  
Mixer  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
IIP3 = 23.5dBm and NF = 12.5dBm at 1900MHz, 4.5V to 5.25V Supply, I = 78mA  
CC  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 4-Channel W-CDMA ACPR = –66dBc at 2.14GHz  
RF Power Detectors  
LTC®5505  
RF Power Detectors with >40dB Dynamic  
Range  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
LT5534  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
50MHz to 3GHz Log RF Power Detector with  
60dB Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time, Log Linear  
Response  
LTC5536  
Precision 600MHz to 7GHz RF Power Detector 25ns Response Time, Comparator Reference Input, Latch Enable Input,  
with Fast Comparator Output  
–26dBm to +12dBm Input Range  
LT5537  
Wide Dynamic Range Log RF/IF Detector  
Low Frequency to 1GHz, 83dB Dynamic Range, 2.7V to 5.25V Supply  
High Speed ADCs  
LTC2220-1  
12-Bit, 185Msps ADC  
Single 3.3V Supply, 910mW Consumption, 67.5dB SNR, 80dB SFDR, 775MHz  
Full Power BW  
LTC2249  
LTC2255  
14-Bit, 80Msps ADC  
14-Bit, 125Msps ADC  
Single 3V Supply, 222mW Consumption, 73dB SNR, 90dB SFDR  
Single 3V Supply, 395mW Consumption, 72.4dB SNR, 88dB SFDR, 640MHz  
Full Power BW  
5572f  
LT 1205 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5575

800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator
Linear

LT5575EUF

800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator
Linear

LT5575EUF#PBF

LT5575 - 800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5575EUF#TR

IC,QUADRATURE DEMODULATOR,LLCC,16PIN,PLASTIC
Linear
Linear
Linear

LT5575EUFPBF

800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator
Linear

LT5575EUFTRPBF

800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator
Linear

LT5578

Dual 600MHz to 1.7GHz High Dynamic Range Downconverting Mixer
Linear

LT5578IUH#PBF

LT5578 - 0.4GHz to 2.7GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5578IUH#TRPBF

LT5578 - 0.4GHz to 2.7GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5579

1.5GHz to 3.8GHz High Linearity Upconverting Mixer
Linear