LT5579IUH#PBF [Linear]

LT5579 - 1.5GHz to 3.8GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40°C to 85°C;
LT5579IUH#PBF
型号: LT5579IUH#PBF
厂家: Linear    Linear
描述:

LT5579 - 1.5GHz to 3.8GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40°C to 85°C

局域网 射频 微波
文件: 总20页 (文件大小:333K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
resultsinlowLOsignalleakagetotheRFoutput.Atꢀ2.6GHzꢀ  
                                                                              
LT5579  
1.5GHz to 3.8GHz  
High Linearity  
Upconverting Mixer  
FeaTures  
DescripTion  
TheꢀLT®5579ꢀmixerꢀisꢀaꢀhighꢀperformanceꢀupconvertingꢀ  
mixerꢀoptimizedꢀforꢀfrequenciesꢀinꢀtheꢀ1.5GHzꢀtoꢀ3.8GHzꢀ  
range.Thesingle-endedLOinputandRFoutputportsꢀ  
simplifyꢀboardꢀlayoutꢀandꢀreduceꢀsystemꢀcost.ꢀTheꢀmixerꢀ  
needsꢀonlyꢀ–1dBmꢀofꢀLOꢀpowerꢀandꢀtheꢀbalancedꢀdesignꢀ  
n
High Output IP3: +27.3dBm at 2.14GHz  
Low Noise Floor: –158dBm/Hz (P  
n
= –5dBm)  
OUT  
n
n
n
n
n
n
n
High Conversion Gain: 2.6dB at 2.14GHz  
Wide Frequency Range: 1.5GHz to 3.8GHz*  
Low LO Leakage  
Single-Ended RF and LO  
Low LO Drive Level: –1dBm  
ꢀ Singleꢀ3.3VꢀSupply  
ꢀ 5mmꢀ×ꢀ5mmꢀQFN24ꢀPackage  
operation,ꢀtheꢀLT5579ꢀprovidesꢀhighꢀconversionꢀgainꢀofꢀ  
1.3dB,highOIP3of+26dBmandalownoisefloorofꢀ  
–157.5dBm/Hzꢀatꢀaꢀ–5dBmꢀRFꢀoutputꢀsignalꢀlevel.  
TheꢀLT5579ꢀoffersꢀaꢀhighꢀperformanceꢀalternativeꢀtoꢀpas-  
sivemixers.Unlikepassivemixers,whichhaveconversionꢀ  
lossꢀandꢀrequireꢀhighꢀLOꢀdriveꢀlevels,ꢀtheꢀLT5579ꢀdeliversꢀ  
conversionꢀgainꢀatꢀsignificantlyꢀlowerꢀLOꢀinputꢀlevelsꢀandꢀ  
isꢀlessꢀsensitiveꢀtoꢀLOꢀpowerꢀlevelꢀvariations.ꢀTheꢀlowerꢀ  
LOꢀdriveꢀlevelꢀrequirements,ꢀcombinedꢀwithꢀtheꢀexcellentꢀ  
LOꢀleakageꢀperformance,ꢀtranslateꢀintoꢀlowerꢀLOꢀsignalꢀ  
contaminationꢀofꢀtheꢀoutputꢀsignal.  
applicaTions  
ꢀ GSM/EDGE,ꢀW-CDMA,ꢀUMTS,ꢀLTEꢀandꢀTD-SCDMAꢀ  
n
Basestations  
n
ꢀ 2.6GHzꢀandꢀ3.5GHzꢀWiMAXꢀBasestations  
n
ꢀ 2.4GHzꢀISMꢀBandꢀTransmitters  
n
ꢀ HighꢀPerformanceꢀTransmitters  
L,ꢀLT,LTC,ꢀLTM,ꢀLinearꢀTechnologyꢀandꢀtheꢀLinearꢀlogoꢀareꢀregisteredꢀtrademarksꢀofꢀLinearꢀ  
TechnologyꢀCorporation.ꢀAllꢀotherꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.  
*Operationꢀoverꢀwiderꢀfrequencyꢀrangeꢀisꢀpossibleꢀwithꢀreducedꢀperformance.ꢀꢀ  
ConsultꢀLinearꢀTechnologyꢀforꢀinformationꢀandꢀassistance.  
Typical applicaTion  
Frequency Upconversion in 2.14GHz W-CDMA Transmitter  
LO INPUT  
–1dBm (TYP)  
Gain, NF and OIP3 vs  
RF Output Frequency  
LO  
30  
LT5579  
OIP3  
25  
T
= 25°C  
= 3.3V  
= 240MHz  
= f + f  
A
CC  
V
GND  
20  
15  
f
f
IF  
BIAS  
11Ω  
LO RF IF  
IF  
RF  
OUTPUT  
2140MHz  
SSB NF  
GAIN  
INPUT  
40nH  
MABAES0061  
4:1  
10  
5
82pF  
82pF  
240MHz  
3.9nH  
+
IF  
RF  
0.45pF  
33pF  
IF  
0
1900 2000  
2100  
2200  
2300  
2400  
40nH  
11Ω  
RF FREQUENCY (MHz)  
V
CC  
5579 TA01a  
5579 TA01b  
V
CC  
3.3V  
1µF  
100pF  
1nF  
5579fa  
18 GND  
IFꢀInputꢀPowerꢀ(Differential)............................... +13dBm  
                         
SupplyꢀVoltage............................................................4V  
                
LT5579  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
TOP VIEW  
(Note 1)  
LOꢀInputꢀPower.................................................. +10dBm  
24 23 22 21 20 19  
LOꢀInputꢀDCꢀVoltage........................ –0.3VꢀtoꢀV ꢀ+ꢀ0.3V  
CC  
GND  
GND  
1
2
3
4
5
6
RFꢀOutputꢀDCꢀCurrent........................................... 60mA  
GND  
GND  
17  
16  
+
IF  
+
IF ,ꢀIF ꢀDCꢀCurrentsꢀ.............................................. 60mA  
.................................................................... 150°C  
25  
IF  
15 RF  
T
JMAX  
GND  
GND  
14 GND  
13 GND  
OperatingꢀTemperatureꢀRangeꢀ.................–40°Cꢀtoꢀ85°C  
StorageꢀTemperatureꢀRangeꢀ.................. –65°Cꢀtoꢀ150°C  
7
8
9 10 11 12  
UH PACKAGE  
24-LEAD (5mm s 5mm) PLASTIC QFN  
T ꢀ=ꢀ150°C,ꢀθ ꢀ=ꢀ34°C/W,θ ꢀ=ꢀ3°C/Wꢀ  
JMAX JA JC  
EXPOSEDꢀPADꢀ(PINꢀ25)ꢀISꢀGND,ꢀMUSTꢀBEꢀSOLDEREDꢀTOꢀPCB  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
24-Leadꢀ(5mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
TEMPERATURE RANGE  
–40°Cꢀtoꢀ85°C  
LT5579IUH#PBF  
LT5579IUH#TRPBF  
5579  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.ꢀ  
ConsultꢀLTCꢀMarketingꢀforꢀinformationꢀonꢀnon-standardꢀleadꢀbasedꢀfinishꢀparts.  
Forꢀmoreꢀinformationꢀonꢀleadꢀfreeꢀpartꢀmarking,ꢀgoꢀto:ꢀhttp://www.linear.com/leadfree/ꢀꢀ  
Forꢀmoreꢀinformationꢀonꢀtapeꢀandꢀreelꢀspecifications,ꢀgoꢀto:ꢀhttp://www.linear.com/tapeandreel/  
VCC = 3.3V, TA = 25°C (Note 3), unless otherwise noted.  
Dc elecTrical characTerisTics  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Requirements (V  
SupplyꢀVoltage  
)
CC  
3.15  
3.3  
3.6  
V
DC  
SupplyꢀCurrent  
V
CC  
V
CC  
ꢀ=ꢀ3.3V,ꢀP ꢀ=ꢀ–1dBmꢀ  
226ꢀ  
241  
250  
mAꢀ  
mA  
LO  
ꢀ=ꢀ3.6V,ꢀP ꢀ=ꢀ–1dBm  
LO  
InputꢀCommonꢀModeꢀVoltageꢀ(V  
)
CM  
InternallyꢀRegulated  
570  
mV  
ac elecTrical characTerisTics (Notes 2, 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
IFꢀInputꢀFrequencyꢀRangeꢀ(Noteꢀ4)  
LOꢀInputꢀFrequencyꢀRangeꢀ(Noteꢀ4)  
RFꢀOutputꢀFrequencyꢀRangeꢀ(Noteꢀ4)  
RequiresꢀMatching  
RequiresꢀMatchingꢀBelowꢀ1GHz  
RequiresꢀMatching  
LFꢀtoꢀ1000  
750ꢀtoꢀ4300  
900ꢀtoꢀ3900  
MHz  
MHz  
5579fa  
LT5579  
VCC = 3.3V, TA = 25°C, PIF = –5dBm (–5dBm/tone for 2-tone tests,  
ac elecTrical characTerisTics  
f = 1MHz), PLO = –1dBm, unless otherwise noted. Test circuits are shown in Figure 1. (Notes 2, 3)  
PARAMETER  
CONDITIONS  
Z ꢀ=ꢀ50Ω,ꢀExternalꢀMatch  
MIN  
TYP  
15  
MAX  
UNITS  
dB  
IFꢀInputꢀReturnꢀLoss  
LOꢀInputꢀReturnꢀLoss  
RFꢀOutputꢀReturnꢀLoss  
LOꢀInputꢀPower  
O
Z ꢀ=ꢀ50Ω,ꢀ1100MHzꢀtoꢀ4000MHz  
O
>9  
dB  
Z ꢀ=ꢀ50Ω,ꢀExternalꢀMatch  
O
>10  
dB  
–5ꢀtoꢀ2  
dBm  
VCC = 3.3V, TA = 25°C, PIF = –5dBm (–5dBm/tone for 2-tone tests, f = 1MHz), PLO = –1dBm, unless otherwise noted.  
Low side LO for 1750MHz and 3600MHz. High side LO for 2140MHz and 2600MHz. (Notes 2, 3, 4)  
PARAMETER  
ConversionꢀGain  
CONDITIONS  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ1750MHzꢀ  
MIN  
TYP  
MAX  
UNITS  
1.8ꢀ  
2.6ꢀ  
1.3ꢀ  
–0.5  
dBꢀ  
dBꢀ  
dBꢀ  
dB  
IF  
RF  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ2140MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ2600MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ3600MHz  
IF  
RF  
ConversionꢀGainꢀvsꢀTemperatureꢀꢀ  
A
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ1750MHzꢀ  
–0.020ꢀ  
–0.020ꢀ  
–0.027ꢀ  
–0.027  
dB/°Cꢀ  
dB/°Cꢀ  
dB/°Cꢀ  
dB/°C  
IF  
RF  
(T ꢀ=ꢀ–40°Cꢀtoꢀ85°C)  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ2140MHzꢀ  
IF RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ2600MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ3600MHz  
IF  
RF  
Outputꢀ3rdꢀOrderꢀIntercept  
Outputꢀ2ndꢀOrderꢀIntercept  
SingleꢀSidebandꢀNoiseꢀFigure  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ1750MHzꢀ  
29ꢀ  
dBmꢀ  
dBmꢀ  
dBmꢀ  
dBm  
dBmꢀ  
dBmꢀ  
dBmꢀ  
dBm  
dBꢀ  
dBꢀ  
dBꢀ  
dB  
IF  
RF  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ2140MHzꢀ  
27.3ꢀ  
26.2ꢀ  
23.2  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ2600MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ3600MHz  
IF  
RF  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ1750MHzꢀ  
41ꢀ  
42ꢀ  
45ꢀ  
54  
9.2ꢀ  
9.9ꢀ  
12ꢀ  
12  
IF  
RF  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ2140MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ2600MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ3600MHz  
IF  
RF  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ1750MHzꢀ  
IF  
RF  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ2140MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ2600MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ3600MHz  
IF  
RF  
OutputꢀNoiseꢀFloorꢀ(P ꢀ=ꢀ–5dBm)  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ1750MHzꢀ  
–159.5ꢀ  
–158.1ꢀ  
–157.5ꢀ  
–155.5  
dBm/Hzꢀ  
dBm/Hzꢀ  
dBm/Hzꢀ  
dBm/Hz  
OUT  
IF  
RF  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ2140MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ2600MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ3600MHz  
IF  
RF  
Outputꢀ1dBꢀCompression  
IFꢀtoꢀLOꢀIsolation  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ1750MHzꢀ  
13.3ꢀ  
13.9ꢀ  
13.7ꢀ  
10.7  
83ꢀ  
81ꢀ  
74ꢀ  
73  
dBmꢀ  
dBmꢀ  
dBmꢀ  
dBm  
dBꢀ  
dBꢀ  
dBꢀ  
dB  
IF  
RF  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ2140MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ2600MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ3600MHz  
IF  
RF  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ1750MHzꢀ  
IF  
RF  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ2140MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ2600MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ3600MHz  
IF  
RF  
LOꢀtoꢀIFꢀLeakage  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ1750MHzꢀ  
–23ꢀ  
–28ꢀ  
–26ꢀ  
–22  
dBmꢀ  
ꢀdBmꢀ  
dBmꢀ  
dBm  
IF  
RF  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ2140MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ2600MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ3600MHz  
IF  
RF  
LOꢀtoꢀRFꢀLeakage  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ1750MHzꢀ  
–39ꢀ  
–35ꢀ  
–36ꢀ  
–35  
dBmꢀ  
dBmꢀ  
dBmꢀ  
dBm  
IF  
RF  
f ꢀ=ꢀ240MHz,ꢀf ꢀ=ꢀ2140MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ2600MHzꢀ  
IF  
RF  
f ꢀ=ꢀ456MHz,ꢀf ꢀ=ꢀ3600MHz  
IF  
RF  
Note 1:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingꢀconditionꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀ  
reliabilityꢀandꢀlifetime.  
Note 3:ꢀTheꢀLT5579ꢀisꢀguaranteedꢀfunctionalꢀoverꢀtheꢀoperatingꢀ  
temperatureꢀrangeꢀfromꢀ–40°Cꢀtoꢀ85°C.  
Note 4:ꢀSSBꢀnoiseꢀfigureꢀmeasurementsꢀperformedꢀwithꢀaꢀsmall-signalꢀ  
noiseꢀsourceꢀandꢀbandpassꢀfilterꢀonꢀLOꢀsignalꢀgenerator.ꢀNoꢀotherꢀIFꢀsignalꢀ  
applied.  
Note 2:ꢀEachꢀsetꢀofꢀfrequencyꢀconditionsꢀrequiresꢀappropriateꢀmatchingꢀ  
(seeꢀFigureꢀ1).  
5579fa  
LT5579  
(Test Circuit Shown in Figure 1)  
Typical Dc perForMance characTerisTics  
Supply Current vs Supply Voltage  
255  
245  
235  
225  
215  
85°C  
25°C  
–40°C  
205  
195  
3.0  
3.2  
3.3  
3.4  
3.5  
3.6  
3.1  
SUPPLY VOLTAGE (V)  
5579 G01  
3300MHz to 3800MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 456MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, ∆f = 1MHz), low side LO, PLO = –1dBm,  
Typical ac perForMance characTerisTics  
output measured at 3600MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
SSB Noise Figure Distribution at  
3600MHz  
Gain Distribution at 3600MHz  
OIP3 Distribution at 3600MHz  
30  
25  
16  
25  
T
T
T
= 90°C  
= 25°C  
= –45°C  
T
T
T
= 90°C  
= 25°C  
= –45°C  
T
T
T
= 90°C  
= 25°C  
= –45°C  
A
A
A
A
A
A
A
A
A
14  
12  
20  
15  
20  
15  
10  
8
10  
5
6
10  
5
4
2
0
0
0
10  
11  
12  
NOISE FIGURE (dB)  
13  
14  
20  
21  
23  
22  
OIP3 (dBm)  
24  
25  
26  
19  
–0.5  
–2.5 –2.0 –1.5 –1.0  
0
0.5 1.0 1.5  
GAIN (dB)  
5579 G04  
5579 G03  
5579 G02  
5579fa  
LT5579  
Typical ac perForMance characTerisTics  
output measured at 3600MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
3300MHz to 3800MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 456MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, ∆f = 1MHz), low side LO, PLO = –1dBm,  
Conversion Gain and OIP3  
vs RF Output Frequency  
SSB Noise Figure  
LO-RF Leakage  
vs RF Output Frequency  
vs RF Output Frequency  
16  
12  
8
28  
24  
20  
16  
12  
8
20  
0
–10  
–20  
–30  
–40  
–50  
18  
16  
OIP3  
14  
12  
10  
8
85°C  
25°C  
–40°C  
4
GAIN  
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
6
–4  
4
3200 3300 3400 3500 3600 3700 3800 3900  
RF FREQUENCY (MHz)  
3300 3400  
3600 3700 3800 3900  
3200  
3500  
3200 3300 3400 3500 3600 3700 3800 3900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5579 G05  
5579 G06  
5579 G07  
Conversion Gain and OIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
Conversion Gain and OIP3  
vs Supply Voltage  
16  
12  
8
26  
16  
26  
22  
18  
14  
10  
6
20  
18  
16  
14  
12  
10  
8
22  
12  
8
OIP3  
GAIN  
OIP3  
18  
85°C  
85°C  
25°C  
–40°C  
25°C  
–40°C  
4
14  
4
GAIN  
0
10  
0
85°C  
6
25°C  
–40°C  
–4  
6
–4  
4
3.0  
3.2  
3.3  
3.4  
3.5  
3.6  
3.1  
–13  
–9  
–5  
–1  
3
–14  
–10  
–6  
LO INPUT POWER (dBm)  
–2  
2
–17  
SUPPLY VOLTAGE (V)  
LO INPUT POWER (dBm)  
5579 G10  
5579 G08  
5579 G09  
IM3 Level  
vs RF Output Power (2-Tone)  
IM2 Level  
vs RF Output Power (2-Tone)  
SSB Noise Figure  
vs Supply Voltage  
20  
0
0
18  
16  
14  
12  
10  
8
–20  
–20  
–40  
–40  
–60  
–80  
–60  
–80  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
6
–100  
–100  
4
–12 –10 –8 –6 –4 –2  
0
2
4
6
–12 –10 –8 –6 –4 –2  
0
2
4
6
3.0  
3.1  
3.2  
3.4  
3.5  
3.6  
3.3  
RF OUTPUT POWER (dBm/TONE)  
RF OUTPUT POWER (dBm/TONE)  
SUPPLY VOLTAGE (V)  
5579 G11  
5579 G12  
5579 G13  
5579fa  
LT5579  
Typical ac perForMance characTerisTics 2300MHz to 2700MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 456MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, ∆f = 1MHz), high side LO, PLO = –1dBm,  
output measured at 2600MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
Conversion Gain and OIP3  
vs RF Output Frequency  
SSB Noise Figure  
LO-RF Leakage  
vs RF Output Frequency  
vs RF Output Frequency  
0
–10  
–20  
–30  
–40  
–50  
16  
12  
8
30  
26  
22  
18  
14  
10  
18  
16  
14  
12  
85°C  
25°C  
–40°C  
OIP3  
GAIN  
85°C  
25°C  
–40°C  
10  
8
4
6
4
2
0
85°C  
25°C  
–40°C  
–4  
2300 2400  
2600  
2200 2300 2400 2500 2600 2700 2800  
RF FREQUENCY (MHz)  
2200  
2700 2800  
2200  
2400 2500 2600 2700 2800  
RF FREQUENCY (MHz)  
2500  
2300  
RF FREQUENCY (MHz)  
5579 G16  
5579 G15  
5579 G14  
Conversion Gain and OIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
Conversion Gain and OIP3  
vs Supply Voltage  
16  
12  
8
28  
16  
28  
24  
20  
16  
12  
8
18  
16  
14  
12  
10  
8
OIP3  
24  
12  
8
OIP3  
GAIN  
85°C  
85°C  
25°C  
–40°C  
25°C  
20  
16  
12  
8
–40°C  
GAIN  
4
4
6
0
0
85°C  
25°C  
–40°C  
4
–4  
–4  
2
3.0  
3.2  
3.3  
3.4  
3.5  
3.6  
3.1  
–17  
–13  
–9  
–5  
–1  
3
–6  
LO INPUT POWER (dBm)  
–14  
–10  
–2  
2
SUPPLY VOLTAGE (V)  
LO INPUT POWER (dBm)  
5579 G19  
5579 G17  
5579 G18  
IM3 Level  
vs RF Output Power (2-Tone)  
IM2 Level  
vs RF Output Power (2-Tone)  
SSB Noise Figure  
vs Supply Voltage  
0
18  
16  
14  
12  
0
–20  
–20  
–40  
–40  
10  
8
–60  
–80  
–60  
–80  
6
4
2
85°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
25°C  
–40°C  
–100  
–100  
3.1  
3.2  
3.4  
–12 –10 –8 –6 –4 –2  
0
2
4
6
3.0  
3.3  
3.5  
3.6  
–12 –10 –8 –6 –4 –2  
0
2
4
6
RF OUTPUT POWER (dBm/TONE)  
RF OUTPUT POWER (dBm/TONE)  
SUPPLY VOLTAGE (V)  
5579 G22  
5579 G20  
5579 G21  
5579fa  
LT5579  
Typical perForMance characTerisTics 2140MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 240MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, ∆f = 1MHz), high side LO, PLO = –1dBm,  
output measured at 2140MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
Conversion Gain and OIP3  
vs RF Output Frequency  
SSB Noise Figure  
vs RF Output Frequency  
LO-RF Leakage  
vs RF Output Frequency  
18  
16  
14  
12  
10  
8
0
–10  
–20  
–30  
–40  
–50  
16  
12  
8
30  
26  
22  
18  
14  
10  
OIP3  
GAIN  
4
6
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
4
2
–4  
2150  
RF FREQUENCY (MHz)  
1950  
2050  
2250  
2350  
1950  
2050  
2150  
2250  
2050  
2150  
2250  
2350  
1950  
2350  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5579 G24  
5579 G25  
5579 G23  
Conversion Gain and OIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
Conversion Gain and OIP3  
vs Supply Voltage  
16  
12  
8
30  
26  
22  
18  
14  
10  
18  
16  
14  
12  
10  
8
16  
12  
8
30  
26  
22  
18  
14  
10  
OIP3  
GAIN  
OIP3  
GAIN  
4
4
6
0
0
85°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
4
25°C  
–40°C  
–4  
2
–4  
–13  
–9  
–5  
–1  
3
–14  
–10  
–6  
LO INPUT POWER (dBm)  
–2  
2
–17  
3.0  
3.2  
3.3  
3.4  
3.5  
3.6  
3.1  
SUPPLY VOLTAGE (V)  
LO INPUT POWER (dBm)  
5579 G26  
5579 G27  
5579 G19  
IM3 Level  
vs RF Output Power (2-Tone)  
IM2 Level  
vs RF Output Power (2-Tone)  
SSB Noise Figure  
vs Supply Voltage  
18  
16  
14  
0
0
–20  
–40  
–20  
–40  
12  
10  
8
–60  
–80  
–60  
–80  
6
85°C  
25°C  
–40°C  
85°C  
25°C  
85°C  
25°C  
–40°C  
4
2
–40°C  
–100  
–100  
–2  
RF OUTPUT POWER (dBm/TONE)  
–2  
RF OUTPUT POWER (dBm/TONE)  
3.1  
3.2  
3.4  
–10 –8 –6 –4  
0
2
4
6
–10 –8 –6 –4  
0
2
4
6
3.0  
3.5  
3.6  
3.3  
SUPPLY VOLTAGE (V)  
5579 G29  
5579 G30  
5579 G31  
5579fa  
LT5579  
Typical perForMance characTerisTics 1750MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 240MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, ∆f = 1MHz), low side LO, PLO = –1dBm,  
output measured at 1750MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
Conversion Gain and OIP3  
vs RF Output Frequency  
SSB Noise Figure  
vs RF Output Frequency  
LO-RF Leakage  
vs RF Output Frequency  
16  
12  
8
30  
26  
22  
18  
14  
10  
18  
16  
14  
12  
0
–10  
–20  
–30  
–40  
–50  
85°C  
25°C  
–40°C  
OIP3  
GAIN  
85°C  
25°C  
–40°C  
10  
8
4
6
4
2
0
85°C  
25°C  
–40°C  
–4  
1700  
1750  
RF FREQUENCY (MHz)  
1850  
1650  
1700  
1750  
1800  
1850  
1900  
1650  
1900  
1800  
1650  
1700  
1750  
1800  
1850  
1900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5579 G32  
5579 G33  
5579 G34  
Conversion Gain and OIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
Conversion Gain and OIP3  
vs Supply Voltage  
16  
12  
8
32  
28  
24  
20  
16  
12  
16  
12  
8
30  
26  
22  
18  
14  
10  
18  
16  
14  
12  
OIP3  
OIP3  
GAIN  
85°C  
25°C  
–40°C  
10  
8
GAIN  
4
4
6
4
2
0
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
–4  
–4  
–13  
–9  
–1  
–17  
3
3.0  
3.5  
3.6  
–5  
3.2  
3.3  
3.4  
–17  
–13  
–9  
–5  
–1  
3
3.1  
SUPPLY VOLTAGE (V)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5579 G36  
5579 G37  
5579 G35  
IM3 Level  
vs RF Output Power (2-Tone)  
IM2 Level  
vs RF Output Power (2-Tone)  
SSB Noise Figure  
vs Supply Voltage  
0
0
18  
16  
14  
12  
–20  
–40  
–20  
–40  
10  
8
–60  
–80  
–60  
–80  
6
4
2
85°C  
25°C  
–40°C  
85°C  
85°C  
25°C  
25°C  
–40°C  
–40°C  
–100  
–100  
3.1  
3.2  
3.4  
–2  
RF OUTPUT POWER (dBm/TONE)  
3.0  
3.5  
3.6  
–10 –8 –6 –4  
0
2
4
6
3.3  
–2  
RF OUTPUT POWER (dBm/TONE)  
–10 –8 –6 –4  
0
2
4
6
SUPPLY VOLTAGE (V)  
5579 G40  
5579 G39  
5579 G38  
5579fa  
LT5579  
pin FuncTions  
GND(Pins1,2,5-7,12-14,16-18,19-21,23,24):Groundꢀ  
Connections.ꢀTheseꢀpinsꢀareꢀinternallyꢀconnectedꢀtoꢀtheꢀ  
exposedꢀpadꢀandꢀshouldꢀbeꢀsolderedꢀtoꢀaꢀlowꢀimpedanceꢀ  
RFꢀgroundꢀonꢀtheꢀprintedꢀcircuitꢀboard.ꢀ  
RF (Pin 15):Single-EndedRFOutput.Thispiniscon-  
nectedꢀtoꢀanꢀinternalꢀtransformerꢀwinding.ꢀTheꢀoppositeꢀ  
endꢀofꢀtheꢀwindingꢀisꢀgroundedꢀinternally.ꢀAnꢀimpedanceꢀ  
transformationꢀmayꢀbeꢀrequiredꢀtoꢀmatchꢀtheꢀoutputꢀandꢀaꢀ  
DCꢀdecouplingꢀcapacitorꢀisꢀrequiredꢀifꢀtheꢀfollowingꢀstageꢀ  
hasꢀaꢀDCꢀbiasꢀvoltageꢀpresent.ꢀ  
+
IF , IF (Pins 3, 4):DifferentialIFInput.Thecommonꢀ  
modeꢀvoltageꢀonꢀtheseꢀpinsꢀisꢀsetꢀinternallyꢀtoꢀ570mV.ꢀTheꢀ  
DCꢀcurrentꢀfromꢀeachꢀpinꢀisꢀdeterminedꢀbyꢀtheꢀvalueꢀofꢀ  
anꢀexternalꢀresistorꢀtoꢀground.ꢀTheꢀmaximumꢀDCꢀcurrentꢀ  
throughꢀeachꢀpinꢀisꢀ60mA.ꢀ  
LO(Pin22):Single-EndedLocalOscillatorInput.Aninternalꢀ  
seriesꢀcapacitorꢀactsꢀasꢀaꢀDCꢀblockꢀtoꢀthisꢀpin.  
Exposed Pad (Pin 25):ꢀ PGND.ꢀ Electricalꢀ andꢀ thermalꢀ  
groundconnectionfortheentireIC.Thispadmustbeꢀ  
solderedꢀtoꢀaꢀlowꢀimpedanceꢀRFꢀgroundꢀonꢀtheꢀprintedꢀ  
circuitꢀboard.ꢀThisꢀgroundꢀmustꢀalsoꢀprovideꢀaꢀpathꢀforꢀ  
thermalꢀdissipation.ꢀ  
V
(Pins 8-11):PowerSupplyPinsfortheIC.Theseꢀ  
CC  
pinsꢀ areꢀ connectedꢀ togetherꢀ internally.ꢀ Typicalꢀ currentꢀ  
consumptionꢀisꢀ226mA.ꢀTheseꢀpinsꢀshouldꢀbeꢀconnectedꢀ  
togetherꢀonꢀtheꢀcircuitꢀboardꢀwithꢀexternalꢀbypassꢀcapaci-  
torsꢀofꢀ1000pF,ꢀ100pFꢀandꢀ10pFꢀlocatedꢀasꢀcloseꢀtoꢀtheꢀ  
pinsꢀasꢀpossible.  
5579fa  
LT5579  
block DiagraM  
25  
EXPOSED  
PAD  
15  
RF  
V
CC  
V
CC  
V
CC  
V
CC  
11  
10  
9
LO  
22  
DOUBLE  
BALANCED  
MIXER  
LO BUFFER  
V
CC2  
BIAS  
8
V
CC2  
V
CM  
CTRL  
+
IF  
IF  
3
4
5579 BD  
GND PINS ARE NOT SHOWN  
5579fa  
ꢀ0  
LT5579  
TesT circuiT  
LO INPUT  
R1  
L1  
24 23 22 21 20 19  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
T1  
4:1  
GND  
GND  
GND  
C1  
C2  
TL1  
TL2  
GND  
GND  
RF  
RF  
OUTPUT  
+
IF  
INPUT  
IF  
L3  
TL3  
C9  
C3  
GND  
IF  
C8  
GND  
GND  
GND  
GND  
L2  
R2  
7
8
9
10 11 12  
V
CC  
C4  
C5  
C6  
C7  
5579 F01  
f
= 1750MHz  
= 240MHz  
f
= 2140MHz  
= 240MHz  
f
= 2600MHz  
= 456MHz  
f
= 3600MHz  
= 456MHz  
RF  
IF  
RF  
IF  
RF  
IF  
RF  
IF  
REF DES  
C1,ꢀC2  
C3  
f
f
f
f
SIZE  
COMMENTS  
AVX  
82pF  
82pF  
33pF  
2.7pF  
100pF  
10pF  
1nF  
33pF  
1.8pF  
100pF  
10pF  
1nF  
0402  
0402  
0402  
0603  
0402  
0603  
0402  
0402  
0402  
0402  
0603  
SM-22  
AVX  
C4  
100pF  
10pF  
1nF  
100pF  
10pF  
1nF  
AVXꢀ  
C5  
AVX  
C6  
AVX  
C7  
1µF  
1µF  
1µF  
1µF  
TaiyoꢀYudenꢀLMK107BJ105MA  
AVXꢀACCU-P  
C8  
1.2pF  
33pF  
40nH  
6.8nH  
0.45pF  
33pF  
40nH  
3.9nH  
0.7pF  
33pF  
40nH  
0Ω  
C9  
33pF  
40nH  
1nH  
AVX  
L1,ꢀL2  
L3  
Coilcraftꢀ0402CS  
TokoꢀLL1005-FHL/0ΩꢀJumper  
IRCꢀPFC-W0603R-03-11R1-B  
M/A-COMꢀMABAES0061  
R1,ꢀR2  
T1  
11Ω,ꢀ0.1%  
4:1  
11Ω,ꢀ0.1%  
4:1  
11Ω,ꢀ0.1%  
4:1  
11Ω,ꢀ0.1%  
4:1  
TL1,ꢀTL2*  
TL3  
1mm  
1.4mm  
2mm  
Z ꢀ=ꢀ70ΩꢀMicrostrip  
O
2mm  
2mm  
2mm  
Z ꢀ=ꢀ70ΩꢀMicrostrip  
O
*Center-to-centerꢀspacingꢀbetweenꢀC9ꢀandꢀC3.ꢀCenterꢀofꢀC9ꢀisꢀ2.6mmꢀfromꢀtheꢀedgeꢀofꢀtheꢀICꢀpackageꢀforꢀallꢀcases.  
Figure 1. Test Circuit Schematic  
5579fa  
ꢀꢀ  
LT5579  
applicaTions inForMaTion  
TheꢀLT5579ꢀusesꢀaꢀhighꢀperformanceꢀLOꢀbufferꢀamplifierꢀ Theꢀpurposeꢀofꢀtheꢀinductorsꢀ(L1ꢀandꢀL2)ꢀisꢀtoꢀreduceꢀtheꢀ  
drivingadouble-balancedmixercoretoachievefrequencyꢀ loadingeffectsofR1andR2.TheimpedancesofL1andL2ꢀ  
conversionꢀwithꢀhighꢀlinearity.ꢀInternalꢀbalunsꢀareꢀusedꢀtoꢀ shouldꢀbeꢀatꢀleastꢀseveralꢀtimesꢀgreaterꢀthanꢀtheꢀIFꢀinputꢀ  
provideꢀsingle-endedꢀLOꢀinputꢀandꢀRFꢀoutputꢀports.ꢀTheꢀ impedanceꢀatꢀtheꢀdesiredꢀIFꢀfrequency.ꢀTheꢀself-resonantꢀ  
IFꢀinputꢀisꢀdifferential.ꢀTheꢀLT5579ꢀisꢀintendedꢀforꢀopera-  
frequencyꢀofꢀtheꢀinductorsꢀshouldꢀalsoꢀbeꢀatꢀleastꢀseveralꢀ  
tioninthe1.5GHzto3.8GHzfrequencyrange,thoughꢀ timesꢀtheꢀIFꢀfrequency.ꢀNoteꢀthatꢀtheꢀDCꢀresistancesꢀofꢀ  
operationꢀ outsideꢀ thisꢀ rangeꢀ isꢀ possibleꢀ withꢀ reducedꢀ L1ꢀandꢀL2ꢀwillꢀaffectꢀtheꢀDCꢀcurrentꢀandꢀmayꢀneedꢀtoꢀbeꢀ  
performance.ꢀ  
accountedꢀforꢀinꢀtheꢀselectionꢀofꢀR1ꢀandꢀR2.  
L1ꢀandꢀL2ꢀshouldꢀconnectꢀtoꢀtheꢀsignalꢀlinesꢀasꢀcloseꢀtoꢀ  
theꢀpackageꢀasꢀpossible.ꢀThisꢀlocationꢀwillꢀbeꢀatꢀtheꢀlowestꢀ  
impedancepoint,whichwillminimizethesensitivityoftheꢀ  
performanceꢀtoꢀtheꢀloadingꢀofꢀtheꢀshuntꢀL-Rꢀbranches.  
IF Input Interface  
TheIFinputsaretiedtotheemittersofthedouble-balancedꢀ  
mixerꢀtransistors,ꢀasꢀshownꢀinꢀFigureꢀ2.ꢀTheseꢀpinsꢀareꢀ  
internallyꢀbiasedꢀtoꢀaꢀcommonꢀmodeꢀvoltageꢀofꢀ570mV.ꢀ  
TheoptimumDCcurrentinthemixercoreisapproximatelyꢀ  
50mAꢀperꢀside,ꢀandꢀisꢀsetꢀbyꢀtheꢀexternalꢀresistors,ꢀR1ꢀandꢀ  
R2.ꢀTheꢀinductorsꢀandꢀresistorsꢀmustꢀbeꢀableꢀtoꢀhandleꢀ  
theanticipatedcurrentandpowerdissipation.Forbestꢀ  
LOꢀleakageꢀperformanceꢀtheꢀboardꢀlayoutꢀmustꢀbeꢀsym-  
CapacitorsꢀC1ꢀandꢀC2ꢀareꢀusedꢀtoꢀcancelꢀoutꢀtheꢀparasiticꢀ  
seriesꢀinductanceꢀofꢀtheꢀIFꢀtransformer.ꢀTheyꢀalsoꢀprovideꢀ  
DCisolationbetweentheIFportstopreventunwantedinter-  
actionsꢀthatꢀcanꢀaffectꢀtheꢀLOꢀtoꢀRFꢀleakageꢀperformance.ꢀ  
Theꢀdifferentialꢀinputꢀresistanceꢀtoꢀtheꢀmixerꢀisꢀapproxi-  
metricalꢀandꢀtheꢀinputꢀresistorsꢀshouldꢀbeꢀwellꢀmatchedꢀ matelyꢀ10Ω,ꢀasꢀindicatedꢀinꢀTableꢀ1.ꢀTheꢀpackageꢀandꢀ  
(0.1%ꢀtoleranceꢀisꢀrecommended).ꢀ  
externalꢀinductancesꢀ(TL1ꢀandꢀTL2)ꢀareꢀusedꢀalongꢀwithꢀ  
R1  
L1  
LT5579  
IF  
50mA  
C1  
C2  
INPUT T1  
TL1  
+
IF  
4:1  
3
4
570mV  
2k  
2k  
V
CC  
C9  
TL2  
C3  
IF  
570mV  
50mA  
L2  
5579 F02  
R2  
Figure 2. IF Input with External Matching  
5579fa  
ꢀꢁ  
LT5579  
applicaTions inForMaTion  
C9ꢀtoꢀstepꢀtheꢀimpedanceꢀupꢀtoꢀaboutꢀ12.5Ω.ꢀAtꢀlowerꢀ Theꢀ purposeꢀ ofꢀ capacitorꢀ C3ꢀ isꢀ toꢀ improveꢀ theꢀ LO-RFꢀ  
frequenciesꢀadditionalꢀseriesꢀinductanceꢀmayꢀbeꢀrequiredꢀ leakageꢀinꢀsomeꢀapplications.ꢀThisꢀrelativelyꢀsmall-valuedꢀ  
betweenꢀtheꢀIFꢀportsꢀandꢀC9.ꢀTheꢀpositionꢀofꢀC9ꢀmayꢀvaryꢀ capacitorꢀhasꢀlittleꢀeffectꢀonꢀtheꢀimpedanceꢀmatchꢀinꢀmostꢀ  
withtheIFfrequencyduetothedifferentseriesinductanceꢀ cases.ꢀThisꢀcapacitorꢀshouldꢀtypicallyꢀbeꢀlocatedꢀcloseꢀtoꢀ  
requirements.ꢀTheꢀ4:1ꢀimpedanceꢀratioꢀofꢀtransformerꢀT1ꢀ theꢀIC,ꢀhowever,ꢀthereꢀmayꢀbeꢀcasesꢀwhereꢀre-positioningꢀ  
completesthetransformationto50ohms.Tableꢀ1ꢀlistsꢀtheꢀ theꢀcapacitorꢀmayꢀimproveꢀperformance.  
differentialIFinputimpedancesandreflectioncoefficientsꢀ  
forꢀseveralꢀfrequencies.  
Theꢀ measuredꢀ returnꢀ lossꢀ ofꢀ theꢀ IFꢀ inputꢀ isꢀ shownꢀ inꢀ  
Figureꢀ3ꢀforꢀapplicationꢀfrequenciesꢀofꢀ70MHz,ꢀ240MHzꢀ  
andꢀ456MHz.ꢀComponentꢀvaluesꢀareꢀlistedꢀinꢀTableꢀ2.ꢀ(Forꢀ  
70MHzꢀmatchingꢀdetails,ꢀreferꢀtoꢀFigureꢀ8.)  
Table 1. IF Input Differential Impedance  
REFLECTION COEFFICIENT  
FREQUENCY  
(MHz)  
IF INPUT  
IMPEDANCE  
MAG  
0.70  
0.70  
0.70  
0.70  
0.70  
0.68  
0.67  
0.65  
0.64  
ANGLE  
177  
175  
174  
173  
170  
168  
167  
158  
148  
Table 2. IF Input Component Values  
70  
140  
170  
190  
240  
380  
450  
750  
1000  
8.8+j1.3  
8.7+j2.3  
9.0+j2.8  
8.9+j3.0  
9.0+j4.0  
9.7+j4.9  
10.0+j5.2  
10.8+j9.4  
11.8+j13.8  
FREQUENCY C1, C2  
C9  
C3  
L1, L2 R1, R2 MATCH BW  
(MHz)  
70(3)  
140  
(pF)  
1000  
180  
82  
(pF)  
(pF)  
(nH)  
100  
100  
40  
(Ω) (at 12dB RL)  
120  
22  
(1)  
(1)  
(1)  
(1)  
9.1  
9.1  
11  
<50ꢀtoꢀ158  
112ꢀtoꢀ170  
174ꢀtoꢀ263  
330ꢀtoꢀ505  
240  
33  
450  
33  
33  
40  
11  
Note:ꢀ(1)ꢀDependsꢀonꢀRF,ꢀ(2)ꢀT1ꢀ=ꢀM/A-ComꢀMABAES0061,ꢀꢀ  
(3)ꢀSeeꢀFigureꢀ8  
0
–5  
–10  
–15  
–20  
–25  
c
b
a
400  
0
100 200 300  
500 600 700 800  
FREQUENCY (MHz)  
5579 F03  
Figure 3. IF Input Return Loss with 70MHz (a),  
240MHz (b) and 456MHz (c) Matching  
5579fa  
ꢀꢂ  
1000  
1500  
1900  
2000  
2150  
2400  
3050  
3150  
4000  
                                                                                
                                                                                
79.1||–  
74.7||–  
66.8||–  
53.8||–  
33.7||–  
33.0||–  
43.9||+  
                                                                                
j113  
j96.3  
j81.5  
j69.8  
j115  
j146  
j173  
–65.2  
–74.7  
–87.0  
–105  
–148  
–154  
123  
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
750  
63.3||–  
20.3||–  
78.4||–  
                                                                                
j30.5  
j1120  
j1250  
LT5579  
applicaTions inForMaTion  
LO Input Interface  
WhileꢀexternalꢀmatchingꢀofꢀtheꢀLOꢀinputꢀisꢀnotꢀrequiredꢀ  
forꢀfrequenciesꢀaboveꢀ1.1GHz,ꢀexternalꢀmatchingꢀshouldꢀ  
beꢀusedꢀforꢀlowerꢀLOꢀfrequenciesꢀforꢀbestꢀperformance.ꢀ  
Tableꢀ3ꢀlistsꢀtheꢀinputꢀimpedanceꢀandꢀreflectionꢀcoefficientꢀ  
vsꢀfrequencyꢀforꢀtheꢀLOꢀinputꢀforꢀuseꢀinꢀsuchꢀcases.  
Thesimplifiedschematicforthesingle-endedLOinputportꢀ  
isꢀshownꢀinꢀFigureꢀ4.ꢀAnꢀinternalꢀtransformerꢀprovidesꢀaꢀ  
broadbandꢀimpedanceꢀmatchꢀandꢀperformsꢀsingle-endedꢀ  
toꢀdifferentialꢀconversion.ꢀAnꢀinternalꢀcapacitorꢀalsoꢀaidsꢀ  
inꢀimpedanceꢀmatchingꢀandꢀprovidesꢀDCꢀisolationꢀtoꢀtheꢀ  
primaryꢀtransformerꢀwinding.ꢀTheꢀtransformerꢀsecondaryꢀ  
feedsꢀtheꢀdifferentialꢀlimitingꢀamplifierꢀstagesꢀthatꢀdriveꢀ  
theꢀmixerꢀcore.  
Table 3. Single-Ended LO Input Impedance  
(at Pin 22, No External Match)  
REFLECTION COEFFICIENT  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
MAG  
0.68  
0.42  
0.22  
0.34  
0.35  
0.36  
0.35  
0.26  
0.24  
0.15  
ANGLE  
–125  
–179  
–7.7  
TheꢀmeasuredꢀreturnꢀlossꢀofꢀtheꢀLOꢀinputꢀportꢀisꢀshownꢀ  
inꢀFigureꢀ5ꢀforꢀanꢀLOꢀinputꢀpowerꢀofꢀ–1dBm.ꢀTheꢀimped-  
anceꢀmatchꢀisꢀacceptableꢀfromꢀaboutꢀ1.1GHzꢀtoꢀbeyondꢀ  
4GHz,ꢀwithꢀaꢀminimumꢀreturnꢀlossꢀacrossꢀthisꢀrangeꢀofꢀ  
about9dBat2300MHz.Ifdesired,thereturnlosscanꢀ  
beimprovedbelow1.1GHzbyexternalcomponentsasꢀ  
shownꢀinꢀFigureꢀ4.ꢀTheꢀreturnꢀlossꢀcanꢀalsoꢀbeꢀimprovedꢀ  
byꢀreducingꢀtheꢀLOꢀdriveꢀlevel,ꢀthoughꢀperformanceꢀwillꢀ  
degradeꢀifꢀtheꢀlevelꢀisꢀtooꢀlow.  
EXTERNAL  
MATCHING  
FOR LOW  
FREQUENCY  
ONLY  
0
V
CC  
LO  
INPUT  
–5  
–10  
–15  
–20  
–25  
L6  
LO  
22  
C13  
V
BIAS  
5579 F04  
Figure 4. LO Input Circuit  
500 1000 1500 2000 2500 3000 3500 4000  
FREQUENCY (MHz)  
5579 F05  
Figure 5. LO Input Return Loss  
5579fa  
ꢀꢃ  
LT5579  
applicaTions inForMaTion  
RF Output Interface  
Table 4. Single-Ended RF Output Impedance  
(at Pin 15, No External Matching)  
TheꢀRFꢀoutputꢀinterfaceꢀisꢀshownꢀinꢀFigureꢀ6.ꢀAnꢀinternalꢀ  
RFꢀtransformerꢀreducesꢀtheꢀmixerꢀcoreꢀoutputꢀimpedanceꢀ  
toꢀsimplifyꢀmatchingꢀofꢀtheꢀRFꢀoutputꢀpin.ꢀAꢀcenterꢀtapꢀinꢀ  
theꢀtransformerꢀprovidesꢀtheꢀDCꢀconnectionꢀtoꢀtheꢀmixerꢀ  
coreꢀandꢀtheꢀtransformerꢀprovidesꢀDCꢀisolationꢀtoꢀtheꢀRFꢀ  
output.TheRFpinisinternallygroundedthroughtheꢀ  
secondaryꢀwindingꢀofꢀtheꢀtransformer,ꢀthusꢀaꢀDCꢀvoltageꢀ  
shouldꢀnotꢀbeꢀappliedꢀtoꢀthisꢀpin.  
REFLECTION COEFFICIENT  
FREQUENCY  
(MHz)  
RF OUTPUT  
IMPEDANCE  
MAG  
0.78  
0.62  
0.52  
0.42  
0.34  
0.30  
0.45  
ANGLE  
97.4  
1250  
1750  
1950  
2150  
2300  
2600  
3600  
11.0+j42.7  
55.6+j83.4  
119+j62.4  
116–j21.0  
73.7–j37.7  
35.2–j21.5  
21.9+j17.8  
47.8  
21.9  
–10.4  
–40.9  
–110  
134  
Whileꢀ theꢀ LT5579ꢀ performsꢀ bestꢀ atꢀ frequenciesꢀ aboveꢀ  
1500MHz,thepartcanbeuseddownto900MHz.Theꢀ  
internalꢀRFꢀtransformerꢀisꢀnotꢀoptimizedꢀforꢀtheseꢀlowerꢀ  
frequencies,thusthegainandimpedancematchingband-  
widthwilldecreaseduetothelowtransformerinductance.ꢀ  
TheꢀimpedanceꢀdataꢀforꢀtheꢀRFꢀoutput,ꢀlistedꢀinꢀTableꢀ4,ꢀ  
canꢀbeꢀusedꢀtoꢀdevelopꢀmatchingꢀnetworksꢀforꢀdifferentꢀ  
frequenciesꢀorꢀloadꢀimpedances.ꢀFigureꢀ7ꢀillustratesꢀtheꢀ  
outputꢀreturnꢀlossꢀperformanceꢀforꢀseveralꢀapplications.ꢀ  
Theꢀcomponentꢀvaluesꢀandꢀapproximateꢀmatchingꢀband-  
widthsꢀareꢀlistedꢀinꢀTableꢀ5.  
Table 5. RF Output Component Values  
FREQUENCY  
(MHz)  
1650  
1750  
1950  
2140  
2600  
3600  
C8 (pF)  
1.5  
1.2  
1
L3 (nH)  
MATCH BW (at 12dB RL)  
1630ꢀtoꢀ1770  
6.8  
6.8  
1725ꢀtoꢀ1870  
4.7  
1840ꢀtoꢀ2020  
0.45  
3.9  
2035ꢀtoꢀ2285  
1
2260ꢀtoꢀ2780*  
3170ꢀtoꢀ4100*  
0.7  
0Ω  
*10dBꢀReturnꢀLossꢀbandwidth  
DC and RF Grounding  
0
TheꢀLT5579ꢀreliesꢀonꢀtheꢀbackꢀsideꢀgroundꢀforꢀbothꢀRFꢀandꢀ  
thermalꢀperformance.ꢀTheꢀExposedꢀPadꢀmustꢀbeꢀsolderedꢀ  
toꢀtheꢀlowꢀimpedanceꢀtopsideꢀgroundꢀplaneꢀofꢀtheꢀboard.ꢀ  
Severalꢀviasꢀshouldꢀconnectꢀtheꢀtopsideꢀgroundꢀtoꢀotherꢀ  
groundꢀlayersꢀtoꢀaidꢀinꢀthermalꢀdissipation.  
–5  
–10  
–15  
–20  
c
LT5579  
d
RF  
50Ω  
a
b
L3  
–25  
1500  
15  
2000  
2500  
3000  
3500  
4000  
C8  
FREQUENCY (MHz)  
5579 F07  
Figure 7. RF Output Return Loss with 1750MHz (a),  
2140MHz (b), 2600MHz (c) and 3600MHz (d) Matching  
5579 F06  
8
9
10  
11  
V
CC  
Figure 6. RF Output Circuit  
5579fa  
ꢀꢄ  
LT5579  
Typical applicaTions  
wasꢀpurposefullyꢀshiftedꢀhighꢀinꢀorderꢀtoꢀachieveꢀbetterꢀ  
OIP3ꢀperformanceꢀatꢀtheꢀdesiredꢀfrequency.  
Theꢀ followingꢀ examplesꢀ illustrateꢀ theꢀ implementationꢀ  
andꢀ performanceꢀ ofꢀ theꢀ LT5579ꢀ inꢀ differentꢀ frequencyꢀ  
configurations.ꢀTheseꢀcircuitsꢀwereꢀevaluatedꢀusingꢀtheꢀ  
circuitꢀboardꢀshownꢀinꢀFigureꢀ12.  
Figureꢀ9ꢀshowsꢀtheꢀmeasuredꢀconversionꢀgainꢀandꢀOIP3ꢀ  
asafunctionofRFoutputfrequency.Asmentionedabove,ꢀ  
theꢀoutputꢀimpedanceꢀmatchꢀisꢀshiftedꢀtowardsꢀtheꢀhighꢀ  
sideoftheband,andthisisevidencedbythepositiveslopeꢀ  
ofꢀtheꢀgain.ꢀTheꢀsingleꢀsidebandꢀnoiseꢀfigureꢀacrossꢀtheꢀ  
frequencyꢀrangeꢀisꢀalsoꢀshown.ꢀ  
1650MHz Application  
Inꢀthisꢀcase,ꢀtheꢀLT5579ꢀwasꢀevaluatedꢀwhileꢀtunedꢀforꢀanꢀ  
IFꢀofꢀ70MHzꢀandꢀanꢀRFꢀoutputꢀofꢀ1650MHz.ꢀTheꢀmatchingꢀ  
configurationꢀisꢀshownꢀinꢀFigureꢀ8.ꢀ  
Curvesꢀ forꢀ bothꢀ highꢀ sideꢀ andꢀ lowꢀ sideꢀ LOꢀ casesꢀ areꢀ  
shown.ꢀInꢀthisꢀparticularꢀapplication,ꢀtheꢀlowꢀsideꢀOIP3ꢀ  
outperformsꢀtheꢀhighꢀsideꢀcase.  
InputꢀcapacitorsꢀareꢀusedꢀonlyꢀasꢀDCꢀblocksꢀinꢀthisꢀap-  
plication.ꢀTheꢀ4.7nHꢀinductorsꢀandꢀtheꢀ120pFꢀcapacitorꢀ  
transformtheinputimpedanceoftheICuptoapproximatelyꢀ  
35  
OIP3  
30  
25  
9.1Ω  
T
f
= 25°C  
A
= 70MHz  
100nH  
IF  
20  
15  
10  
5
47pF  
LO  
P
= –5dBm/TONE  
= –1dBm  
LOW SIDE LO  
HIGH SIDE LO  
IF  
P
LO  
MABAES0061  
4:1  
SSB NF  
1nF  
1nF  
4.7nH  
120pF  
4.7nH  
RF  
1650MHz  
6.8nH  
1.5pF  
IF  
70MHz  
GAIN  
0
47pF  
–5  
5579 F08  
1650  
RF OUTPUT FREQUENCY (MHz)  
1550  
1600  
1700  
1750  
100nH  
5579 F09  
9.1Ω  
Figure 9. Gain, Noise Figure and OIP3 vs  
RF Frequency with 70MHz IF and 1650MHz RF  
Figure 8. IF Input Tuned for 70MHz  
1950MHz Application  
12.5Ω.ꢀTheꢀrelativelyꢀlowꢀinputꢀfrequencyꢀdemandedꢀtheꢀ  
useꢀofꢀ4.7nHꢀchipꢀinductorsꢀinsteadꢀofꢀshortꢀtransmissionꢀ  
lines.ꢀ  
Inꢀthisꢀexample,ꢀaꢀhighꢀsideꢀLOꢀwasꢀusedꢀtoꢀconvertꢀtheꢀIFꢀ  
inputꢀsignalꢀatꢀ240MHzꢀtoꢀ1950MHzꢀatꢀtheꢀRFꢀoutput.ꢀTheꢀ  
RFꢀportꢀimpedanceꢀmatchꢀwasꢀrealizedꢀwithꢀC8ꢀ=ꢀ1pFꢀandꢀ  
L3ꢀ=ꢀ4.7nH.ꢀAsꢀinꢀtheꢀ1650MHzꢀcase,ꢀitꢀwasꢀfoundꢀthatꢀ  
tuningꢀtheꢀoutputꢀmatchꢀslightlyꢀhighꢀinꢀfrequencyꢀgaveꢀ  
betterOIP3resultsatthedesiredfrequency.Theinputꢀ  
matchꢀforꢀ240MHzꢀoperationꢀisꢀtheꢀsameꢀasꢀdescribedꢀinꢀ  
theꢀtestꢀcircuitꢀofꢀFigureꢀ1.  
CloserꢀtoꢀtheꢀICꢀinput,ꢀ47pFꢀcapacitorsꢀwereꢀusedꢀinsteadꢀ  
ofasingledifferentialcapacitor(C3inFigure1),becauseitꢀ  
wasꢀfoundꢀthatꢀtheꢀadditionꢀofꢀcommonꢀmodeꢀcapacitanceꢀ  
improvedꢀtheꢀhighꢀsideꢀLOꢀperformanceꢀinꢀthisꢀapplica-  
tion.ꢀTheꢀvalueꢀofꢀtheseꢀ47pFꢀcapacitorsꢀwasꢀselectedꢀtoꢀ  
resonateꢀwithꢀtheꢀ100nHꢀinductorsꢀatꢀ70MHz.ꢀNoteꢀthatꢀ  
addingꢀ commonꢀ modeꢀ capacitanceꢀ doesꢀ notꢀ improveꢀ  
performanceꢀwithꢀallꢀfrequencyꢀconfigurations.  
Theꢀmeasuredꢀ1950MHzꢀperformanceꢀisꢀplottedꢀinꢀFig-  
ureꢀ10ꢀforꢀbothꢀlowꢀsideꢀandꢀhighꢀsideꢀLOꢀdrive.ꢀWithꢀthisꢀ  
matchingconfiguration,thelowsideLOcaseoutperformsꢀ  
theꢀhighꢀsideꢀLO.ꢀTheꢀgain,ꢀnoiseꢀfigureꢀ(SSB)ꢀandꢀOIP3ꢀ  
areꢀplottedꢀasꢀaꢀfunctionꢀofꢀRFꢀoutputꢀfrequency.  
TheRFportimpedancematchwasrealizedwithC8=ꢀ  
1.5pFꢀandꢀL3ꢀ=ꢀ6.8nH.ꢀTheꢀoptimumꢀimpedanceꢀmatchꢀ  
5579fa  
ꢀꢅ  
LT5579  
Typical applicaTions  
35  
benefitedfromtheadditionofcommonmodecapacitanceꢀ  
totheIFinputmatch.A10pFcapacitortogroundwasꢀ  
addedꢀ toꢀ eachꢀ IFꢀ pin.ꢀ Theseꢀ capacitorsꢀ wereꢀ attachedꢀ  
nearꢀinductorsꢀL1ꢀandꢀL2.ꢀTheꢀmeasuredꢀperformanceꢀisꢀ  
shownꢀinꢀFigureꢀ11.  
OIP3  
30  
25  
T
= 25°C  
A
f
= 240MHz  
= –5dBm/TONE  
IF  
P
P
LOW SIDE LO  
HIGH SIDE LO  
20  
15  
10  
5
IF  
= –1dBm  
LO  
30  
SSB NF  
GAIN  
OIP3  
25  
T
= 25°C  
= 240MHz  
= –5dBm/TONE  
A
f
20  
15  
10  
5
IF  
P
P
IF  
0
1800  
= –1dBm  
LO  
1850  
1900  
1950  
2050  
2000  
f
= f + f  
RF IF LO  
RF OUTPUT FREQUENCY (MHz)  
SSB NF  
5579 F10  
Figure 10. Gain, Noise Figure and OIP3 vs  
RF Frequency for the 1950MHz Application  
GAIN  
0
2000  
2100 2150 2200 2250 2300  
2050  
2140MHz with Low Side LO  
RF OUTPUT FREQUENCY (MHz)  
5579 F11  
TheꢀLT5579ꢀwasꢀfullyꢀcharacterizedꢀwithꢀanꢀRFꢀoutputꢀofꢀ  
2140MHzꢀandꢀaꢀhighꢀsideꢀLO.ꢀTheꢀpartꢀalsoꢀworksꢀwellꢀ  
whenꢀdrivenꢀwithꢀlowꢀsideꢀLO,ꢀhowever,ꢀtheꢀperformanceꢀ  
Figure 11. Measured Performance when Tuned  
for 240MHz IF, 2140MHz RF and Low Side LO  
Figure 12. LT5579 Evaluation Board (DC1233A)  
5579fa  
ꢀꢆ  
LT5579  
package DescripTion  
UH Package  
24-Lead Plastic QFN (5mm × 5mm)  
(ReferenceꢀLTCꢀDWGꢀ#ꢀ05-08-1747ꢀRevꢀA)  
0.75 p0.05  
5.40 p0.05  
3.90 p0.05  
3.20 p 0.05  
3.25 REF  
3.20 p 0.05  
PACKAGE OUTLINE  
0.30 p 0.05  
0.65 BSC  
PIN 1 NOTCH  
R = 0.30 TYP  
OR 0.35 s 45o  
CHAMFER  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
R = 0.150  
R = 0.05  
TYP  
0.75 p 0.05  
5.00 p 0.10  
TYP  
23 24  
0.00 – 0.05  
0.55 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
3.20 p 0.10  
5.00 p 0.10  
3.25 REF  
3.20 p 0.10  
(UH24) QFN 0708 REV A  
0.200 REF  
0.30 p 0.05  
0.65 BSC  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5579fa  
ꢀꢇ  
LT5579  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
6/10  
RevisedꢀTypicalꢀApplicationꢀdrawing.  
1
RevisedꢀAbsoluteꢀMaximumꢀRatings,ꢀPinꢀConfigurationꢀandꢀDCꢀElectricalꢀCharacteristicsꢀsections.  
RevisedꢀACꢀElectricalꢀCharacteristicsꢀsectionꢀparametersꢀandꢀNoteꢀ3.  
RevisedꢀFigureꢀ1ꢀtable.  
2
3
11  
UpdateꢀTablesꢀ2,ꢀ3ꢀandꢀ5ꢀinꢀApplicationsꢀInformationꢀsection  
AddedꢀTypicalꢀApplicationꢀdrawingꢀandꢀgraph,ꢀandꢀrevisedꢀRelatedꢀPartsꢀlist  
13,ꢀ14,ꢀ15  
20  
5579fa  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.ꢀ  
However,ꢀnoꢀresponsibilityꢀisꢀassumedꢀforꢀitsꢀuse.ꢀLinearꢀTechnologyꢀCorporationꢀmakesꢀnoꢀrepresenta-  
tionꢀthatꢀtheꢀinterconnectionꢀofꢀitsꢀcircuitsꢀasꢀdescribedꢀhereinꢀwillꢀnotꢀinfringeꢀonꢀexistingꢀpatentꢀrights.  
ꢀꢈ  
LT5579  
Typical applicaTion  
2650MHz LTE Downlink Transmitter  
LO INPUT  
–1dBm (TYP)  
Gain and OIP3 vs  
RF Output Frequency  
10  
9
8
7
6
5
4
3
2
1
0
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
LO  
LT5579  
OIP3  
GND  
RF  
T
= 25°C  
A
CC  
LOW-SIDE LO  
HIGH-SIDE LO  
V
= 3.3V  
BIAS  
11Ω  
f
IF  
= 380MHz  
IF  
RF  
OUTPUT  
2650MHz  
INPUT  
40nH  
MABAES0061  
4:1  
33pF  
33pF  
380MHz  
1nH  
+
IF  
GAIN  
33pF  
2.7pF  
IF  
2500 2550 2600 2650 2700 2750 2800  
RF FREQUENCY (MHz)  
5579 TA02b  
40nH  
11Ω  
V
CC  
5579 TA02a  
V
CC  
3.3V  
1µF  
100pF  
1nF  
relaTeD parTs  
PART NUMBER DESCRIPTION  
Infrastructure  
COMMENTS  
LT5527  
400MHzꢀtoꢀ3.7GHz,ꢀ5VꢀDownconvertingꢀMixer  
2.3dBꢀGain,ꢀ23.5dBmꢀIIP3ꢀandꢀ12.5dBꢀNFꢀatꢀ1900MHz,ꢀ5V/78mAꢀSupply  
LT5557  
400MHzꢀtoꢀ3.8GHz,ꢀ3.3VꢀDownconvertingꢀMixer 2.9dBꢀGain,ꢀ24.7dBmꢀIIP3ꢀandꢀ11.7dBꢀNFꢀatꢀ1950MHz,ꢀ3.3V/82mAꢀSupply  
LTC6400-X  
LTC6401-X  
LTC6416  
LTC6412  
LT5554  
300MHzꢀLowꢀDistortionꢀIFꢀAmp/ADCꢀDriver  
140MHzꢀLowꢀDistortionꢀIFꢀAmp/ADCꢀDriver  
2GHzꢀ16-BitꢀADCꢀBuffer  
FixedꢀGainꢀofꢀ8dB,ꢀ14dB,ꢀ20dBꢀandꢀ26dB;ꢀ>36dBmꢀOIP3ꢀatꢀ300MHz,ꢀDifferentialꢀI/O  
FixedꢀGainꢀofꢀ8dB,ꢀ14dB,ꢀ20dBꢀandꢀ26dB;ꢀ>40dBmꢀOIP3ꢀatꢀ140MHz,ꢀDifferentialꢀI/O  
40.25dBmꢀOIP3ꢀtoꢀ300MHz,ꢀProgrammableꢀFastꢀRecoveryꢀOutputꢀClamping  
35dBmꢀOIP3ꢀatꢀ240MHz,ꢀContinuousꢀGainꢀRangeꢀ–14dBꢀtoꢀ17dB  
31dBꢀLinearꢀAnalogꢀVGA  
UltralowꢀDistortꢀIFꢀDigitalꢀVGA  
48dBmꢀOIP3ꢀatꢀ200MHz,ꢀ2dBꢀtoꢀ18dBꢀGainꢀRange,ꢀ0.125dBꢀGainꢀSteps  
LT5575  
700MHzꢀtoꢀ2.7GHzꢀDirectꢀConversionꢀI/Qꢀ  
Demodulator  
IntegratedꢀBaluns,ꢀ28dBmꢀIIP3,ꢀ13dBmꢀP1dB,ꢀ0.03dBꢀI/QꢀAmplitudeꢀMatch,ꢀꢀ  
0.4°ꢀPhaseꢀMatch  
LT5578  
400MHzꢀtoꢀ2.7GHzꢀUpconvertingꢀMixer  
5MHzꢀtoꢀ1.6GHzꢀI/QꢀModulator  
27dBmꢀOIP3ꢀatꢀ900MHz,ꢀ24.2dBmꢀatꢀ1.95GHz,ꢀIntegratedꢀRFꢀTransformer  
27.7dBmꢀOIP3ꢀatꢀ140MHz,ꢀ22.9dBmꢀatꢀ900MHz,ꢀ–161.2dBm/HzꢀNoiseꢀFloor  
LTC5598  
RF Power Detectors  
LT5534  
50MHzꢀtoꢀ3GHzꢀLogꢀRFꢀPowerꢀDetectorꢀwithꢀ  
60dBꢀDynamicꢀRange  
1dBꢀOutputꢀVariationꢀoverꢀTemperature,ꢀ38nsꢀResponseꢀTime,ꢀLogꢀLinearꢀ  
Response  
LT5537  
WideꢀDynamicꢀRangeꢀLogꢀRF/IFꢀDetector  
2.7GHzꢀMean-SquaredꢀDetector  
6GHzꢀLowꢀPowerꢀRMSꢀDetector  
LowꢀFrequencyꢀtoꢀ1GHz,ꢀ83dBꢀLogꢀLinearꢀDynamicꢀRange  
LT5570  
0.5dBꢀAccuracyꢀOverꢀTemperatureꢀandꢀ>50dBꢀDynamicꢀRange,ꢀ500nsꢀRiseꢀTime  
40dBꢀDynamicꢀRange,ꢀ 1dBꢀAccuracyꢀOverꢀTemperature,ꢀ1.5mAꢀSupplyꢀCurrent  
LT5581  
ADCs  
LTC2208  
LTC2262-14  
LTC2242-12  
16-Bit,ꢀ130MspsꢀADC  
78dBFSꢀNoiseꢀFloor,ꢀ>83dBꢀSFDRꢀatꢀ250MHz  
14-Bit,ꢀ150MspsꢀADCꢀUltralowꢀPower  
12-Bit,ꢀ250MspsꢀADC  
72.8dBꢀSNR,ꢀ88dBꢀSFDR,ꢀ149mWꢀPowerꢀConsumption  
65.4dBꢀSNR,ꢀ78dBꢀSFDR,ꢀ740mWꢀPowerꢀConsumption  
5579fa  
LT 0610 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630ꢀ McCarthyꢀ Blvd.,ꢀ Milpitas,ꢀ CAꢀ 95035-7417  
ꢁ0  
ꢀ  
LINEAR TECHNOLOGY CORPORATION 2008  
(408)ꢀ432-1900ꢀ FAX:(408)434-0507ꢀ www.linear.com  

相关型号:

LT5579IUH#TRPBF

LT5579 - 1.5GHz to 3.8GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5579IUH-PBF

1.5GHz to 3.8GHz High Linearity Upconverting Mixer
Linear

LT5579IUH-TRPBF

1.5GHz to 3.8GHz High Linearity Upconverting Mixer
Linear

LT5581

6GHz RMS Power Detector with 40dB Dynamic Range
Linear

LT5581IDDB#PBF

LT5581 - 6GHz RMS Power Detector with 40dB Dynamic Range; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5581IDDB-PBF

6GHz RMS Power Detector with 40dB Dynamic Range
Linear

LT5581IDDB-TRPBF

6GHz RMS Power Detector with 40dB Dynamic Range
Linear

LT560Z

GREEN OVAL LAMP LED
SEOUL

LT561

INFRARED LAMP LED
SEOUL

LT569S-BC

Single Color LED, Blue, Water Clear Tinted, T-1 3/4, 5mm,
SENSITRON

LT569S-GC-1

Single Color LED, Green, Water Clear Tinted, T-1 3/4, 5mm,
SENSITRON

LT569S-GC-2

Single Color LED, Green, Water Clear Tinted, T-1 3/4, 5mm,
SENSITRON