LT6010ACDD#TR [Linear]

LT6010 - 135µA, 14nV/rtHz, Rail-to-Rail Output Precision Op Amp with Shutdown; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C;
LT6010ACDD#TR
型号: LT6010ACDD#TR
厂家: Linear    Linear
描述:

LT6010 - 135µA, 14nV/rtHz, Rail-to-Rail Output Precision Op Amp with Shutdown; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C

放大器
文件: 总16页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6010  
135µA, 14nV/Hz,  
Rail-to-Rail Output Precision  
Op Amp with Shutdown  
U
FEATURES  
DESCRIPTIO  
35µV Maximum Offset Voltage  
The LT®6010 op amp combines low noise and high preci-  
sion input performance with low power consumption and  
rail-to-rail output swing.  
110pA Maximum Input Bias Current  
135µA Supply Current  
Rail-to-Rail Output Swing  
12µA Supply Current in Shutdown  
120dB Minimum Voltage Gain (VS = ±15V)  
0.8µV/°C Maximum VOS Drift  
14nV/Hz Input Noise Voltage  
2.7V to ±18V Supply Voltage Operation  
Operating Temperature Range: 40°C to 85°C  
Space Saving 3mm × 3mm DFN Package  
Input offset voltage is trimmed to less than 35µV. The low  
drift and excellent long-term stability guarantee a high  
accuracy over temperature and over time. The 110pA  
maximum input bias current and 120dB minimum voltage  
gain further maintain this precision over operating  
conditions.  
TheLT6010worksonanypowersupplyvoltagefrom2.7V  
to 36V, and draws only 135µA of supply current on a 5V  
supply. A power saving shutdown feature reduces supply  
current to 12µA. The output voltage swings to within  
40mV of either supply rail, making the amplifier a good  
choice for low voltage single supply operation.  
U
APPLICATIO S  
Thermocouple Amplifiers  
Precision Photo Diode Amplifiers  
Instrumentation Amplifiers  
TheLT6010isfullyspecifiedat5Vand±15Vsuppliesand  
from –40°C to 85°C. The device is available in SO-8 and  
space-saving 3mm × 3mm DFN packages. This op amp  
is also available in dual (LT6011) and quad (LT6012)  
Battery-Powered Precision Systems  
packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Single Supply Current Source for Platinum RTD  
Distribution of Offset Voltage Drift  
R5  
1k, 5%  
20  
V
S
= ±2.5V  
SO-8 PACKAGES  
18  
16  
14  
12  
10  
8
+
V
= 100mV AT 0°C + 385µV/°C  
–50°C TO 600°C  
OUT  
1k  
AT 0°C  
RTD*  
C1  
V
S
0.1µF  
R4  
1k, 5%  
2
7
6
6
R1  
12.4k  
0.1%  
3 +LT6010  
4
4
R2  
100Ω  
1%  
2
6
4
0
V
LT1790-1.25  
S
–0.8 –0.6 –0.4 –0.2  
0
0.2 0.4 0.6 0.8  
1µF  
1
2
V
CC  
= 2.7V TO 20V  
320µA  
S
DISTRIBUTION (µV/°C)  
I
6010 TA01b  
*OMEGA F3141 1k, 0.1% PLATINUM RTD  
(800) 826-6342  
6010 TA01a  
sn6010 6010fs  
1
LT6010  
W W  
U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Total Supply Voltage (V+ to V) .............................. 40V  
Differential Input Voltage (Note 2) .......................... 10V  
Input Voltage, Shutdown Voltage ..................... V+ to V–  
Input Current (Note 2) ....................................... ±10mA  
Output Short-Circuit Duration (Note 3)........... Indefinite  
Operating Temperature Range (Note 4) .. 40°C to 85°C  
Specified Temperature Range (Note 5)... 40°C to 85°C  
Maximum Junction Temperature  
DD Package ..................................................... 125°C  
SO-8 Package .................................................. 150°C  
Storage Temperature Range  
DD Package ..................................... 65°C to 125°C  
SO-8 Package .................................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
NULL  
–IN  
1
2
3
4
8
7
6
5
NULL  
NULL  
–IN  
1
2
3
4
8
7
6
5
NULL  
LT6010CDD  
LT6010IDD  
LT6010ACDD  
LT6010AIDD  
LT6010CS8  
LT6010IS8  
LT6010ACS8  
LT6010AIS8  
+
V
+
+
V
+
+IN  
OUT  
+IN  
OUT  
V
SHDN  
V
SHDN  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 190°C/W  
S8 PART MARKING  
DD PART MARKING*  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
6010  
LADU  
TJMAX = 125°C, θJA = 160°C/W  
UNDERSIDE METAL INTERNALLY CONNECTED TO V–  
(PCB CONNECTION OPTIONAL)  
6010I  
6010A  
6010AI  
*Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V; VCM = 2.5V; RL to 0V; SHDN = 0.2V, unless otherwise  
specified. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage (Note 7)  
LT6010AS8  
10  
35  
60  
75  
µV  
µV  
µV  
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
LT6010S8  
T = 0°C to 70°C  
20  
20  
30  
55  
85  
110  
µV  
µV  
µV  
A
T = –40°C to 85°C  
A
LT6010ADD  
T = 0°C to 70°C  
60  
85  
100  
µV  
µV  
µV  
A
T = –40°C to 85°C  
A
LT6010DD  
T = 0°C to 70°C  
80  
110  
135  
µV  
µV  
µV  
A
T = –40°C to 85°C  
A
V /T  
Input Offset Voltage Drift (Note 6)  
LT6010AS8, LT6010S8  
LT6010ADD,LT6010DD  
0.2  
0.2  
0.8  
1.3  
µV/°C  
µV/°C  
OS  
sn6010 6010fs  
2
LT6010  
ELECTRICAL CHARACTERISTICS  
specified. (Note 5)  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V; VCM = 2.5V; RL to 0V; SHDN = 0.2V, unless otherwise  
SYMBOL  
I
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Offset Current (Note 7)  
LT6010AS8  
20  
110  
150  
200  
pA  
pA  
pA  
OS  
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
LT6010S8  
T = 0°C to 70°C  
40  
20  
40  
20  
40  
20  
40  
200  
300  
400  
pA  
pA  
pA  
A
T = –40°C to 85°C  
A
LT6010ADD  
T = 0°C to 70°C  
200  
300  
400  
pA  
pA  
pA  
A
T = –40°C to 85°C  
A
LT6010DD  
T = 0°C to 70°C  
300  
400  
500  
pA  
pA  
pA  
A
T = –40°C to 85°C  
A
I
Input Bias Current (Note 7)  
LT6010AS8  
T = 0°C to 70°C  
±110  
±150  
±200  
pA  
pA  
pA  
B
A
T = –40°C to 85°C  
A
LT6010S8  
T = 0°C to 70°C  
±200  
±300  
±400  
pA  
pA  
pA  
A
T = –40°C to 85°C  
A
LT6010ADD  
T = 0°C to 70°C  
±200  
±300  
±400  
pA  
pA  
pA  
A
T = –40°C to 85°C  
A
LT6010DD  
T = 0°C to 70°C  
±300  
±400  
±500  
pA  
pA  
pA  
A
T = –40°C to 85°C  
A
Input Noise Voltage  
0.1Hz to 10Hz  
400  
14  
nV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
f = 1kHz  
f = 1kHz  
nV/Hz  
pA/Hz  
n
i
n
0.1  
R
IN  
Common Mode, V = 1V to 3.8V  
Differential  
10  
120  
20  
GΩ  
MΩ  
CM  
C
V
Input Capacitance  
4
pF  
IN  
Input Voltage Range (Positive)  
Input Voltage Range (Negative)  
Guaranteed by CMRR  
Guaranteed by CMRR  
3.8  
4
0.7  
V
V
CM  
1
CMRR  
Common Mode Rejection Ratio  
Minimum Supply Voltage  
V
= 1V to 3.8V  
107  
135  
2.4  
dB  
V
CM  
Guaranteed by PSRR  
2.7  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V = 2.7V to 36V, V = 1/2V  
S
112  
135  
dB  
S
CM  
A
V
R = 10k, V = 1V to 4V  
OUT  
R = 2k, V  
300  
250  
2000  
2000  
V/mV  
V/mV  
VOL  
OUT  
L
= 1V to 4V  
L
OUT  
Maximum Output Swing  
No Load, 50mV Overdrive  
35  
120  
40  
55  
65  
mV  
mV  
+
(Positive, Referred to V )  
I
= 1mA, 50mV Overdrive  
170  
220  
mV  
mV  
SOURCE  
Maximum Output Swing  
(Negative, Referred to 0V)  
No Load, 50mV Overdrive  
= 1mA, 50mV Overdrive  
55  
65  
mV  
mV  
I
150  
225  
275  
mV  
mV  
SINK  
sn6010 6010fs  
3
LT6010  
ELECTRICAL CHARACTERISTICS  
specified. (Note 5)  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V; VCM = 2.5V; RL to 0V; SHDN = 0.2V, unless otherwise  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Output Short-Circuit Current (Note 3)  
V
= 0V, 1V Overdrive (Source)  
10  
4
14  
mA  
mA  
SC  
OUT  
V
= 5V, –1V Overdrive (Sink)  
10  
4
21  
mA  
mA  
OUT  
SR  
Slew Rate  
A = –10, R = 50k, R = 5k  
0.06  
0.05  
0.04  
0.09  
V/µs  
V/µs  
V/µs  
V
F
G
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
GBW  
Gain Bandwidth Product  
f = 10kHz  
250  
225  
330  
kHz  
kHz  
t
Settling Time  
A = –1, 0.01%, V = 1.5V to 3.5V  
OUT  
45  
1
µs  
µs  
s
V
t , t  
Rise Time, Fall Time  
SHDN Pin Current  
A = 1, 10% to 90%, 0.1V Step  
r
f
V
I
SHDN V + 0.2V (On)  
0.25  
25  
µA  
µA  
SHDN  
SHDN = V + 2.0V (Off)  
15  
t
I
SHDN Turn-On, Turn-Off Time  
Supply Current  
SHDN = V (On) to V + 2.0V (Off)  
25  
25  
µs  
µs  
SHDN  
S
SHDN = V + 2.0V (Off) to V (On)  
SHDN V + 0.2V (On)  
135  
150  
190  
210  
µA  
µA  
µA  
T = 0°C to 70°C  
T = –40°C to 85°C  
A
A
SHDN = V + 2.0V (Off)  
12  
25  
50  
µA  
µA  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS = ±15V, VCM = 0V, RL to 0V; SHDN = –14.8V, unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage (Note 7)  
LT6010AS8  
10  
60  
80  
110  
µV  
µV  
µV  
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
LT6010S8  
T = 0°C to 70°C  
20  
20  
30  
85  
120  
160  
µV  
µV  
µV  
A
T = –40°C to 85°C  
A
LT6010ADD  
T = 0°C to 70°C  
85  
105  
135  
µV  
µV  
µV  
A
T = –40°C to 85°C  
A
LT6010DD  
T = 0°C to 70°C  
110  
145  
185  
µV  
µV  
µV  
A
T = –40°C to 85°C  
A
V /T  
Input Offset Voltage Drift (Note 6)  
Input Offset Current (Note 7)  
LT6010AS8, LT6010S8  
LT6010ADD,LT6010DD  
0.2  
0.2  
0.8  
1.3  
µV/°C  
µV/°C  
OS  
I
LT6010AS8  
20  
40  
20  
110  
150  
200  
pA  
pA  
pA  
OS  
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
LT6010S8  
T = 0°C to 70°C  
200  
300  
400  
pA  
pA  
pA  
A
T = –40°C to 85°C  
A
LT6010ADD  
T = 0°C to 70°C  
200  
300  
400  
pA  
pA  
pA  
A
T = –40°C to 85°C  
A
sn6010 6010fs  
4
LT6010  
ELECTRICAL CHARACTERISTICS  
specified. (Note 5)  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, VCM = 0V, RL to 0V; SHDN = –14.8V, unless otherwise  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
Input Offset Current (Note 7)  
LT6010DD  
40  
300  
400  
500  
pA  
pA  
pA  
OS  
B
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
Input Bias Current (Note 7)  
LT6010AS8  
T = 0°C to 70°C  
20  
40  
20  
40  
±110  
±150  
±200  
pA  
pA  
pA  
A
T = –40°C to 85°C  
A
LT6010S8  
T = 0°C to 70°C  
±200  
±300  
±400  
pA  
pA  
pA  
A
T = –40°C to 85°C  
A
LT6010ADD  
T = 0°C to 70°C  
±200  
±300  
±400  
pA  
pA  
pA  
A
T = –40°C to 85°C  
A
LT6010DD  
T = 0°C to 70°C  
±300  
±400  
±500  
pA  
pA  
pA  
A
T = –40°C to 85°C  
A
Input Noise Voltage  
0.1Hz to 10Hz  
400  
13  
nV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
f = 1kHz  
f = 1kHz  
nV/Hz  
pA/Hz  
n
i
0.1  
n
R
IN  
Common Mode, V = ±13.5V  
Differential  
50  
400  
20  
GΩ  
MΩ  
CM  
C
V
Input Capacitance  
4
pF  
V
IN  
Input Voltage Range  
Guaranteed by CMRR  
±13.5  
±14  
135  
CM  
CMRR  
Common Mode Rejection Ratio  
V
= –13.5V to 13.5V  
115  
112  
dB  
dB  
CM  
Minimum Supply Voltage  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Guaranteed by PSRR  
V = ±1.35V to ±18V  
±1.2  
135  
±1.35  
V
PSRR  
112  
dB  
S
A
V
R = 10k, V = –13.5V to 13.5V  
L OUT  
1000  
600  
2000  
V/mV  
V/mV  
VOL  
OUT  
R = 5k, V  
L
= –13.5V to 13.5V  
OUT  
500  
300  
1500  
45  
V/mV  
V/mV  
Maximum Output Swing  
(Positive, Referred to V )  
No Load, 50mV Overdrive  
= 1mA, 50mV Overdrive  
80  
100  
mV  
mV  
+
I
140  
45  
195  
240  
mV  
mV  
SOURCE  
Maximum Output Swing  
(Negative, Referred to 0V)  
No Load, 50mV Overdrive  
80  
100  
mV  
mV  
I
= 1mA, 50mV Overdrive  
= 0V, 1V Overdrive (Source)  
= 0V, –1V Overdrive (Sink)  
150  
15  
250  
300  
mV  
mV  
SINK  
I
Output Short-Circuit Current (Note 3)  
V
V
10  
5
mA  
mA  
SC  
OUT  
OUT  
10  
5
20  
mA  
mA  
sn6010 6010fs  
5
LT6010  
ELECTRICAL CHARACTERISTICS  
specified. (Note 5)  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, VCM = 0V, RL to 0V; SHDN = –14.8V, unless otherwise  
SYMBOL  
PARAMETER  
CONDITIONS  
A = –10, R = 50k, R = 5k  
MIN  
TYP  
MAX  
UNITS  
SR  
Slew Rate  
0.08  
0.07  
0.05  
0.11  
V/µs  
V/µs  
V/µs  
V
F
G
T = 0°C to 70°C  
A
T = –40°C to 85°C  
A
GBW  
Gain Bandwidth Product  
f = 10kHz  
275  
250  
350  
kHz  
kHz  
t
Settling Time  
A = –1, 0.01%, V = 0V to 10V  
OUT  
85  
1
µs  
µs  
s
V
t , t  
Rise Time, Fall Time  
SHDN Pin Current  
A = 1, 10% to 90%, 0.1V Step  
r
f
V
I
SHDN V + 0.2V (On)  
0.25  
25  
µA  
µA  
SHDN  
SHDN = V + 2.0V (Off)  
15  
t
I
SHDN Turn-On, Turn-Off Time  
Supply Current  
SHDN = V (On) to V + 2.0V (Off)  
25  
25  
µs  
µs  
SHDN  
S
SHDN = V + 2.0V (Off) to V (On)  
SHDN V + 0.2V (On)  
260  
330  
380  
400  
µA  
µA  
µA  
T = 0°C to 70°C  
T = –40°C to 85°C  
A
A
SHDN = V + 2.0V (Off)  
18  
50  
µA  
Note 1: Absolute Maximum Ratings are those beyond which the life of the  
from 0°C to 70°C and is designed, characterized and expected to meet  
specified performance from –40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LT6010I is guaranteed to meet  
specified performance from –40°C to 85°C.  
device may be impaired.  
Note 2: The inputs are protected by back–to–back diodes and internal  
series resistors. If the differential input voltage exceeds 10V, the input  
current must be limited to less than 10mA.  
Note 6: This parameter is not 100% tested.  
Note 3: A heat sink may be required to keep the junction temperature  
Note 7: The specifications for V , I and I depend on the grade and on  
the package. The following table clarifies the notations used in the  
specification table:  
OS  
B
OS  
below absolute maximum ratings.  
Note 4: Both the LT6010C and LT6010I are guaranteed functional over the  
operating temperature range of –40°C to 85°C.  
Note 5: The LT6010C is guaranteed to meet the specified performance  
Standard Grade  
LT6010S8  
A Grade  
S8 Package  
LT6010AS8  
LT6010ADD  
DFN Package  
LT6010DD  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Offset Voltage  
Offset Voltage  
vs Input Common Mode Voltage  
vs Temperature  
Distribution of Input Offset Voltage  
125  
100  
75  
30  
25  
120  
100  
80  
LT6010AS8  
V
= 5V, 0V  
= 25°C  
V
S
= 5V, 0V  
V = ±15V  
S
TYPICAL PART  
S
A
T
REPRESENTATIVE UNITS  
50  
20  
T
= 85°C  
A
25  
60  
T
= –40°C  
= 25°C  
0
A
15  
10  
40  
–25  
–50  
–75  
–100  
–125  
T
A
20  
5
0
0
–20  
–50  
0
25  
50  
75 100 125  
–25  
–45 –35 –25 –15 –5  
5
15 25 35 45  
5
15  
–15 –10  
–5  
0
10  
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE (µV)  
INPUT COMMON MODE VOLTAGE (V)  
6010 G02  
6010 G01  
6010 G03  
sn6010 6010fs  
6
LT6010  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias Current  
Input Bias Current vs Temperature  
vs Input Common Mode Voltage  
en, in vs Frequency  
1000  
1000  
900  
100  
V
= ±15V  
= 25°C  
S
A
V
= 5V, 0V  
S
T
TYPICAL PART  
800  
T
= –40°C  
A
700  
600  
500  
400  
300  
200  
100  
0
CURRENT NOISE  
100  
100  
T
= 25°C  
A
T
= 85°C  
A
+
VOLTAGE NOISE  
100  
I
B
I
B
10  
–100  
–100  
1
10  
1000  
2V/DIV  
–15  
15  
–50 –25  
0
25  
125  
50  
75 100  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
6010 G06  
6010 G05  
6010 G04  
Total Input Noise  
vs Source Resistance  
0.1Hz to 10Hz Noise  
0.01Hz to 1Hz Noise  
10  
1
V
T
= 5V, 0V  
S
A
V
T
= ±15V  
= 25°C  
S
A
= 25°C  
f = 1kHz  
0.1  
TOTAL NOISE  
0.01  
0.001  
0.0001  
RESISTOR NOISE ONLY  
100  
1k  
10k 100k  
1M  
10M 100M  
0
1
2
3
4
5
6
7
8
9
10  
0
10 20 30 40 50 60 70 80 90 100  
SOURCE RESISTANCE ()  
TIME (SEC)  
TIME (SEC)  
6010 G07  
6010 G08  
6010 G09  
Output Saturation Voltage  
vs Load Current (Output High)  
Output Saturation Voltage  
Output Voltage Swing  
vs Temperature  
vs Load Current (Output Low)  
+
1
1
V
V
= 5V, 0V  
V = 5V, 0V  
S
S
V
= 5V, 0V  
S
NO LOAD  
–20  
–40  
T
= 85°C  
T
= 85°C  
A
A
OUTPUT HIGH  
OUTPUT LOW  
–60  
T
= 25°C  
A
T = 25°C  
A
0.1  
0.1  
T
= –40°C  
A
60  
40  
20  
T
= –40°C  
A
0.01  
0.01  
0.01  
V
0.01  
0.1  
1
10  
0.1  
1
10  
25  
0
50  
75 100 125  
50  
25  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
6010 G11  
6010 G12  
6010 G10  
sn6010 6010fs  
7
LT6010  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Warm-Up Drift  
THD + Noise vs Frequency  
Supply Current vs Supply Voltage  
3
2
1
0
10  
1
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
V
= 5V, 0V  
S
= 2V  
OUT  
P-P  
T
= 25°C  
A
A
A
= 1: R = 10k  
= –1: R = R = 10k  
V
V
L
±15V  
F
G
T
= 85°C  
A
0.1  
T
= 25°C  
A
0.01  
0.001  
0.0001  
±2.5V  
A
= –1  
V
T
= –40°C  
A
A
= 1  
V
0
30  
60  
90  
120  
150  
0
2
4
6
8
10 12 14 16 18 20  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TIME AFTER POWER-ON (SECONDS)  
SUPPLY VOLTAGE (±V)  
6010 G15  
6010 G14  
6010 G13  
THD + Noise vs Frequency  
Settling Time vs Output Step  
Settling Time vs Output Step  
10  
1
10  
8
10  
8
V
S
A
V
= ±15V  
= 1  
V
S
A
V
= ±15V  
= –1  
V
V
= ±15V  
S
= 20V  
IN P-P  
= 25°C  
T
A
6
6
0.1  
0.1%  
0.1%  
0.01%  
0.01%  
A
V
= –1  
0.01  
0.001  
0.0001  
4
2
0
4
2
0
A
= 1  
V
0
10 20 30 40 50 60 70 80 90  
0
10 20 30 40 50 60 70 80 90  
10  
100  
1k  
10k  
SETTLING TIME (µs)  
SETTLING TIME (µs)  
FREQUENCY (Hz)  
6010 G16  
6010 G17  
6010 G18  
PSRR vs Frequency  
CMRR vs Frequency  
160  
140  
120  
100  
80  
140  
120  
100  
80  
T
= 25°C  
V
= 5V, 0V  
= 25°C  
A
S
A
T
V
S
= ±15V  
+PSRR  
V
S
= 5V, 0V  
60  
60  
–PSRR  
40  
40  
20  
20  
0
0
0.1  
1
10 100 1k 10k 100k 1M  
FREQUENCY (Hz)  
1
10  
100  
1k  
10k 100k  
1M  
FREQUENCY (Hz)  
6010 G20  
6010 G21  
sn6010 6010fs  
8
LT6010  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Impedance vs Frequency  
Open-Loop Gain vs Frequency  
Gain and Phase vs Frequency  
1000  
100  
10  
140  
120  
100  
80  
60  
50  
–80  
V
T
= 5V, 0V  
= 25°C  
V
T
= 5V, 0V  
S
A
V
T
= 5V, 0V  
= 25°C  
= 10k  
S
S
= 25°C  
A
A
R
= 10k  
R
L
L
40  
–120  
–160  
–200  
240  
–280  
30  
GAIN  
20  
60  
PHASE  
A
= 100  
V
10  
40  
1
0
20  
A
= 10  
V
–10  
20  
–30  
40  
0
0.1  
0.01  
–20  
–40  
A
= 1  
V
1
10  
100  
1k  
10k 100k  
1M  
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
6010 G22  
6010 G23  
6010 G24  
Supply Current in Shutdown Mode  
vs Temperature  
Gain vs Frequency, AV = 1  
Gain vs Frequency, AV = –1  
10  
5
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
= 5V, 0V  
= 25°C  
V
= 5V, 0V  
= 25°C  
S
A
S
A
T
T
C
= 500pF  
L
C
= 500pF  
L
0
0
C
= 50pF  
L
C
= 50pF  
L
V
S
= ±15V  
–5  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
V
S
= 5V, 0V  
0
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
–40–3020–10 0 10 20 30 40 50 60 70 80 90  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
6010 G25  
6010 G26  
6010 G30  
Small-Signal Transient Response  
Large-Signal Transient Response  
Rail-to-Rail Output Swing  
5V  
20mV/DIV  
2V/DIV  
0V  
1V/DIV  
0V  
AV = 1  
2µs/DIV  
6011 G27  
AV = –1  
VS = ±15V  
50µs/DIV  
6011 G28  
AV = –1  
VS = 5V, 0V  
100µs/DIV  
6011 G29  
sn6010 6010fs  
9
LT6010  
W U U  
U
APPLICATIO S I FOR ATIO  
Preserving Input Precision  
allowed)fora10Vdifferentialinputvoltage.Useadditional  
external series resistors to limit the input current to 10mA  
in applications where differential inputs of more than 10V  
areexpected. Forexample, a1kresistorinserieswitheach  
input provides protection against 30V differential voltage.  
Preserving the input accuracy of the LT6010 requires that  
the applications circuit and PC board layout do not intro-  
duceerrorscomparabletoorgreaterthanthe20µVtypical  
offset of the amplifier. Temperature differentials across  
the input connections can generate thermocouple volt-  
ages of 10’s of microvolts, so the connections to the input  
leads should be short, close together, and away from heat  
dissipating components. Air currents across the board  
can also generate temperature differentials.  
Input Common Mode Range  
The LT6010 output is able to swing nearly to each power  
supplyrail(rail-to-railout), buttheinputstageislimitedto  
operating between V+ 1V and V+ – 1.2V. Exceeding this  
common mode range will cause the gain to drop to zero,  
however no phase reversal will occur.  
The extremely low input bias currents (20pA typical) allow  
high accuracy to be maintained with high impedance  
sources and feedback resistors. The LT6010 low input  
bias currents are obtained by a cancellation circuit on-  
chip. The input bias currents are permanently trimmed at  
wafer testing to a low level. Do not try to balance the input  
resistancesineachinputlead;instead, keeptheresistance  
at either input as low as possible for maximum accuracy.  
Total Input Noise  
The LT6010 amplifier contributes negligible noise to the  
systemwhendrivenbysensors(sources)withimpedance  
between 20kand 1M. Throughout this range, total  
inputnoiseisdominatedbythe4kTRS noiseofthesource.  
If the source impedance is less than 20k, the input  
voltage noise of the amplifier starts to contribute with a  
minimum noise of 14nV/Hz for very low source imped-  
ance.Ifthesourceimpedanceismorethan1M,theinput  
current noise of the amplifier, multiplied by this high  
impedance, starts to contribute and eventually dominate.  
Total input noise spectral density can be calculated as:  
Leakage currents on the PC board can be higher than the  
LT6010’s input bias current. For example, 10Gof leak-  
age between a 15V supply lead and an input lead will gen-  
erate1.5nA!Surroundtheinputleadsbyaguardring,driven  
to the same potential as the input common mode, to avoid  
excessive leakage in high impedance applications.  
Input Protection  
2
v
n(TOTAL) = en + 4kTRS +(inRS)2  
The LT6010 features on-chip back-to-back diodes be-  
tween the input devices, along with 500resistors in  
series with either input. This internal protection limits the  
input current to approximately 10mA (the maximum  
where en = 14nV/Hz, in = 0.1pA/Hz and RS the total  
impedance at the input, including the source impedance.  
sn6010 6010fs  
10  
LT6010  
W U U  
APPLICATIO S I FOR ATIO  
U
Offset Voltage Adjustment  
createsadriftof(VOS/300µV)µV/°C,e.g.,ifVOS isadjusted  
to300µV,thechangeindriftwillbe1µV/°C.Theadjustment  
rangewitha50kpotisapproximately±0.9mV(seeFigures  
1Aand1B).Thesensitivityandresolutionofthenullingcan  
beimprovedbyusingasmallerpotinconjunctionwithfixed  
resistors. The configuration shown has an approximate  
nulling range of ±150µV (see Figures 2A and 2B).  
The input offset voltage of the LT6010 and its drift with  
temperature are permanently trimmed at wafer testing to  
the low level as specified in the electrical characteristic.  
However,iffurtheradjustmentofVOSisdesired,nullingwith  
a 50k potentiometer is possible and will not degrade drift  
with temperature. Trimming to a value other than zero  
Standard Adjustment  
1.0  
0.8  
0.6  
0.4  
V
CC  
50k  
0.2  
0
1
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
8
2
3
7
INPUT  
LT6010  
4
OUTPUT  
6
+
6010 F01a  
V
ee  
0
0.2  
0.4  
0.6  
0.8  
1.0  
POTENTIOMETER POSITION  
6010 F01b  
Figure 1A  
Figure 1B  
Improved Sensitivity Adjustment  
200  
150  
100  
50  
10k  
50k  
10k  
V
CC  
0
1
–50  
–100  
–150  
–200  
8
2
3
+
7
INPUT  
LT6010  
OUTPUT  
6
4
6010 F02a  
V
0
0.2  
0.4  
0.6  
0.8  
1.0  
ee  
POTENTIOMETER POSITION  
6010 F02b  
Figure 2A  
Figure 2B  
sn6010 6010fs  
11  
LT6010  
W U U  
U
APPLICATIO S I FOR ATIO  
Shutdown  
Rail-to-Rail Operation  
The LT6010 can be put into shutdown mode to conserve  
power. When the SHDN pin is biased at less than 0.2V  
above the negative supply, the part operates normally.  
When pulled 2V or more above V, the supply current  
drops to about 12µA, shutting down the op amp.  
TheLT6010outputscanswingtowithinmillivoltsofeither  
supply rail, but the inputs cannot. However, for most op  
ampconfigurations, theinputsneedtoswinglessthanthe  
outputs. Figure 4 shows the basic op amp configurations,  
lists what happens to the op amp inputs and specifies  
whether or not the op amp must have rail-to-rail inputs.  
Select a rail-to-rail input op amp only when really neces-  
sary, because the input precision specifications are usu-  
ally inferior.  
The output of the LT6010 op amp is not isolated from the  
inputs while in shutdown mode. Therefore, this shutdown  
feature cannot be used for multiplexing applications.  
There is an internal 85k resistor at the SHDN pin. If the  
SHDN voltage source is more than 2V above the negative  
supply, an external series resistor can be placed between  
the source and SHDN pin to reduce SHDN pin current (see  
Figure 3). For an example of suggested values see Table 1.  
TheresistorslistedensurethatthevoltageattheSHDNpin  
is 2V above the negative supply.  
V
+
REF  
R
G
V
IN  
R
F
INVERTING: A = –R /R  
G
OP AMP INPUTS DO NOT MOVE,  
BUT ARE FIXED AT DC BIAS  
V
F
Table 1  
POINT V  
REF  
V
SHDN  
(V)  
R
(k)  
SHDN  
INPUT DOES NOT HAVE TO BE  
RAIL-TO-RAIL  
2
NONE  
3
4
5
77k  
V
+
V
+
153k  
230k  
IN  
IN  
R
F
SHDN  
5
R
SHDN  
85k  
R
G
+
6010 F04  
V
REF  
V
SHDN  
NONINVERTING: A = 1 + R /R  
NONINVERTING: A = 1  
V
V
F
G
INPUTS MOVE AS MUCH AS  
INPUTS MOVE AS MUCH AS THE  
OUTPUT  
V
V
EE  
EE  
V
, BUT THE OUTPUT MOVES  
6010 F03  
IN  
MORE  
Figure 3  
INPUT MUST BE RAIL-TO-RAIL  
FOR OVERALL CIRCUIT  
RAIL-TO-RAIL PERFORMANCE  
INPUT MAY NOT HAVE TO BE  
RAIL-TO-RAIL  
Capacitive Loads  
TheLT6010candrivecapacitiveloadsupto500pFinunity  
gain. The capacitive load driving capability increases as  
the amplifier is used in higher gain configurations. A small  
series resistance between the output and the load further  
increases the amount of capacitance that the amplifier can  
drive.  
Figure 4. Some Op Amp Configurations Do Not Require  
Rail-to-Rail Inputs to Achieve Rail-to-Rail Outputs  
sn6010 6010fs  
12  
LT6010  
W
W
SI PLIFIED SCHE ATIC  
+
7
1
V
R6  
8
NULL  
R3  
R4  
R5  
NULL  
Q7  
Q3  
Q18  
Q19  
Q6  
C1  
Q8  
R
C1  
Q5  
Q4  
Q13  
C2  
Q21  
D3  
D4  
D5  
6
OUT  
Q17  
B
A
BIAS CURRENT  
GENERATOR  
Q12  
Q16  
C3  
R1  
500  
Q14  
Q10  
C
Q20  
2
–IN  
+IN  
B
A
D1  
D2  
3
R2  
500Ω  
Q1  
Q2  
Q11  
5
4
SHDN  
Q9  
Q15  
Q10  
6010 SS  
V
sn6010 6010fs  
13  
LT6010  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.28 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(DD8) DFN 0203  
4
1
0.28 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
sn6010 6010fs  
14  
LT6010  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
sn6010 6010fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT6010  
U
TYPICAL APPLICATIO  
Precision JFET Input Transimpedance Photodiode Amplifier  
C4  
0.5pF  
C3  
1pF  
+
R3  
100k, 1%  
V
J1  
+
U1  
LT6010  
U2  
LT6230  
R4  
V
OUT  
2.55k  
R2  
1k  
5%  
+
R1  
330k, 5%  
V
J1: PHILIPS BF862  
C2  
0.1µF  
S1: SIEMENS/INFINEON SFH203 PHOTODIODE (~3pF)  
S1  
C1  
0.01µF  
V
= ±5V  
SUPPLY  
SUPPLY  
I
= 5.6mA  
BANDWIDTH = 6MHz  
A
V
= 100kΩ  
Z
OUTPUT OFFSET 50µV TYPICALLY  
6010 TA02  
RELATED PARTS  
PART NUMBER  
LT6011/6012  
LT1001  
DESCRIPTION  
Dual/Quad Precision Op Amps  
Low Power, Picoamp Input Precision Op Amp  
Rail-to-Rail Output, Picoamp Input Precision Op Amp  
COMMENTS  
135µA, Rail-to-Rail Output  
250pA Input Bias Current  
LT1880  
C
up to 1000pF  
LOAD  
sn6010 6010fs  
LT/TP 1203 1K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY