LT6016 [Linear]

Dual/Quad 3.2MHz, 0.8V/μs Low Power, Over-The-Top Precision Op Amp; 双/四路3.2MHz的, 0.8V / μs低功耗,过度的顶级精密运算放大器
LT6016
型号: LT6016
厂家: Linear    Linear
描述:

Dual/Quad 3.2MHz, 0.8V/μs Low Power, Over-The-Top Precision Op Amp
双/四路3.2MHz的, 0.8V / μs低功耗,过度的顶级精密运算放大器

运算放大器
文件: 总22页 (文件大小:860K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6016/LT6017  
Dual/Quad 3.2MHz, 0.8V/µs  
Low Power, Over-The-Top  
Precision Op Amp  
DESCRIPTION  
The LT®6016/LT6017 are dual and quad rail-to-rail input  
operationalamplifierswithinputoffsetvoltagetrimmedto  
lessthan5V.Theseamplifiersoperateonsingleandsplit  
supplies with a total voltage of 3V to 50V and draw only  
315μA per amplifier. They are reverse battery protected,  
drawing very little current for reverse supplies up to 50V.  
FEATURES  
n
Input Common Mode Range: V to V + 76V  
n
n
n
n
n
n
n
n
n
n
n
n
n
Rail-to-Rail Input and Output  
Low Power: 315μA/Amplifier  
Operating Temperature Range: –55°C to 150°C  
V : 50μV ꢀMaꢁimumꢂ  
OS  
CMRR, PSRR: 126dB  
Reverse Battery Protection to 50V  
Gain Bandwidth Product: 3.2MHz  
Specified on 5V and 15V Supplies  
High Voltage Gain: 1000V/mV  
No Phase Reversal  
TheOver-The-Top® inputstageoftheLT6016/LT6017isde-  
signedtoprovideaddedprotectionintoughenvironments.  
+
The input common mode range extends from V to V and  
beyond: these amplifiers operate with inputs up to 76V  
+
above V independent of V . Internal resistors protect the  
inputsagainsttransientfaultsupto25Vbelowthenegative  
supply. The LT6016/LT6017 can drive loads up to 25mA  
and are unity-gain stable with capacitive loads as large  
as 200pF. Optional external compensation can be added  
to extend the capacitive drive capability beyond 200pF.  
No Supply Sequencing Problems  
Dual 8-Lead MSOP  
Quad 22-Lead DFN (6mm × 3mm)  
APPLICATIONS  
The LT6016 dual op amp is available in an 8-lead MSOP  
package. The LT6017 is offered in a 22-pin leadless DFN  
package.  
L, LT, LTC, LTM, Linear Technology, Over-The-Top and the Linear logo are registered  
trademarks of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
n
High Side or Low Side Current Sensing  
n
Battery/Power Supply Monitoring  
n
4mA to 20mA Transmitters  
n
High Voltage Data Acquisition  
n
Battery/Portable Instrumentation  
TYPICAL APPLICATION  
Output Error vs Load Current  
Precision High Voltage High Side Load Current Monitor  
0.2  
0
–0.2  
–0.4  
–0.6  
5V  
V
BAT  
= 1.5V TO 76V  
0.1μF  
200Ω  
100Ω  
1%  
+
0.1Ω  
10W  
LT6016  
BSP89  
2k  
200Ω  
1V/A  
0V TO 1V OUT  
V
V
V
V
= 1.5V  
= 5V  
= 20V  
= 75V  
BAT  
BAT  
BAT  
BAT  
LOAD  
–0.8  
–1.0  
60167 TA01a  
0.01  
0.1  
1
LOAD CURRENT (A)  
60167 TA01b  
60167fa  
1
LT6016/LT6017  
ABSOLUTE MAXIMUM RATINGS  
ꢀNote 1ꢂ  
+
Supply Voltage (V to V )................................60V, –50V  
Input Differential Voltage ........................................ 80V  
Input Voltage (Note 2).....................................80V, –25V  
Input Current (Note 2).......................................... 10mA  
Output Short Circuit Duration  
Temperature Range (Notes 4, 5)  
LT6016I/LT6017I..................................–40°C to 85°C  
LT6016H/LT6017H............................. –40°C to 125°C  
LT6016MP/LT6017MP(T  
) ..... –55°C to 150°C  
JUNCTION  
Storage Temperature Range .................. –65°C to 150°C  
Maximum Junction Temperature .......................... 150°C  
Lead Temperature (Soldering, 10sec)....................300°C  
(Note 3).........................................................Continuous  
PIN CONFIGURATION  
TOP VIEW  
OUTA  
–INA  
+INA  
N/C  
1
2
3
4
5
6
7
8
9
22 OUTD  
21 –IND  
20 +IND  
A
D
19 N/C  
+
TOP VIEW  
+
V
18 V  
OUTA 1  
–INA 2  
8 V  
23  
7 OUTB  
6 –INB  
5 +INB  
N/C  
17 N/C  
+
A
+INA  
V
3
4
B
V
16 V  
N/C  
15 N/C  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
+INB  
14 +INC  
13 –INC  
12 OUTC  
B
C
T
= 150°C, θ = 273°C/W, θ = 45°C/W  
JA JC  
JMAX  
–INB 10  
OUTB 11  
DJC PACKAGE  
22-LEAD (6mm × 3mm) PLASTIC DFN  
T
= 150°C, θ = 31.8°C/W, θ = 4.3°C/W  
JA JC  
JMAX  
UNDERSIDE METAL INTERNALLY CONNECTED TO V  
ORDER INFORMATION  
LEAD FREE FINISH  
LT6016IMS8#PBF  
LT6016HMS8#PBF  
LT6016MPMS8#PBF  
LT6017IDJC#PBF  
LT6017HDJC#PBF  
LT6017MPDJC#PBF  
TAPE AND REEL  
PART MARKING*  
LTGFK  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
22-Lead Plastic DFN  
22-Lead Plastic DFN  
22-Lead Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LT6016IMS8#TRPBF  
LT6016HMS8#TRPBF  
LT6016MPMS8#TRPBF  
LT6017IDJC#TRPBF  
LT6017HDJC#TRPBF  
LT6017MPDJC#TRPBF  
LTGFK  
–40°C to 125°C  
–55°C to 150°C  
–40°C to 85°C  
LTGFK  
6017  
6017  
–40°C to 125°C  
–55°C to 150°C  
6017  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
60167fa  
2
LT6016/LT6017  
The l denotes the specifications which apply over the specified  
ELECTRICAL CHARACTERISTICS  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H–grade parts, otherwise specifications are at  
TA = 25°C, VS = 5V, VCM = VOUT = mid-supply.  
I-, H-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
0 < V < V – 1.75V  
μV  
μV  
CM  
MS8 Package  
–50  
25  
50  
+
0 < V < V – 1.75V  
CM  
DJC22 Package  
–80  
45  
50  
50  
45  
50  
80  
μV  
μV  
μV  
μV  
μV  
V
V
= 5V  
=76V  
–125  
–135  
–250  
–350  
125  
135  
250  
350  
CM  
CM  
+
l
l
0 < V < V – 1.75V  
CM  
V
= 5V to V = 76V  
CM  
CM  
ΔV  
Input Offset Voltage Drift  
Long Term Voltage Offset Stability  
Input Bias Current  
0.75  
μV/°C  
OS  
ΔTEMP  
ΔV  
ΔTIME  
0.75  
μV/Mo  
OS  
+
I
I
0.25V < V < V – 1.75V  
CM  
CM  
–5  
–30  
11  
–15  
–150  
7
2
–16.5  
14  
5
0
nA  
nA  
μA  
nA  
nA  
μA  
μA  
B
CM  
V
V
= 0V  
= 5V to 76V  
17.5  
15  
0
+
l
l
l
l
0.25V < V < V – 1.75V  
2
CM  
V
CM  
= 0V  
–16.5  
14  
CM  
V
= 5V to 76V  
V = 0V, V = 0V to 76V  
23  
1
0.001  
S
CM  
+
Input Offset Current  
0.25V < V < V – 1.75V  
–5  
–5  
–500  
–15  
–15  
–500  
2
2
5
5
500  
15  
15  
500  
nA  
nA  
nA  
nA  
nA  
nA  
OS  
CM  
V
V
= 0V  
CM  
CM  
= 5V to 76V (Note 6)  
50  
2
+
l
l
l
0.25V < V < V – 1.75V  
CM  
V
V
= 0V  
2
CM  
CM  
= 5V to 76V (Note 6)  
50  
l
VCMR  
Common Mode Input Range  
Differential Input Capacitance  
Differential Input Resistance  
0
76  
V
C
IN  
5
pF  
+
R
IN  
0 < V < V – 1.75V  
CM  
1
3.7  
MΩ  
kΩ  
CM  
+
V
> V  
+
R
Common Mode Input Resistance  
0 < V < V – 1.75V  
CM  
>1  
>100  
GΩ  
MΩ  
INCM  
CM  
+
V
> V  
e
n
Input Referred Noise Voltage Density  
f = 1kHz  
+
V
V
< V – 1.75V  
18  
25  
nV/√Hz  
nV/√Hz  
CM  
+
> V  
CM  
Input Referred Noise Voltage  
f = 0.1Hz to 10Hz  
CM  
0.5  
μV  
P-P  
+
V
< V – 1.75V  
i
n
Input Referred Noise Current Density  
f = 1kHz  
+
V
V
< V – 1.75V  
0.1  
11.5  
pA/√Hz  
pA/√Hz  
CM  
+
> V  
CM  
l
l
A
Open Loop Gain  
R = 10kΩ  
OUT  
300  
110  
3000  
V/mV  
VOL  
L
ΔV  
= 3V  
PSRR  
CMRR  
Supply Rejection Ratio  
V = 1.65V to 15V  
126  
dB  
S
CM  
V
= V  
= Mid-Supply  
OUT  
l
l
Input Common Mode Rejection Ratio  
Output Voltage Swing Low  
Output Voltage Swing High  
Short-Circuit Current  
V
CM  
V
CM  
= 0V to 3.25V  
= 5V to 76V  
100  
126  
126  
140  
dB  
dB  
l
l
V
V
V = 5V, No Load  
3
280  
55  
mV  
mV  
OL  
S
V = 5V, 5mA  
500  
S
l
l
V = 5V, No Load  
450  
1000  
700  
1250  
mV  
mV  
OH  
S
V = 5V, 5mA  
S
+
l
l
I
SC  
V = 5V, 50Ω to V  
10  
10  
25  
25  
mA  
mA  
S
V = 5V, 50Ω to V  
S
60167fa  
3
LT6016/LT6017  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H–grade parts, otherwise specifications are at  
TA = 25°C, VS = 5V, VCM = VOUT = mid-supply.  
I-, H-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
= 10kHz  
MIN  
TYP  
MAX  
UNITS  
GBW  
Gain Bandwidth Products  
f
2.85  
2.5  
3.2  
3.2  
MHz  
MHz  
TEST  
l
l
SR  
Slew Rate  
ΔV  
= 3V  
0.55  
0.45  
0.75  
0.75  
V/μs  
V/μs  
OUT  
t
S
Settling Time Due to Input Step  
OUT  
0.1% Settling  
3.5  
μs  
ΔV  
= 2V  
V
S
Supply Voltage  
3
3.3  
50  
50  
–50  
V
V
V
l
l
Reverse Supply (Note 7)  
I < –25μA/Amplifier  
S
–65  
I
S
Supply Current Per Amplifier  
V = 5V  
S
315  
315  
335  
500  
μA  
μA  
l
R
O
Output Impedance  
ΔI = 5mA  
O
0.15  
Ω
The l denotes the specifications which apply over the specified temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA <  
125°C for H–grade parts, otherwise specifications are at TA = 25°C, VS = 15V, VCM = VOUT = mid-supply.  
I-, H-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
–80  
55  
55  
75  
75  
80  
μV  
μV  
μV  
μV  
OSI  
l
l
–250  
–110  
–250  
250  
110  
250  
V = 25V  
S
S
V = 25V  
ΔV  
Input Offset Voltage Drift  
Input Bias Current  
0.75  
μV/°C  
OSI  
ΔTEMP  
I
–5  
–15  
2
2
5
15  
nA  
nA  
B
l
I
Input Offset Current  
–5  
2
2
5
nA  
nA  
OS  
l
l
–15  
15  
VCMR  
Common Mode Input Range  
Differential Input Capacitance  
Differential Input Resistance  
–15  
61  
V
C
5
pF  
IN  
+
R
0 < V < V – 1.75V  
CM  
1
3.7  
MΩ  
kΩ  
IN  
CM  
+
V
> V  
+
R
Common Mode Input Resistance  
0 < V < V – 1.75V  
CM  
>1  
>100  
GΩ  
MΩ  
INCM  
CM  
+
V
> V  
e
n
Input Referred Noise Voltage Density  
f = 1kHz  
+
V
V
< V – 1.75V  
18  
25  
nV/√Hz  
nV/√Hz  
CM  
+
> V  
CM  
Input Referred Noise Voltage  
f = 0.1Hz to 10Hz  
CM  
0.5  
μV  
P-P  
+
V
< V – 1.25V  
i
n
Input Referred Noise Current Density  
f = 1kHz  
+
V
V
< V – 1.75V  
0.1  
11.5  
pA/√Hz  
pA/√Hz  
CM  
+
> V  
CM  
l
l
l
A
Open Loop Gain  
R = 10kΩ  
OUT  
200  
114  
110  
1000  
V/mV  
VOL  
L
ΔV  
= 27V  
PSRR  
Supply Rejection Ratio  
V = 2.5V to 25V  
126  
dB  
S
CM  
V
= V  
= 0V  
OUT  
CMRR  
Input Common Mode Rejection Ratio  
Output Voltage Swing Low  
V
CM  
= –15V to 13.25V  
126  
dB  
l
l
V
V
V = 15V, No Load  
3
280  
55  
mV  
mV  
OL  
S
V = 15V, 5mA  
500  
S
l
l
Output Voltage Swing High  
V = 15V, No Load  
450  
1000  
700  
1250  
mV  
mV  
OH  
S
V = 15V, 5mA  
S
60167fa  
4
LT6016/LT6017  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H–grade parts, otherwise specifications are at  
TA = 25°C, VS = 15V, VCM = VOUT = mid-supply.  
I-, H-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
V = 15V, 50Ω to GND  
MIN  
TYP  
MAX  
UNITS  
l
l
I
Short-Circuit Current  
Gain Bandwidth Product  
Slew Rate  
10  
10  
30  
32  
mA  
mA  
SC  
S
V = 15V, 50Ω to GND  
S
GBW  
SR  
f
= 10kHz  
2.9  
2.55  
3.3  
3.3  
MHz  
MHz  
TEST  
l
l
ΔV  
= 3V  
0.6  
0.5  
0.8  
0.8  
V/μs  
V/μs  
OUT  
t
Settling Time Due to Input Step  
Supply Voltage  
0.1% Settling  
ΔV 2V  
3.5  
μs  
S
=
OUT  
V
3
3.3  
50  
50  
–30  
V
V
V
S
l
l
Reverse Supply  
I = –25μA/Amplifier  
S
–65  
I
S
Supply Current Per Amplifier  
325  
325  
340  
340  
350  
525  
360  
550  
μA  
μA  
μA  
μA  
l
l
V = 25V  
S
S
V = 25V  
R
Output Impedance  
ΔI = 5mA  
O
0.15  
Ω
O
The l denotes the specifications which apply over the specified temperature range, –55°C < TJUNCTION < 150°C for MP-grade parts,  
otherwise specifications are at TA = 25°C, VS = 5V, VCM = VOUT = mid-supply.  
MP-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
OS  
Input Offset Voltage  
0 < V < V – 1.75V  
μV  
μV  
CM  
MS8 Package  
–50  
25  
50  
+
0 < V < V – 1.75V  
CM  
DJC22 Package  
–80  
45  
50  
50  
45  
50  
80  
μV  
μV  
μV  
μV  
μV  
V
V
= 5V  
= 76V  
–125  
–135  
–500  
–600  
125  
135  
500  
600  
CM  
CM  
+
l
l
0 < V < V –1.75V  
CM  
V
= 5V to V = 76V  
CM  
CM  
ΔV  
Input Offset Voltage Drift  
Long Term Voltage Offset Stability  
Input Bias Current  
0.75  
μV/°C  
OS  
ΔTEMP  
ΔV  
ΔTIME  
0.75  
μV/Mo  
OS  
+
I
I
0.25V < V < V – 1.75V  
CM  
CM  
–5  
–30  
11  
–100  
–500  
6.5  
2
–16.5  
14  
5
0
nA  
nA  
μA  
nA  
nA  
μA  
μA  
B
CM  
V
V
= 0V  
= 5V to 76V  
17.5  
100  
0
+
l
l
l
l
0.25V < V < V – 1.75V  
2
CM  
V
V
= 0V  
–16.5  
14  
CM  
CM  
= 5V to 76V  
V = 0V, V = 0V to 76V  
24  
4
0.001  
S
CM  
+
Input Offset Current  
0.25V < V < V – 1.75V  
–5  
–5  
2
2
5
5
nA  
nA  
nA  
nA  
nA  
nA  
OS  
CM  
V
V
= 0V  
CM  
CM  
= 5V to 76V (Note 6)  
–500  
–50  
50  
2
500  
50  
+
l
l
l
0.25V < V < V – 1.75V  
CM  
V
V
= 0V  
–200  
–500  
2
200  
500  
CM  
CM  
= 5V to 76V (Note 6)  
150  
l
VCMR  
Common Mode Input Range  
Differential Input Capacitance  
Differential Input Resistance  
0
76  
V
C
IN  
5
pF  
+
R
IN  
0 < V < V – 1.75V  
CM  
1
3.7  
MΩ  
kΩ  
CM  
+
V
> V  
+
R
Common Mode Input Resistance  
0 < V < V – 1.75V  
CM  
>1  
>100  
GΩ  
MΩ  
INCM  
CM  
+
V
> V  
60167fa  
5
LT6016/LT6017  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the specified temperature  
range, –55°C < TJUNCTION < 150°C for MP-grade parts, otherwise specifications are at TA = 25°C, VS = 5V, VCM = VOUT = mid-supply.  
MP-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
e
n
Input Referred Noise Voltage Density  
f = 1kHz  
+
V
V
< V – 1.75V  
18  
25  
nV/√Hz  
nV/√Hz  
CM  
+
> V  
CM  
Input Referred Noise Voltage  
f = 0.1Hz to 10Hz  
CM  
0.5  
μV  
P-P  
+
V
< V – 1.75V  
i
n
Input Referred Noise Current Density  
f = 1kHz  
+
V
V
< V – 1.75V  
0.1  
11.5  
pA/√Hz  
pA/√Hz  
CM  
+
> V  
CM  
l
l
A
Open Loop Gain  
R = 10kΩ  
OUT  
200  
106  
3000  
126  
V/mV  
VOL  
L
ΔV  
= 3V  
PSRR  
CMRR  
Supply Rejection Ratio  
Input Common Mode Rejection Ratio  
Output Voltage Swing Low  
Output Voltage Swing High  
Short-Circuit Current  
V = 1.65V to 15V  
dB  
S
CM  
V
= V  
= Mid-Supply  
OUT  
l
l
V
CM  
V
CM  
= 0V to 3.25V  
= 5V to 76V  
90  
120  
126  
140  
dB  
dB  
l
l
V
V
V = 5V, No Load  
3
280  
75  
mV  
mV  
OL  
S
V = 5V, 5mA  
550  
S
l
l
V = 5V, No Load  
450  
1000  
750  
1300  
mV  
mV  
OH  
S
V = 5V, 5mA  
S
+
l
l
I
SC  
V = 5V, 50Ω to V  
8
8
25  
25  
mA  
mA  
S
V = 5V, 50Ω to V  
S
GBW  
SR  
Gain Bandwidth Product  
Slew Rate  
f
= 10kHz  
2.85  
2.4  
3.2  
3.2  
MHz  
MHz  
TEST  
l
l
ΔV  
= 3V  
0.55  
0.4  
0.75  
0.75  
V/μs  
V/μs  
OUT  
t
Settling Time Due to Input Step  
Supply Voltage  
0.1% Settling  
ΔV 2V  
3.5  
μs  
S
=
OUT  
V
3
3.3  
50  
50  
–50  
V
V
V
S
l
l
Reverse Supply (Note 7)  
I < –25VμA/Amplifier  
S
–63  
I
S
Supply Current Per Amplifier  
V = 5V  
S
315  
315  
335  
540  
μA  
μA  
l
R
O
Output Impedance  
ΔI = 5mA  
O
0.15  
Ω
The l denotes the specifications which apply over the specified temperature range, –55°C < TJUNCTION < 150°C for MP-grade parts,  
otherwise specifications are at TA = 25°C, VS = 15V, VCM = VOUT = mid-supply.  
MP-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
–80  
55  
55  
75  
75  
80  
μV  
μV  
μV  
μV  
OSI  
l
l
–500  
–110  
–500  
500  
110  
500  
V = 25V  
S
S
V = 25V  
ΔV  
Input Offset Voltage Drift  
Input Bias Current  
0.75  
μV/°C  
OSI  
ΔTEMP  
I
–5  
–300  
2
2
5
300  
nA  
nA  
B
l
I
Input Offset Current  
–5  
2
2
5
nA  
nA  
OS  
l
l
–50  
50  
VCMR  
Common Mode Input Range  
Differential Input Capacitance  
Differential Input Resistance  
–15  
61  
V
C
5
pF  
IN  
+
R
0 < V < V – 1.75V  
CM  
1
3.7  
MΩ  
kΩ  
IN  
CM  
+
V
> V  
60167fa  
6
LT6016/LT6017  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified temperature  
range, –55°C < TJUNCTION < 150°C for MP-grade parts, otherwise specifications are at TA = 25°C, VS = 15V, VCM = VOUT = Mid-Supply.  
MP-GRADE  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
R
INCM  
Common Mode Input Resistance  
0 < V < V – 1.75V  
CM  
>1  
>100  
GΩ  
MΩ  
CM  
+
V
> V  
e
Input Referred Noise Voltage Density  
f = 1kHz  
n
+
V
V
< V – 1.75V  
18  
25  
nV/√Hz  
nV/√Hz  
CM  
+
> V  
CM  
Input Referred Noise Voltage  
f = 0.1Hz to 10Hz  
CM  
0.5  
μV  
P-P  
+
V
< V – 1.75V  
i
n
Input Referred Noise Current Density  
f = 1kHz  
+
V
V
< V – 1.75V  
0.1  
11.5  
pA/√Hz  
pA/√Hz  
CM  
+
> V  
CM  
l
l
l
A
Open Loop Gain  
R = 10kΩ  
OUT  
100  
106  
100  
1000  
126  
V/mV  
VOL  
L
ΔV  
= 27V  
PSRR  
CMRR  
Supply Rejection Ratio  
V = 2.5V to 25V  
dB  
S
CM  
V
= V  
= 0V  
OUT  
Input Common Mode Rejection Ratio  
Output Voltage Swing Low  
V
CM  
= –15V to 13.25V  
126  
dB  
l
l
V
V = 15V, No Load  
3
280  
75  
550  
mV  
mV  
OL  
S
V = 15V, 5mA  
S
l
l
V
Output Voltage Swing High  
Short-Circuit Current  
Gain Bandwidth Product  
Slew Rate  
V = 15V, No Load  
S
450  
750  
1300  
mV  
mV  
OH  
S
V = 15V, 5mA  
1000  
l
l
I
SC  
V = 15V, 50Ω to GND  
8
8
30  
32  
mA  
mA  
S
V = 15V, 50Ω to GND  
S
GBW  
SR  
f
= 10kHz  
2.9  
2.45  
3.3  
3.3  
MHz  
MHz  
TEST  
l
l
ΔV  
= 3V  
0.6  
0.45  
0.8  
0.8  
V/μs  
V/μs  
OUT  
t
Settling Time Due to Input Step  
Supply Voltage  
0.1% Settling  
ΔV 2V  
3.5  
μs  
S
=
OUT  
V
3
3.3  
50  
50  
–30  
V
V
V
S
l
l
Reverse Supply  
I = –25μA/Amplifier  
S
–65  
I
S
Supply Current Per Amplifier  
325  
325  
340  
340  
350  
575  
360  
600  
μA  
μA  
μA  
μA  
l
l
V = 25V  
S
S
V = 25V  
R
O
Output Impedance  
ΔI = 5mA  
O
0.15  
Ω
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
junction temperature range of –55°C to 150°C. Junction temperatures  
greater than 125°C will promote accelerated aging. The LT6016/LT6017  
has a demonstrated typical performance beyond 1000 hours at T = 150°C.  
J
Note 5: The LT6016I/LT6017I are guaranteed to meet specified  
performance from –40°C to 85°C. The LT6016H/LT6017H are guaranteed  
to meet specified performance from –40°C to 125°C. The LT6016MP/  
LT6017MP are guaranteed to meet specified performance with junction  
temperature ranging from –55°C to 150°C.  
Note 6: Test accuracy is limited by high speed test equipment repeatability.  
Bench measurements indicate the input offset current in the Over-The-Top  
configuration is typically controlled to under 50nA at 25°C and 150nA  
over temperature.  
Note 2: Voltages applied are with respect to V . The inputs are tested to  
the Absolute Maximum Rating by applying –25V (relative to V ) to each  
input for 10ms. In general, faults capable of sinking current from either  
input should be current limited to under 10mA. See the Applications  
Information section for more details.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum. This depends on the power supply voltage and  
how many amplifiers are shorted.  
Note 4: The LT6016I/LT6017 are guaranteed functional over the operating  
temperature range of –40°C to 85°C. The LT6016H/LT6017H are  
guaranteed functional over the operating temperature range of –40°C  
to 125°C. The LT6016MP/LT6017MP are guaranteed functional over the  
Note 7: The Reverse Supply voltage is tested by pulling 25ꢀA/Amplifier out  
+
+
of the V pin while measuring the V pin’s voltage with both inputs and V  
+
grounded, verifying V < –50V.  
60167fa  
7
LT6016/LT6017  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Distribution of Input  
Offset Voltage  
Typical Distribution of Input  
Offset Voltage  
Typical Distribution of Over-The-Top  
Input Offset Voltage  
600  
500  
400  
300  
200  
100  
0
350  
300  
250  
200  
150  
100  
400  
350  
300  
250  
200  
150  
100  
50  
965 UNITS  
1930 CHANNELS  
FROM TWO RUNS  
V
=
15V  
V
= 5V  
V
= 5V  
S
S
S
V
T
= 0V  
V
= 5V  
V
T
= MID-SUPPLY  
CM  
A
CM  
A
CM  
A
= 25°C  
T
= 25°C  
= 25°C  
MS8 PACKAGE  
MS8 PACKAGE  
MS8 PACKAGE  
1285 UNITS  
2570 CHANNELS  
FROM TWO RUNS  
1285 UNITS  
2570 CHANNELS  
FROM TWO RUNS  
50  
0
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
–3025201510 –5  
0
5
10 15 20 25 30  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
60167 G02  
60167 G03  
60167 G01  
Typical Distribution of Over-The-Top  
Input Offset Voltage  
Typical Distribution of Input  
Offset Voltage  
Typical Distribution of Over-The-Top  
Input Offset Voltage  
350  
300  
250  
200  
150  
100  
350  
300  
250  
200  
150  
100  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
965 UNITS  
1930 CHANNELS  
FROM TWO RUNS  
510 UNITS  
2040 CHANNELS  
FROM TWO RUNS  
V
= 5V  
V
= 5V  
V = 5V  
S
510 UNITS  
2040 CHANNELS  
FROM TWO RUNS  
S
S
V
= 76V  
V
= MID-SUPPLY  
V
= 5V  
CM  
A
CM  
A
CM  
T
= 25°C  
T
= 25°C  
T = 25°C  
A
MS8 PACKAGE  
DJC22 PACKAGE  
DJC22 PACKAGE  
50  
0
50  
0
0
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
–50 –40 –30 –20 –10  
0
10 20 30 40 50  
–100 –80 –60 –40 –20  
0
20 40 60 80 100  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
INPUT OFFSET VOLTAGE (μV)  
60167 G04  
60167 G05  
60167 G06  
Voltage Offset Shift vs Lead Free  
IR Reflow  
Over-The-Top Voltage Offset Shift  
vs Lead Free IR Reflow  
Voltage Offset Shift vs Lead Free  
IR Reflow  
12  
10  
8
18  
16  
14  
12  
10  
8
24 DEVICES  
48 CHANNELS  
MS8 PACKAGE  
10 DEVICES  
V = 5V  
S
24 DEVICES  
40 CHANNELS  
DJC22 PACKAGE  
V
= MID-SUPPLY  
48 CHANNELS  
MS8 PACKAGE  
CM  
V
CM  
= 5V  
14  
12  
10  
8
V = 5V  
S
S
CM  
V
= 5V  
V
= MID-SUPPLY  
6
6
4
6
4
4
2
2
2
0
0
0
–20 –15 –10 –5  
0
5
10 15 20 25  
–25 –20 –15 –10 –5  
0
5 10 15 20 25  
–20 –15 –10 –5  
0
5
10 15 20 25  
VOLTAGE OFFSET SHIFT (μV)  
VOLTAGE OFFSET SHIFT (μV)  
VOLTAGE OFFSET SHIFT (μV)  
60167 G08  
60167 G09  
60167 G07  
60167fa  
8
LT6016/LT6017  
TYPICAL PERFORMANCE CHARACTERISTICS  
Voltage Offset Shift vs Thermal  
Cycling  
Warm-Up Drift  
Over-The-Top Warm-Up Drift  
2.5  
2.0  
18  
16  
14  
12  
10  
8
2.5  
2.0  
V
=
15V  
= 0V  
5 UNITS, 10 CHANNELS  
MS8 PACKAGE  
V
= 5V  
= 50V  
5 UNITS, 10 CHANNELS  
MS8 PACKAGE  
FOUR THERMAL CYCLES –55°C TO 130°C  
S
CM  
S
CM  
V
V
T
= 25°C  
A
20 DEVICES  
1.5  
1.5  
40 CHANNELS  
MS8 PACKAGE  
1.0  
1.0  
V = 5V  
S
CM  
0.5  
0.5  
V
= MID-SUPPLY  
0.0  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
6
4
CHANNEL A  
CHANNEL B  
2
CHANNEL A  
CHANNEL B  
0
0
1
2
3
4
5
–25 –20 –15 –10 –5  
0
5 10 15 20 25  
0
1
2
3
4
5
TIME AFTER POWER ON (MIN)  
VOLTAGE OFFSET SHIFT (μV)  
TIME AFTER POWER ON (MIN)  
60167 G10  
60167 G12  
60167 G11  
Voltage Offset Shift vs  
Temperature Cycling  
Over-The-Top Voltage Offset vs  
Temperature  
Voltage Offset vs Temperature  
100  
75  
150  
100  
50  
150  
100  
50  
FOUR CYCLES –55°C TO 130°C  
V
CM  
= 5V  
5 UNITS, 10 CHANNELS  
V
CM  
= 5V  
5 UNITS, 10 CHANNELS  
MS8 PACKAGE  
S
S
V
= 5V, V = MID-SUPPLY  
V
= MID-SUPPLY MS8 PACKAGE  
V
= 50V  
S
CM  
40 CHANNELS MEASURED  
MS8 PACKAGE  
CHANNEL A  
CHANNEL B  
CHANNEL A  
CHANNEL B  
MAXIMUM SHIFT  
MEASURED  
50  
25  
TYPICAL  
CHANNEL  
0
0
0
–25  
–50  
–75  
–100  
–50  
–100  
–150  
–50  
–100  
–150  
MINIMUM SHIFT  
MEASURED  
WORST-CASE  
CHANNEL  
–75 –50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
60167 G13  
60167 G14  
60167 G15  
Voltage Offset vs Input Common  
Mode Voltage  
Voltage Offset vs Supply Voltage  
Minimum Supply Voltage  
50  
40  
100  
75  
20  
15  
V
= 5V  
S
T
= –45°C  
A
30  
50  
10  
T
A
= 125°C  
20  
25  
5
10  
T = 25°C  
A
T
= 25°C  
A
0
0
T
= 25°C  
0
A
T
= –45°C  
A
T
A
= –45°C  
–10  
–20  
–30  
–40  
–50  
–25  
–50  
–75  
–100  
–5  
T
= 125°C  
A
T
A
= 125°C  
–10  
–15  
–20  
0.01  
0.1  
1
10  
100  
5
10 15 20 25 30 35 40 45 50  
TOTAL SUPPLY VOLTAGE (V)  
0
1
2
3
4
5
V
(V)  
TOTAL SUPPLY VOLTAGE (V)  
CM  
60167 G16  
60167 G17  
60167 G18  
60167fa  
9
LT6016/LT6017  
TYPICAL PERFORMANCE CHARACTERISTICS  
Long Term Stability of Five  
Representative Units  
Input Bias Current vs Input  
Common Mode Voltage  
Input Bias Current vs Input  
Common Mode Voltage  
20  
15  
10  
5
25  
0
5
4
V
= 5V  
V
S
= 5V  
5 UNITS, 10 CHANNELS  
MS8 PACKAGE  
S
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–25  
T
T
T
T
T
= 125°C  
= 85°C  
T
T
T
T
T
= 125°C  
= 85°C  
= 25°C  
= –45°C  
= –55°C  
A
A
A
A
A
A
A
A
A
A
0
= 25°C  
= –45°C  
= –55°C  
CHANNEL A  
CHANNEL B  
–5  
–50  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
0
1
2
3
4
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
TIME (MONTHS)  
60167 G20  
60167 G21  
60167 G19  
Input Bias Current vs Supply  
Voltage  
Reverse Supply Current vs  
Reverse Supply Voltage  
Supply Current vs Supply Voltage  
12.5  
10.0  
7.5  
600  
500  
400  
300  
200  
100  
0
10  
T
T
T
T
T
= 125°C  
= 85°C  
A
A
A
A
A
NON-INVERTING OP AMP CONFIGURATION  
T
= 150°C  
A
+INA, +INB TIED TO V  
= 25°C  
5
0
= –45°C  
= –55°C  
T
= –55°C  
T
= 130°C  
A
A
5.0  
T
= 150°C  
A
–5  
2.5  
T
= –55°C  
A
T
= 25°C  
–10  
–15  
A
0.0  
PARAMETRIC SWEEP IN ~25°C  
INCREMENTS  
–2.5  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
–60  
–50  
–40  
–30  
–20  
–10  
0
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
60167 G22  
60167 G23  
60167 G24  
Over-The-Top Noise Density vs  
Frequency  
Noise Density vs Frequency  
0.1Hz to 10Hz Noise  
40  
35  
30  
25  
20  
15  
10  
5
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
T
=
2.5V TO 25V  
V
V
= 5V  
CM  
S
A
S
= 25°C  
= 5V  
VOLTAGE NOISE  
VOLTAGE NOISE  
CURRENT NOISE  
CURRENT NOISE  
0
1
10  
100  
1000  
0
2
4
6
8
10  
1
10  
100  
1000  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TIME (SEC)  
60167 G25  
60167 G26  
60167 G27  
60167fa  
10  
LT6016/LT6017  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Impedance vs Frequency  
PSRR vs Frequency  
CMRR vs Frequency  
100  
80  
60  
40  
20  
0
1000  
100  
10  
120  
V
S
= 2.5V  
V
=
2.5V  
S
100  
80  
60  
40  
20  
0
POSITIVE SUPPLY  
A
= 100  
V
A
= +1  
V
1
NEGATIVE SUPPLY  
A
= 10  
0.10  
0.01  
V
0.1  
1
10  
100  
1000  
0
1
10  
100  
1000  
10k  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
60167 G30  
60167 G28  
60167 G29  
Closed-Loop Small Signal  
Frequency Response  
Gain and Phase Shift vs  
Frequency  
Gain Bandwidth Product and  
Phase Margin vs Supply Voltage  
60  
40  
90.00  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
60  
56  
52  
48  
44  
40  
50  
40  
C
= 30pF  
LOAD  
PHASE  
100V/V  
10V/V  
1V/V  
112.5  
135.0  
157.5  
180.0  
30  
GBW  
20  
20  
PM  
GAIN  
10  
0
0
–10  
–20  
V
C
=
LOAD  
2.5V  
= 20pF  
S
–20  
0.01  
0.1  
1
10  
0
10  
20  
30  
40  
50  
1
10  
100  
1000  
10k  
FREQUENCY (kHz)  
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (kHz)  
60167 G32  
60167 G33  
60167 G31  
Phase Margin vs Capacitive Load  
Gain-Bandwidth vs Temperature  
Channel Separation vs Frequency  
4.0  
3.5  
3.0  
2.5  
2.0  
45.0  
42.5  
40.0  
37.5  
35.0  
32.5  
30.0  
140  
130  
120  
110  
100  
90  
V
= 2.5V  
S
R
LOAD  
= OPEN  
R
LOAD  
= 1kΩ  
V
= 15V  
S
I
= 150μA  
SRC  
V
= 5V  
S
I
= 0  
SRC  
80  
70  
V
S
= 15V  
60  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
0
50  
100  
150  
200  
250  
300  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
CAPACITIVE LOAD (pF)  
60167 G35  
60167 G34  
60167 G36  
60167fa  
11  
LT6016/LT6017  
TYPICAL PERFORMANCE CHARACTERISTICS  
Settling Time to 0.1% vs Output  
Step  
Slew Rate vs Temperature  
Short-Circuit vs Temperature  
5
4
2.0  
1.5  
1.0  
0.5  
0
40  
30  
V
V
=
CM  
15V  
= 0V  
V
= 5V  
S
V
= 2.5V  
S
S
SINKING  
RISING EDGE  
3
A
= +1  
20  
V
2
A
= –1  
V
10  
1
0
0
FALLING EDGE  
–1  
–2  
–3  
–10  
–20  
–30  
–40  
A
= –1  
V
SOURCING  
A
= +1  
4
V
–4  
–5  
2
3
5
6
7
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
SETTLING TIME (μs)  
60167 G37  
60167 G38  
60167 G39  
Output Saturation Voltage vs  
Input Overdrive  
Small Signal Transient Response  
Large Signal Transient Response  
1000  
100  
10  
A
V
C
= 1V/V  
A
V
= 1V/V  
V
S
V
S
OUTPUT HIGH  
=
2.5V  
=
15  
= 20pF  
LOAD  
25mV/DIV  
5V/DIV  
OUTPUT LOW  
V
=
2.5V  
S
A
T
= 25°C  
NO LOAD  
1
60167 G40  
60167 G41  
1μs/DIV  
10μs/DIV  
1
10  
100  
1000  
INPUT OVERDRIVE (mV)  
60167 G42  
Output Saturation Voltage ꢀVOL  
Output Saturation Voltage ꢀVOH  
vs Load Current  
vs Load Current  
Open-Loop Gain  
200  
150  
100  
50  
10k  
1000  
100  
10  
10k  
1000  
100  
10  
V
= 15V  
S
R
= 2kΩ  
LOAD  
R
LOAD  
= 10kΩ  
0
R
= 1MΩ  
LOAD  
–50  
–100  
T
T
T
= 125°C  
= 25°C  
T
T
T
= 125°C  
= 25°C  
A
A
A
A
A
A
–150  
–200  
= –45°C  
= –45°C  
1
1
–20 –15 –10 –5  
0
5
10 15 20  
60167 G45  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
OUTPUT VOLTAGE (V)  
SINKING LOAD CURRENT (mA)  
SOURCING LOAD CURRENT (mA)  
60167 G43  
60167 G44  
60167fa  
12  
LT6016/LT6017  
APPLICATIONS INFORMATION  
Supply Voltage  
Inputs  
The positive supply pin of the LT6016/LT6017 should  
be bypassed with a small capacitor (typically 0.1ꢀF) as  
close to the supply pins as possible. When driving heavy  
loads an additional 4.7ꢀF electrolytic capacitor should be  
added. When using split supplies, the same is true for  
ReferringtotheSimplifiedSchematic, theLT6016/LT6017  
has two input stages: a common emitter differential input  
stage consisting of PNP transistors Q1 and Q2 which  
operate when the inputs are biased between V and 1.5V  
+
below V , and a common base input stage consisting of  
the V supply pin.  
PNPtransistorsQ3toQ6whichoperatewhenthecommon  
+
mode input is biased greater than V –1.5V. This results  
The LT6017 consists of two dual amplifier dice assembled  
in a single DFN package which share a common substrate  
in two distinct operating regions as shown in Figure 2.  
(V ). While the V pins of the quad (pins 5 and 7) must  
alwaysbetiedtogetherandtotheexposedpadunderneath,  
For common mode input voltages approximately 1.5V or  
+
more below the V supply (Q1 and Q2 active), the com-  
+
the V power supply pins (pins 16 and 18) may be sup-  
mon emitter PNP input stage is active and the input bias  
current is typically under 2nA. When the common mode  
plied independently. The B and C channel amplifiers are  
+
+
supplied through V by pin 16, and the A and D channel  
input is within approximately 1V of the V supply or higher  
amplifiers are supplied by pin 18. If pin 16 and pin 18 are  
+
nottiedtogetherandarebiasedindependently,eachV pin  
–50V  
5V  
OK!  
OK!  
shouldhavetheirowndedicatedsupplybypasstoground.  
+
+
Shutdown  
WhiletherearenodedicatedshutdownpinsfortheLT6016/  
LT6017, the amplifiers can effectively be shut down into  
+
80V  
REVERSE BATTERY  
TOLERANT  
+
a low power state by removing V . In this condition the  
INPUTS DRIVEN ABOVE  
SUPPLY TOLERANT  
input bias current is typically less than 1nA with the inputs  
biased between V and 76V above V , and if the inputs are  
5V  
5V  
OK!  
OK!  
taken below V , they appear as a diode in series with 1k of  
+
+
resistance. The output may be pulled up to 50V above the  
+
+
80V  
V power supply in this condition (See Figure 1). Pulling  
the output pin below V will produce unlimited current  
and can damage the part.  
25V  
TRANSIENT  
LARGE DIFFERENTIAL  
INPUT VOLTAGE  
TOLERANT  
+
Reverse Battery  
INPUTS DRIVEN BELOW  
GROUND TOLERANT  
The LT6016/LT6017 are protected against reverse battery  
voltages up to 50V. In the event a reverse battery condi-  
tion occurs, the supply current is typically less than 5μA  
(assuming the inputs are biased within a diode drop from  
0V  
OK!  
+
+
V ). For typical single supply applications with ground re-  
50V  
ferred loads and feedback networks, no other precautions  
are required. If the reverse battery condition results in a  
negative voltage at the input pins, the current into the pin  
shouldbelimitedbyanexternalresistortolessthan10mA.  
60167 F01  
OUTPUT DRIVEN ABOVE THE  
+
V
SUPPLY (IN SHUTDOWN)  
TOLERANT  
Figure 1. LT6016/LT6017 Fault Tolerant Conditions  
60167fa  
13  
LT6016/LT6017  
APPLICATIONS INFORMATION  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
(Over-The-Top operation), Q9 begins to turn on diverting  
bias current away from the common emitter differential  
input pair to the current mirror consisting of Q11 and Q12.  
ThecurrentfromQ12willbiasthecommonbasedifferential  
inputpairconsistingofQ3toQ6.BecausetheOver-The-Top  
input pair is operating in a common base configuration,  
the input bias current will increase to about, 14ꢀA. Both  
input stages have their voltage offsets trimmed tightly and  
are specified in the Electrical Characteristics table.  
V
= 5V  
S
TYPICAL COMMON MODE VOLTAGE  
FOR ONSET OF OVER-THE-TOP  
OPERATION  
TYPICAL COMMON MODE VOLTAGE  
WHERE OVER-THE-TOP OPERATION  
FULLY ON  
TRANSISTION REGION  
The inputs are protected against temporary excursions to  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
as much as 25V below V by internal 1k resistor in series  
60167 F02  
with each input and a diode from the input to the negative  
supply. Adding additional external series resistance will  
Figure 2. LT6016/LT6017 Over-The-Top Transition Region vs  
Temperature  
extend the protection beyond 25V below V . The input  
stage of the LT6016/LT6017 incorporates phase reversal  
protection to prevent the output from phase reversing for  
Some implications should be understood about Over-  
The-Top operation. The first, and most obvious is the  
input bias currents change from under 2nA in normal  
operation to 14μA in Over-The-Top operation as the input  
stage transitions from common emitter to common base.  
Even though the Over-The-Top input bias currents run  
around 14 μA, they are very well matched and their offset  
is typically under 100nA.  
inputs below V .  
There are no clamping diodes between the inputs. The  
inputs may be over-driven differentially to 80V without  
damage, or without drawing appreciable input current.  
Figure 1 summarizes the kind of faults that may be applied  
to the LT6016/LT6017 without damage.  
Over-The-Top Operation Considerations  
Thesecondandmoresubtlechangetoamplifieroperation  
is the differential input impedance which decreases from  
1MΩ in normal operation, to approximately 3.7kΩ in  
When the input common mode of the LT6016/LT6017 is  
+
biased near or above the V supply, the amplifier is said  
Over-The-Top operation (specified as R in the Electrical  
IN  
to be operating in the Over-The-Top configuration. The  
differential input pair which control amplifier operation  
is common base pair Q3 to Q6 (refer to the Simplified  
Schematic). If the input common mode is biased between  
Characteristics table). This resistance appears across the  
summing nodes in Over-The-Top operation and is due to  
the common base input stage configuration. Its value is  
easilyderivedfromthespecifiedinputbiascurrentflowing  
into the op amp inputs and is equal to 2 • k • T/(q • Ib)  
(k-Boltzmann’s constant, T – operating temperature,  
Ib-operating input bias current of the amplifier in the  
Over-The-Top region). And because the inputs are biased  
proportional to absolute temperature, it is relatively  
constant with temperature. The user may think this  
effective resistance is relatively harmless because it  
appears across the summing nodes which are forced  
+
V and approximately 1.5V below V , the amplifier is said  
tobeoperatinginthenormalconfiguration. Thedifferential  
input pair which control amplifier operation is common  
emitter pair Q1 and Q2.  
AplotoftheOver-The-TopTransitionregionvsTemperature  
(the region between normal operation and Over-The-Top  
operation) on a 5V single supply is shown in Figure 2.  
60167fa  
14  
LT6016/LT6017  
APPLICATIONS INFORMATION  
to 0V differential by feedback action of the amplifier.  
However, depending on the configuration of the feedback  
around the amplifier, this input resistance can boost noise  
gain, lower overall amplifier loop gain and closed loop  
bandwidth, raise output noise, with one benevolent effect  
in increasing amplifier stability.  
Likewise the closed loop bandwidth of the amplifier will  
change going from normal mode operation to Over-The-  
Top operation:  
GBW  
Normal mode:  
BW  
CLOSED LOOP  
R
F
1+  
R
I
+
In the normal mode of operation (where V < V < V  
CM  
Over-The-Top mode:  
BW  
–1.5V), R is typically large compared to the value of the  
IN  
inputresistorused,andR canbeignored(refertoFigure3).  
GBW  
IN  
CLOSED LOOP  
In this case the noise gain is defined by the equation:  
R
F
1+  
R || R +R ||R  
(
)
I
IN  
I
F
R
F
NOISE GAIN 1+  
R
I
Andoutputnoiseisnegativelyimpactedgoingfromnormal  
mode to Over-The-Top:  
However, whentheamplifiertransitionsintoOver-The-Top  
mode with the input common mode biased near or above  
Normal mode: (neglecting resistor noise)  
+
the the V supply, R should be considered. The noise  
IN  
gain of the amplifier changes to:  
R
R
F
e
e • 1+  
ni  
no  
I
R
F
NOISE GAIN = 1+  
R || R +R ||R  
(
)
I
IN  
I
F
Over-The-Top mode: (neglecting resistor noise)  
R
F
5V  
R
R
R
F
I
I
e
e 1+  
+
no  
ni  
R || R +R ||R  
(
)
1/2  
LT6016  
I
IN  
I
F
V
R
IN  
V
OUT  
IN  
Output  
V
INCM  
R
F
60167 F03  
The output of the LT6016/LT6017 can swing within a  
+
Schottky diode drop (~0.4V) of the V supply, and within  
Figure 3. Difference Amplifier Configured for Both  
Normal and Over-The-Top Operation  
5mV of the negative supply with no load. The output is  
capable of sourcing and sinking approximately 25mA.  
The LT6016/LT6017 are internally compensated to drive  
at least 200pF of capacitance under any output loading  
conditions. For larger capacitive loads, a 0.22ꢀF capaci-  
tor in series with a 150Ω resistor between the output and  
groundwillcompensatetheseamplifierstodrivecapacitive  
loads greater than 200pF.  
While it is true that the DC closed loop gain will remain  
R
F
mostly unaffected (=  
), the loop gain of the amplifier  
R
I
A
A
OL  
F
OL  
F
R
R
has decreased from  
to  
1+  
1+  
R
R || R +R ||R  
(
)
I
I IN I F  
60167fa  
15  
LT6016/LT6017  
APPLICATIONS INFORMATION  
Distortion  
In general, the die junction temperature (T ) can be esti-  
J
mated from the ambient temperature T , and the device  
A
There are two main contributors of distortion in op amps:  
output crossover distortion as the output transitions  
from sourcing to sinking current and distortion caused  
by nonlinear common mode rejection. If the op amp is  
operating in an inverting configuration there is no com-  
mon mode induced distortion. If the op amp is operating  
in the noninverting configuration within the normal input  
power dissipation P :  
D
T = T + P • θ  
JA  
J
A
D
The power dissipation in the IC is a function of supply  
voltage and load resistance. For a given supply voltage,  
the worst-case power dissipation P  
occurs at the  
D(MAX)  
maximum supply current with the output voltage at half  
of either supply voltage (or the maximum swing is less  
+
common mode range (V to V –1.5V) the CMRR is very  
good, typically over 120dB. When the LT6016 transitions  
input stages going from the normal input stage to the  
Over-The-Top input stage or vice-versa, there will be a  
significant degradation in linearity due to the change in  
input circuitry.  
than one-half the supply voltage). P  
is given by:  
D(MAX)  
2
P
= (V • I  
) + (V /2) /R  
D(MAX)  
S
S(MAX)  
S
LOAD  
Example: An LT6016 in a MSOP package mounted on a PC  
board has a thermal resistance of 273°C/W. Operating on  
25Vsupplieswithbothamplifierssimultaneouslydriving  
2.5kΩ loads, the worst-case IC power dissipation for the  
Lower load resistance increases distortion due to a net  
decrease in loop gain, and greater voltage swings internal  
to the amp necessary to drive the load, but has no effect  
on the input stage transition distortion. The lowest distor-  
tion can be achieved with the LT6016/LT6017 sourcing in  
class-A operation in an inverting configuration, with the  
inputcommonmodebiasedmid-waybetweenthesupplies.  
given load occurs when driving 12.5V  
and is given by:  
PEAK  
2
P
= 2 • 50 • 0.6mA + 2 • (12.5) /2500 = 0.185W  
D(MAX)  
With a thermal resistance of 273°C/W, the die temperature  
will experience approximately a 50°C rise above ambient.  
This implies the maximum ambient temperate the LT6016  
should ever operate under the assumed conditions:  
Power Dissipation Considerations  
T = 150°C – 50°C = 100°C  
Because of the ability of the LT6016/LT6017 to operate on  
power supplies up to 25V and to drive heavy loads, there  
is a need to ensure the die junction temperature does not  
exceed 150°C. The LT6016 is housed in an 8-lead MSOP  
A
Tooperatetohigherambienttemperatures, usetwo chan-  
nelsoftheLT6017quadwhichhaslowerthermalresistance  
θ =31.8°C/W,andanexposedpadwhichmaybesoldered  
JA  
package (θ = 273°C/W). The LT6017 is housed in a 22  
JA  
down to a copper plane (connected to V ) to further lower  
pin leadless DFN package (DJC22, θ = 31.8°C/W).  
JA  
the thermal resistance below θ = 31.8°C/W.  
JA  
60167fa  
16  
LT6016/LT6017  
SIMPLIFIED SCHEMATIC  
+
V
I1  
I3  
I4  
D3  
Q10  
PNP  
16μA  
8μA  
8μA  
M2  
M1  
R5  
PMOS  
PMOS  
40k  
R1, 1k  
R2, 1k  
Q9  
–IN  
PNP  
I2  
P
N
CLASS AB  
ADJUST  
Q1  
PNP  
Q2  
PNP  
OUT  
+IN  
5μA  
Q3  
Q4  
PNP  
PNP  
Q6  
Q5  
PNP  
PNP  
Q7  
NPN  
Q8  
NPN  
Q13  
NPN  
Q11  
NPN  
Q12  
NPN  
R3  
6k  
R4  
6k  
D1  
D2  
D4  
V
60167 SS  
60167fa  
17  
LT6016/LT6017  
TYPICAL APPLICATIONS  
Gain of 100 High Voltage Difference Amplifier with –5V/75V Common Mode Range  
CMRR  
ADJUST  
97.6k  
5k  
5V  
1/2  
1k  
1k  
+
+
V
ꢀꢁꢀꢂꢃꢃꢀtꢀ7  
IN  
V
OUT  
IN  
LT6016  
+
–5V  
V
CM  
100k  
60167 TA02  
60167fa  
18  
LT6016/LT6017  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
0.889 0.127  
(.035 .005)  
5.23  
3.20 – 3.45  
(.206)  
(.126 – .136)  
MIN  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 0.038  
(.0165 .0015)  
TYP  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.1016 0.0508  
(.009 – .015)  
(.004 .002)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
60167fa  
19  
LT6016/LT6017  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DJC Package  
22-Lead Plastic DFN ꢀ6mm w 3mmꢂ  
(Reference LTC DWG # 05-08-1714 Rev Ø)  
0.889  
0.70 0.05  
R = 0.10  
0.889  
3.60 0.05  
1.65 0.05  
(2 SIDES)  
2.20 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
5.35 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. APPLY SOLDER MASK TO AREAS THAT  
ARE NOT SOLDERED  
3. DRAWING IS NOT TO SCALE  
R = 0.115  
TYP  
0.40 0.05  
6.00 0.10  
(2 SIDES)  
0.889  
12  
22  
R = 0.10  
TYP  
0.889  
3.00 0.10  
(2 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN #1 NOTCH  
R0.30 TYP OR  
0.25mm w 45°  
CHAMFER  
11  
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
5.35 0.10  
(2 SIDES)  
(DJC) DFN 0605  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WXXX)  
IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
60167fa  
20  
LT6016/LT6017  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
01/13 Corrected Block Diagram Q7 and Q8  
17  
60167fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LT6016/LT6017  
TYPICAL APPLICATION  
Eꢁtended Supply Current Boosted Gain of Three Amplifier Drives 100Ω Load to 30V, with 600mA Current Limit  
47nF  
1k  
0.1μF  
35V  
1k  
330pF  
20k  
820pF  
35V  
Q1  
24V *  
Z
+
604Ω  
1Ω  
10k  
1k  
1/2  
LT6016  
V
= 30V  
OUT  
330Ω  
1/2W  
1/2  
LT6016**  
+
Q2  
24V *  
Z
V
IN  
–35V  
1k  
–35V  
100k  
10nF  
47nF  
2 × 1N4148  
OR EQUIVALENT  
60167 TA03  
*ZENER DIODES: CENTRAL SEMI CMZ5934  
Q1, Q2: ON-SEMI D44VH10 NPN, D45VH10 PNP WITH HEAT SINK  
**BOTH HALVES OF LT6016 ON SAME SUPPLY  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Over-The-Top Inputs, 50ꢀA/Amplifier, Reverse Battery Protection to 18V  
LT1490A/LT1491A  
Dual and Quad Micropower Rail-to-Rail Input and  
Output Op amp  
LT1638/LT1639  
1.2MHz, 0.4V/μs Over-The-Top Rail-to-Rail Input and Over-The-Top Inputs, 230ꢀA/Amplifier, 1.2MHz GBW, 0.4V/μs Slew Rate  
Output Op Amp  
LT1494/LT1495/LT1496 1.5ꢀA Max, Single, Dual, and Quad, Over-The-Top  
Precision Rail-to-Rail Input and Output Op Amps  
Over-The-Top Inputs, 1.5ꢀA/Amplifier, 375ꢀV Voltage Offset  
LT1112/LT1114  
LT1013/LT1014  
Dual/Quad Low Power Precision, pA Input Op Amp  
Dual/Quad Precision Op Amp  
60ꢀV Offset Voltage, 400 ꢀA/Amplifier  
150ꢀV Offset Voltage, 500 ꢀA/Amplifier  
60167fa  
LT 0113 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
© LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT6016HMS8#PBF

LT6016 - Dual 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6016IMS8#TRPBF

LT6016 - Dual 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6016MPMS8#PBF

LT6016 - Dual 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: MSOP; Pins: 8; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT6016MPMS8#TRPBF

LT6016 - Dual 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: MSOP; Pins: 8; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT6016_15

3.2MHz, 0.8V/s Low Power, Over-The-Top Precision Op Amps
Linear

LT6017

3.2MHz, 0.8V/μs Low Power, Over-The-Top Precision Op Amps
Linear

LT6017HDJC#PBF

LT6017 - Quad 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: DFN; Pins: 22; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6017HDJC#TRPBF

LT6017 - Quad 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: DFN; Pins: 22; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6017IDJC#PBF

LT6017 - Quad 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: DFN; Pins: 22; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6017IDJC#TRPBF

LT6017 - Quad 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: DFN; Pins: 22; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6017MPDJC#PBF

LT6017 - Quad 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: DFN; Pins: 22; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT6017MPDJC#TRPBF

LT6017 - Quad 3.2MHz, 0.8V/&#181;s Low Power, Over-The-Top Precision Op Amp; Package: DFN; Pins: 22; Temperature Range: -55&deg;C to 125&deg;C
Linear