LT6100CDD#TR [Linear]

LT6100 - Precision, Gain Selectable High Side Current Sense Amplifier; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C;
LT6100CDD#TR
型号: LT6100CDD#TR
厂家: Linear    Linear
描述:

LT6100 - Precision, Gain Selectable High Side Current Sense Amplifier; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C

文件: 总16页 (文件大小:325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6100  
Precision, Gain Selectable  
High Side Current Sense  
Amplifier  
FeaTures  
DescripTion  
The LT®6100 is a complete micropower, precision, high  
side current sense amplifier. The LT6100 monitors unidi-  
rectional currents via the voltage across an external sense  
resistor. Fixed gains of 10, 12.5, 20, 25, 40, 50V/V are  
obtained by simply strapping or floating two gain select  
pins. Gain accuracy is better than 0.5% for all gains.  
n
Input Offset Voltage: 300µV (Max)  
n
Sense Inputs Up to 48V  
n
0.5% Gain Accuracy  
Pin Selectable Gain: 10, 12.5, 20, 25, 40, 50V/V  
Separate Power Supply: 2.7V to 36V  
Operating Current: 60µA  
Sense Input Current (V Powered Down): 1nA  
Reverse Battery Protected to –48V  
Buffered Output  
n
n
n
n
CC  
TheLT6100senseinputshaveavoltagerangethatextends  
from 4.1V to 48V, and can withstand a differential voltage  
of the full supply. This makes it possible to monitor the  
voltage across a MOSFET switch or a fuse. The part can  
also withstand a reverse battery condition on the inputs.  
n
n
n
n
n
Noise Filtering Input  
–40°C to 125°C Operating Temperature Range  
Available in 8-Lead DFN and MSOP Packages  
Input offset is a low 300µV. CMRR and PSRR are in ex-  
cess of 105dB, resulting in a wide dynamic range. A filter  
pin is provided to easily implement signal filtering with a  
single capacitor.  
applicaTions  
n
Battery Monitoring  
n
Fuse Monitoring  
The LT6100 has a separate supply input, which operates  
n
Portable and Cellular Phones  
Portable Test/Measurement Systems  
from 2.7V to 36V and draws only 60µA. When V is  
CC  
n
powered down, the sense pins are biased off. This pre-  
vents loading of the monitored circuit, irrespective of the  
sense voltage. The LT6100 is available in an 8-lead DFN  
and MSOP package.  
L, LT, LTC, LTM, Linear Technology, the Linear logo and Over-The-Top are registered  
trademarks of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
Typical applicaTion  
0A to 33A High Side Current Monitor with 12kHz Frequency Rolloff  
Input Offset Voltage  
vs VS Sense Input Voltage  
1.5  
4.4V TO 48V  
SUPPLY  
3V  
V
V
= 100mV  
SENSE  
2
7
6
= 3V  
CC  
A
1.0  
T
= 25°C  
V
A4  
A2  
LT6100  
+
CC  
0.5  
0
V
S
8
1
V
OUT  
5
R
V
= 2.5V  
OUT  
SENSE  
3mΩ  
I
= 33A  
SENSE  
V
S
–0.5  
–1.0  
–1.5  
V
4
EE  
FIL  
3
LOAD  
6100 TA01a  
220pF  
CONFIGURED FOR GAIN = 25V/V  
0
5
10 15 20 25 30 35 40 45 50  
V
SENSE INPUT VOLTAGE (V)  
S
6100 TA01b  
6100fc  
1
LT6100  
absoluTe MaxiMuM raTings (Notes 1, 2)  
Differential Sense Voltage...................................... 48V  
Specified Temperature Range (Note 5)  
+
Total V , V to V ............................................... 48V  
LT6100C ............................................–40°C to 85°C  
LT6100I ..............................................–40°C to 85°C  
LT6100H .......................................... –40°C to 125°C  
Storage Temperature Range ...........................................  
DFN.................................................... –65°C to 125°C  
MSOP ................................................ –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
S
S
EE  
Total V Supply Voltage from V ......................... 36V  
CC  
EE  
Output Voltage ............................... (V ) to (V + 36V)  
EE  
EE  
Output Short-Circuit Duration (Note 3) ........ Continuous  
Operating Temperature Range (Note 4)  
LT6100C ............................................–40°C to 85°C  
LT6100I ..............................................–40°C to 85°C  
LT6100H .......................................... –40°C to 125°C  
MSOP .............................................................. 300°C  
package/orDer inForMaTion  
TOP VIEW  
TOP VIEW  
+
V
1
2
3
4
8
7
6
5
V
S
S
+
V
V
1
2
3
4
8 V  
S
S
V
A4  
A2  
V
CC  
7 A4  
6 A2  
5 V  
9
CC  
FIL  
EE  
FIL  
V
OUT  
V
EE  
OUT  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 150°C, θ = 250°C/W  
JA  
JMAX  
T
= 125°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 9) IS V , MUST BE SOLDERED TO PCB  
EE  
Order part number  
dd part marking*  
Order part number  
mS part marking*  
Lt6110Cdd  
Lt6110idd  
Lt6100hdd  
Lbmw  
Lbmw  
Lbmw  
Lt6100CmS8  
Lt6100imS8  
Lt6100hmS8  
Ltbmv  
Ltbmv  
Ltbmv  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grades are identified by a label on the shipping  
container.  
elecTrical characTerisTics  
The l denotes specifications which apply over the temperature range 0°C ≤ TA ≤ 70°C (LT6100C), otherwise specifications are  
TA = 25°C. VCC = 5V, VEE = 0V, VS+ = VCC + 1.4V unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
V
V
, V  
Sense Amplifier Supply Voltage  
Input Sense Voltage Full Scale  
V
= 2.7V  
4.1  
48  
V
S
S
CC  
+
+
l
l
V
SENSE  
V
SENSE  
= V – V , V = 3V, A = 10V/V  
= V – V , V = 5V, A = 10V/V  
110  
300  
mV  
mV  
SENSE  
S
S
S
S
CC  
CC  
V
V
V
Input Offset Voltage (MS Package)  
Input Offset Voltage (DD Package)  
I
= 0  
–300  
–500  
80  
80  
300  
500  
µV  
µV  
OS  
OUT  
l
I
= 0  
–350  
–550  
350  
550  
µV  
µV  
OUT  
l
l
V
TC  
Temperature Coefficient of V  
(Note 6)  
0.5  
3
µV/°C  
OS  
OS  
6100fc  
2
LT6100  
elecTrical characTerisTics  
The l denotes specifications which apply over the temperature range 0°C ≤ TA ≤ 70°C (LT6100C), otherwise specifications are  
TA = 25°C. VCC = 5V, VEE = 0V, VS+ = VCC + 1.4V unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
Gain, V /V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
A
V
V
= 50mV to 80mV, A = 10V/V  
SENSE V  
OUT SENSE  
LT6100MS8  
LT6100DD8  
9.95  
9.94  
9.90  
10.05  
10.06  
10.10  
V/V  
V/V  
V/V  
l
l
V = 48V, V  
= 50mV to 80mV, A = 10V/V  
9.90  
10.10  
V/V  
S
SENSE  
V
Output Voltage Gain Error (Note 7)  
V
= 50mV to 80mV,  
SENSE  
V
A = 10, 12.5, 20, 25, 40, 50V/V  
LT6100MS8  
LT6100DD8  
–0.5  
–0.6  
–1.0  
0.5  
0.6  
1.0  
%
%
%
l
l
V = 48V, V  
V
= 50mV to 80mV,  
–1.0  
1.0  
%
S
SENSE  
A = 10, 12.5, 20, 25, 40, 50V/V  
V CMRR  
V Sense Input Common Mode  
V
= 50mV, V = 2.7V, V = 4.1V to 36V  
105  
100  
120  
120  
dB  
dB  
S
S
SENSE  
SENSE  
CC  
S
l
Rejection Ratio  
V
CC  
PSRR  
V
CC  
Supply Rejection Ratio  
V
= 50mV, V = 36V, V = 3V to 30V  
105  
100  
120  
120  
dB  
dB  
S
CC  
l
l
V
CC  
Supply Voltage V  
Bandwidth  
2.7  
36  
V
CC  
BW  
A = 10V/V, f = –3dB, V = 15V  
100  
20  
150  
50  
kHz  
kHz  
V
O
CC  
A = 50V/V, f = –3dB, V = 15V  
V
O
CC  
t
I
I
Output Settling to 1% Final Value  
Sense Input Current  
V
V
V
V
= 10mV to 100mV  
15  
4.5  
60  
µs  
µA  
µA  
S
SENSE  
SENSE  
SENSE  
+
l
l
, I  
= 0V  
= 0V  
10  
S (O) S (O)  
CC(O)  
V
Supply Current  
130  
CC  
SR  
Slew Rate (Note 8)  
= 15V, V  
= 26mV to 380mV, A = 50V/V  
0.03  
0.02  
0.05  
0.05  
V/µs  
V/µs  
CC  
SENSE  
V
l
+
I
Short-Circuit Current  
I
I
, I  
8
15  
60  
mA  
V
SC  
SC SC  
S(TOTAL)  
l
l
Reverse V Supply  
= –200µA, V = Open  
50  
S
CC  
V
V
Minimum Output Voltage  
V
V
= 0V, No Load  
= V – V = –100mV, A = 50V/V, No Load  
15  
15  
30  
25  
mV  
mV  
O(MIN)  
SENSE  
SENSE  
+
S
S
V
l
l
l
l
Output High (Referred to V  
)
CC  
A = 50V/V, V  
= 100mV, I = 0  
75  
85  
125  
175  
125  
150  
250  
400  
mV  
mV  
mV  
mV  
O(MAX)  
V
SENSE  
L
V
V
V
= 100mV, I = 100µA  
SENSE  
SENSE  
SENSE  
L
L
L
= 100mV, I = 500µA  
= 100mV, I = 1mA  
+
l
I
S
, I (Off) Sense Input Current (Power Down)  
V
CC  
= 0V, V = 48V, V = 0V  
SENSE  
0.001  
1
µA  
S
S
The l denotes specifications which apply over the temperature range –40°C ≤ TA ≤ 85°C (LT6100I), otherwise specifications are  
TA = 25°C. VCC = 5V, VEE = 0V, VS+ = VCC + 1.4V unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
V
V
, V  
Sense Amplifier Supply Voltage  
Input Sense Voltage Full Scale  
V
= 2.7V  
4.1  
48  
V
S
S
CC  
+
+
l
l
V
SENSE  
V
SENSE  
= V – V , V = 3V, A = 10V/V  
= V – V , V = 5V, A = 10V/V  
110  
300  
mV  
mV  
SENSE  
S
S
S
S
CC  
CC  
V
V
V
Input Offset Voltage (MS Package)  
Input Offset Voltage (DD Package)  
I
= 0  
–300  
–550  
80  
80  
300  
550  
µV  
µV  
OS  
OUT  
l
I
= 0  
–350  
–600  
350  
600  
µV  
µV  
OUT  
l
l
V
TC  
Temperature Coefficient of V  
(Note 6)  
0.5  
3
µV/°C  
OS  
OS  
6100fc  
3
LT6100  
elecTrical characTerisTics  
The l denotes specifications which apply over the temperature range –40°C ≤ TA ≤ 85°C (LT6100I), otherwise specifications are  
TA = 25°C. VCC = 5V, VEE = 0V, VS+ = VCC + 1.4V unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
Gain, V /V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
A
V
= 50mV to 80mV, A = 10V/V  
SENSE V  
V
OUT SENSE  
LT6100MS8  
LT6100DD8  
9.95  
9.94  
9.90  
10.05  
10.06  
10.10  
V/V  
V/V  
V/V  
l
l
V = 48V, V  
= 50mV to 80mV, A = 10V/V  
9.90  
10.10  
V/V  
S
SENSE  
V
Output Voltage Gain Error (Note 7)  
V
V
= 50mV to 80mV,  
SENSE  
A = 10, 12.5, 20, 25, 40, 50V/V  
LT6100MS8  
LT6100DD8  
–0.5  
–0.6  
–1.0  
0.5  
0.6  
1.0  
%
%
%
l
l
V = 48V, V  
V
= 50mV to 80mV,  
–1.0  
1.0  
%
S
SENSE  
A = 10, 12.5, 20, 25, 40, 50V/V  
V CMRR  
V Sense Input Common Mode  
V
= 50mV, V = 2.7V, V = 4.1V to 36V  
105  
100  
120  
120  
dB  
dB  
S
S
SENSE  
SENSE  
CC  
S
l
Rejection Ratio  
V
V
PSRR  
V
CC  
Supply Rejection Ratio  
V
= 50mV, V = 36V, V = 3V to 30V  
105  
100  
120  
120  
dB  
dB  
CC  
S
CC  
l
l
Supply Voltage V  
Bandwidth  
2.7  
36  
V
CC  
CC  
BW  
A = 10V/V, f = –3dB, V = 15V  
100  
20  
150  
50  
kHz  
kHz  
V
O
CC  
A = 50V/V, f = –3dB, V = 15V  
V
O
CC  
t
I
I
Output Settling to 1% Final Value  
Sense Input Current  
Supply Current  
V
V
V
V
= 10mV to 100mV  
15  
4.5  
60  
µs  
µA  
µA  
S
SENSE  
SENSE  
SENSE  
+
l
l
, I  
= 0V  
= 0V  
10  
S (O) S (O)  
CC(O)  
145  
SR  
Slew Rate (Note 8)  
= 15V, V  
= 26mV to 380mV, A = 50V/V  
0.03  
0.02  
0.05  
0.05  
V/µs  
V/µs  
CC  
SENSE  
V
l
+
I
Short-Circuit Current  
I
I
, I  
8
15  
60  
mA  
V
SC  
SC SC  
S(TOTAL)  
l
l
Reverse V Supply  
= –200µA, V = Open  
50  
S
CC  
V
Minimum Output Voltage  
V
V
= 0V, No Load  
= V – V = –100mV, A = 50V/V, No  
15  
15  
30  
25  
mV  
mV  
O(MIN)  
O(MAX)  
SENSE  
SENSE  
Load  
+
S
S
V
l
l
l
l
V
Output High (Referred to V  
)
A = 50V/V, V  
= 100mV, I = 0  
75  
85  
125  
175  
125  
150  
250  
400  
mV  
mV  
mV  
mV  
CC  
V
SENSE  
L
V
V
V
= 100mV, I = 100µA  
SENSE  
SENSE  
SENSE  
L
L
L
= 100mV, I = 500µA  
= 100mV, I = 1mA  
+
l
I
S
, I (Off) Sense Input Current (Power Down)  
V
CC  
= 0V, V = 48V, V = 0V  
SENSE  
0.001  
1
µA  
S
S
The l denotes specifications which apply over the temperature range –40°C ≤ TA ≤ 125°C (LT6100H), otherwise specifications are  
TA = 25°C. VCC = 5V, VEE = 0V, VS+ = VCC + 1.4V unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
V
V
, V  
Sense Amplifier Supply Voltage  
Input Sense Voltage Full Scale  
V
= 2.7V  
4.1  
48  
V
S
S
CC  
+
+
l
l
V
V
= V – V , V = 3V, A = 10V/V  
110  
300  
mV  
mV  
SENSE  
SENSE  
SENSE  
S
S
S
S
CC  
CC  
V
= V – V , V = 5V, AV = 10V/V  
V
Input Offset Voltage (MS Package)  
Input Offset Voltage (DD Package)  
I
= 0  
–300  
–600  
80  
80  
300  
600  
µV  
µV  
OS  
OUT  
l
I
= 0  
–350  
–650  
350  
650  
µV  
µV  
OUT  
l
l
V
OS  
TC  
Temperature Coefficient of V  
(Note 6)  
0.5  
5
µV/°C  
OS  
6100fc  
4
LT6100  
elecTrical characTerisTics  
The l denotes specifications which apply over the temperature range –40°C ≤ TA ≤ 125°C (LT6100H), otherwise specifications are  
TA = 25°C. VCC = 5V, VEE = 0V, VS+ = VCC + 1.4V unless otherwise specified. (Note 5)  
SYMBOL  
PARAMETER  
Gain, V /V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
A
V
= 50mV to 80mV, A = 10V/V  
SENSE V  
V
OUT SENSE  
LT6100MS8  
LT6100DD8  
9.95  
9.94  
9.90  
10.05  
10.06  
10.10  
V/V  
V/V  
V/V  
l
l
V = 48V, V  
= 50mV to 80mV, A = 10V/V  
9.90  
10.10  
V/V  
S
SENSE  
V
Output Voltage Gain Error (Note 7)  
V
= 50mV to 80mV,  
SENSE  
AV = 10, 12.5, 20, 25, 40, 50V/V  
LT6100MS8  
–0.5  
–0.6  
–1.0  
0.5  
0.6  
1.0  
%
%
%
LT6100DD8  
l
l
V = 48V, V  
V
= 50mV to 80mV,  
–1.0  
1.0  
%
S
SENSE  
A = 10, 12.5, 20, 25, 40, 50V/V  
V CMRR  
V Sense Input Common Mode  
V
= 50mV, V = 2.7V, V = 4.1V to 36V  
105  
100  
120  
120  
dB  
dB  
S
S
SENSE  
SENSE  
CC  
S
l
Rejection Ratio  
V
CC  
PSRR  
V
CC  
Supply Rejection Ratio  
V
= 50mV, V = 36V, V = 3V to 30V  
105  
95  
120  
120  
dB  
dB  
S
CC  
l
l
V
CC  
Supply Voltage V  
Bandwidth  
2.7  
36  
V
CC  
BW  
A = 10V/V, f = –3dB, V = 15V  
A = 50V/V, f = –3dB, V = 15V  
100  
20  
150  
50  
kHz  
kHz  
V
V
O
CC  
O
CC  
t
I
I
Output Settling to 1% Final Value  
Sense Input Current  
Supply Current  
V
V
V
V
= 10mV to 100mV  
15  
4.5  
60  
µs  
µA  
µA  
S
SENSE  
SENSE  
SENSE  
+
l
l
, I  
)
= 0V  
= 0V  
10  
S (O) S (O  
CC(O)  
170  
SR  
Slew Rate (Note 8)  
= 15V, V  
= 26mV to 380mV, A = 50V/V  
0.03  
0.02  
0.05  
0.05  
V/µs  
V/µs  
CC  
SENSE  
V
l
+
I
Short-Circuit Current  
I
I
, I  
8
15  
60  
mA  
V
SC  
SC SC  
S(TOTAL)  
l
l
Reverse V Supply  
= –200µA, V = Open  
50  
S
CC  
V
Minimum Output Voltage  
V
V
= 0V, No Load  
= V – V = –100mV, A = 50V/V, No  
15  
15  
35  
25  
mV  
mV  
O(MIN)  
O(MAX)  
SENSE  
SENSE  
Load  
+
S
S
V
l
l
l
l
V
Output High (Referred to V  
)
A = 50V/V, V  
= 100mV, I = 0  
75  
85  
125  
175  
140  
160  
250  
400  
mV  
mV  
mV  
mV  
CC  
V
SENSE  
L
V
V
V
= 100mV, I = 100µA  
SENSE  
SENSE  
SENSE  
L
L
L
= 100mV, I = 500µA  
= 100mV, I = 1mA  
+
l
I
S
, I (Off) Sense Input Current (Power Down)  
V
CC  
= 0V, V = 48V, V = 0V  
SENSE  
0.001  
1
µA  
S
S
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: ESD (Electrostatic Discharge) sensitive devices. Extensive use of  
ESD protection devices are used internal to the LT6100, however, high  
electrostatic discharge can damage or degrade the device. Use proper ESD  
handling precautions.  
Note 5: The LT6100C is guaranteed to meet specified performance from  
0°C to 70°C. The LT6100C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but is not tested or  
QA sampled at these temperatures. The LT6100I is guaranteed to meet  
specified performance from –40°C to 85°C. The LT6100H is guaranteed to  
meet specified performance from –40°C to 125°C.  
Note 6: This parameter is not 100% tested.  
Note 7: Gain error for A = 12.5, 25V/V is guaranteed by the other gain  
V
Note 3: A heat sink may be required to keep the junction temperature  
error tests.  
below absolute maximum ratings.  
Note 8: Slew rate is measured on the output between 3.5V and 13.5V.  
Note 4: The LT6100C/LT6100I are guaranteed functional over the  
operating temperature range of –40°C to 85°C. The LT6100H is guaranteed  
functional over the operating temperature range of –40°C to 125°C.  
6100fc  
5
LT6100  
Typical perForMance characTerisTics  
Input Offset Voltage  
vs Temperature  
Input Offset Voltage  
vs VS+ Input Voltage  
Input Offset Voltage  
vs VCC Supply Voltage  
1.5  
1.0  
400  
300  
350  
300  
V
V
= 100mV  
SENSE  
CC  
9 TYPICAL UNITS  
T
= 85°C  
= 25°C  
= 3V  
A
V
V
= 6.4V  
= 5V  
S
CC  
T
T
= –40°C  
= 125°C  
A
A
T
T
= 25°C  
0.5  
A
A
200  
T
A
250  
0
100  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
= 85°C  
T
= –40°C  
200  
150  
100  
50  
A
0
V
V
= 100mV  
SENSE  
S
+
= 48V  
–100  
–200  
–300  
– 400  
T
= 125°C  
A
0
10 15 20 25  
SUPPLY VOLTAGE (V)  
40  
0
40  
0
5
30 35  
10  
20  
30  
50  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
6100 G21  
+
V
INPUT VOLTAGE (V)  
V
S
CC  
6100 G01  
6100 G02  
Output Voltage vs Sense Voltage  
Output Voltage vs Sense Voltage  
Gain vs Temperature  
50.06  
50.04  
50.02  
50.00  
49.98  
49.96  
49.94  
49.92  
49.90  
49.88  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+
+
7 TYPICAL UNITS  
V
V
A
T
= 4.4V TO 48V  
= 3V  
V
V
T
= 6.4V TO 48V  
= 5V  
S
S
T
= –40°C  
S
V
= 50mV TO 80mV  
A
V
SENSE  
S
CC  
V
CC  
= 10V/V  
= –40°C TO 125°C  
CC  
+
> 6.6V  
V
V
A
= 6.4V TO 48V  
= 5V  
= 50V/V  
= –40°C TO 125°C  
V
A
A
T
= –40°C  
S
A
V
> 4.6V  
T
= –40°C  
S
A
V
T
= –40°C  
S
A
V
= 6.4V  
= 4.4V  
0
180  
240  
300  
–40 –25 –10  
5
20 35  
125  
–150  
–90  
–30  
150  
60  
120  
50 65 80 95 110  
30  
+
90  
+
SENSE VOLTAGE (V – V ) (mV)  
TEMPERATURE (°C)  
SENSE VOLTAGE (V – V )(mV)  
S
S
S
S
6100 G04  
6100 G05  
6100 G03  
Negative Sense Input Current  
vs Sense Voltage  
Positive Sense Input Current  
vs Sense Voltage  
Output Positive Swing  
vs Load Current  
12  
10  
8
35  
30  
25  
20  
15  
10  
5
350  
300  
+
+
+
V
V
= 4.4V TO 48V  
= 3V  
V
V
= 4.4V TO 48V  
= 3V  
V
V
V
A
= 6.4V  
= 5V  
S
S
S
CC  
CC  
CC  
= 150mV  
SENSE  
= 50V/V  
T
= 125°C  
T
= 125°C  
A
A
V
250  
T
= 85°C  
A
T
= 85°C  
A
T
= 25°C  
A
200  
150  
100  
50  
T
= 125°C  
A
6
T
= –40°C  
A
T
= 85°C  
= 25°C  
= –40°C  
A
A
T
= 25°C  
A
4
T
T
T
= –40°C  
A
A
2
0
0
–5  
0
30  
70  
–110 –70 –30  
110  
–30  
–110 –70  
30  
+
70  
110  
0
0.3  
0.7  
0.9 1.0  
0.8  
0.1 0.2  
0.4 0.5  
0.6  
+
SENSE VOLTAGE (V – V ) (mV)  
LOAD CURRENT (mA)  
SENSE VOLTAGE (V – V ) (mV)  
S
S
S
S
6100 G06  
6100 G07  
6100 G08  
6100fc  
6
LT6100  
Typical perForMance characTerisTics  
VCC Supply Current vs  
VS Input Voltage  
Op Amp Output Impedance  
vs Frequency  
Gain vs Frequency  
50  
40  
30  
20  
200  
180  
160  
140  
120  
100  
80  
10k  
1k  
+
V
V
= 0V  
V
V
= 12.1V  
= 10V  
SENSE  
CC  
V
V
V
, V = 6.5V  
S
S
CC  
S
= 3V  
A
A
= 50  
= 10  
= 5V  
= –5V  
V
V
CC  
EE  
FIL = 0V  
T
= 125°C  
A
T
= 85°C  
A
100  
10  
10  
0
T
= 25°C  
A
G2 = 5V/V  
G2 = 2V/V  
T
= –40°C  
A
–10  
–20  
–30  
–40  
–50  
60  
G2 = 1V/V  
100k  
40  
1
20  
0.1  
0
0
10  
20  
30  
40  
50  
1k  
10k  
1M  
100  
1k  
10k  
100k  
1M  
10M  
TOTAL V INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
S
FREQUENCY (Hz)  
6100 G10  
6100 G09  
6100 G23  
CMRR vs Frequency  
VCC PSRR vs Frequency  
Gain Error vs VSENSE  
150  
130  
110  
90  
1
0
V
S
= 10V  
= 100mV  
V
V
= 6.4V  
= 5V  
S
CC  
140  
120  
100  
80  
V
SENSE  
V
= 5V  
CC  
70  
–1  
–2  
60  
50  
40  
30  
+
V
= 6.4V  
S
V
= 5V  
CC  
= 10V/V  
= 25°C  
20  
10  
A
V
A
T
–10  
0.1  
0
–3  
1
10 100 1k 10k 100k 1M  
10  
100  
1k  
10k  
100k  
1M  
0
50  
100  
150  
200  
250  
300  
V
(mV)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SENSE  
6100 G12  
6100 G11  
6100 G24  
Sense Input Current (VCC Powered  
Step Response at VSENSE = 0V to  
130mV  
Step Response at VSENSE = 0V to  
130mV  
+
Down) vs VS  
10  
1
+
V
= V  
10V  
S
S
10V  
T
T
= 125°C  
= 85°C  
A
A
V
100mV/DIV  
V
50mV/DIV  
0.1  
0.01  
V
V
OUT  
OUT  
2V/DIV  
500mV/DIV  
0V  
T
T
= 25°C  
0V  
A
A
6100 G13  
6100 G14  
+
+
V
S
A
V
C
L
= 10V  
50µs/DIV  
V
S
A
V
C
L
= 10V  
0.2ms/DIV  
= –40°C  
= 10V/V  
= 0pF  
= 50V/V  
= 0pF  
0.001  
0
10  
20  
V
30  
40  
50  
+
(V)  
S
6100 G25  
6100fc  
7
LT6100  
Typical perForMance characTerisTics  
Step Response at VSENSE = 0V to  
10mV  
Step Response at VSENSE = 0V to  
10mV  
Step Response at VSENSE = 0V to  
130mV  
10V  
10V  
V
20mV/DIV  
10V  
V
20mV/DIV  
V
50mV/DIV  
V
V
V
OUT  
OUT  
OUT  
50mV/DIV  
200mV/DIV  
500mV/DIV  
0V  
0V  
0V  
6100 G15  
6100 G16  
6100 G17  
+
+
+
V
A
C
= 10V  
50µs/DIV  
V
S
A
V
C
L
= 10V  
50µs/DIV  
V
A
C
= 10V  
50µs/DIV  
S
V
S
V
= 10V/V  
= 0pF  
= 50V/V  
= 0pF  
= 10V/V  
= 1000pF  
OUT  
OUT  
Step Response at VSENSE = 0V to  
130mV  
Step Response at VSENSE = 0V to  
10mV  
10V  
10V  
V–  
20mV/DIV  
V–  
100mV/DIV  
V
OUT  
V
2V/DIV  
OUT  
50mV/DIV  
0V  
0V  
6100 G18  
6100 G19  
+
+
V
S
A
V
C
L
= 10V  
0.2ms/DIV  
V
S
A
V
C
L
= 10V  
50µs/DIV  
= 50V/V  
= 1000pF  
= 10V/V  
= 1000pF  
Step Response at VSENSE = 0V to  
10mV  
Start-Up Delay  
10V  
V–  
10V  
+
V
S
20mV/DIV  
0V  
1V  
0V  
V
OUT  
V
OUT  
200mV/DIV  
0V  
6100 G20  
6100 G22  
+
V
S
A
V
C
L
= 10V  
50µs/DIV  
V
V
A
V
= 5V  
20µs/DIV  
CC  
SENSE  
V
= 50V/V  
= 1000pF  
= 100mV  
= 10V/V  
= 0V  
EE  
6100fc  
8
LT6100  
pin FuncTions  
V
(Pin 1): Negative Sense Input Terminal. Negative  
A2 (Pin 6): Gain Select Pin. Refer to Table 1.  
S
sense voltage input will remain functional for voltages  
A4 (Pin 7): Gain Select Pin. When Pin 7 is shorted to V ,  
EE  
up to 48V. V is connected to an internal gain-setting  
resistor R = 5k.  
S
the total gain is 40V/V. When both Pin 6 and Pin 7 are  
G1  
shorted to V , the total gain is 50V/V. When both Pin 6  
EE  
V
(Pin 2): Supply Voltage Input. This power supply pin  
and Pin 7 are opened, the total gain is 10V/V.  
CC  
suppliescurrenttobothcurrentsenseamplifierandopamp.  
+
V
(Pin 8): Positive Sense Input Terminal. Connecting a  
S
+
FIL (Pin 3): Filter Pin. Connects to an external capacitor  
supply to V and a load to V will allow the LT6100 to  
S S  
+
to roll off differential noise of the system. Pole frequency  
monitor the current through R  
, refer to Figure 1. V  
SENSE S  
f
= 1/(2πR C), R = R + R = 60k.  
is connected to an internal gain setting resistor R = 5k.  
–3dB  
FIL  
FIL  
E
O
G2  
+
V
remains functional for voltages up to 48V.  
S
V
(Pin 4): Negative Supply or Ground for Single Supply  
EE  
Operation.  
V
(Pin5):VoltageOutputProportionaltotheMagnitude  
OUT  
of the Current Flowing Through R  
:
SENSE  
V
OUT  
= A • (V  
V )  
OS  
V
SENSE  
V
is the input offset voltage. A is the total gain of the  
V
OS  
LT6100.  
FuncTional DiagraM  
R
SENSE  
V
IN  
LOAD  
(V + 1.4V) TO 48V  
CC  
1
8
+
V
V
S
S
R
R
G2  
5k  
G1  
5k  
+
R
25k  
A1  
V
CC  
2
+
2.7V TO 36V  
V
OUT  
R
E
Q1  
A2  
5
10k  
V
O1  
R
O
R
R/3  
A4  
50k  
V
EE  
FIL  
A2  
4
3
6
7
6100 F01  
Figure 1. Functional Diagram  
6100fc  
9
LT6100  
applicaTions inForMaTion  
The LT6100 high side current sense amplifier (Figure 1)  
provides accurate unidirectional monitoring of current  
through a user-selected sense resistor. The LT6100 fea-  
tures a fully specified 4.1V to 48V input common mode  
Table 1. Gain Set with Pin 6 and Pin 7  
A2 (PIN 6)  
Open  
VEE  
A4 (PIN 7)  
Open  
Out  
G2  
1
AV  
10  
1.25  
2
12.5  
20  
range. A high PSRR V supply (2.7V to 36V) powers the  
CC  
VEE  
Open  
VEE  
current sense amplifier and the internal op amp circuitry.  
The input sense voltage is level shifted from the positive  
sense power supply to the ground reference and amplified  
by a user-selected gain to the output. The buffered output  
voltage is directly proportional to the current flowing  
through the sense resistor.  
Out  
2.5  
4
25  
Open  
VEE  
VEE  
40  
VEE  
5
50  
Selection of External Current Sense Resistor  
External R resistor selection is a delicate trade-off  
SENSE  
betweenpowerdissipationintheresistorandcurrentmea-  
surement accuracy. The maximum sense voltage may be  
as large as 300mV to get maximum dynamic range. For  
high current applications, the user may want to minimize  
the sense voltage to minimize the power dissipation in  
the sense resistor. The LT6100’s low input offset voltage  
of 80µV allows for high resolution of low sense voltages.  
This allows limiting the maximum sense voltage while still  
providing high resolution current monitoring.  
Theory of Operation (Refer to Figure 1)  
+
Current from the source at V flows through R  
to  
SENSE  
SENSE  
S
the load at V , creating a sense voltage, V  
. Inputs  
S
+
V
S
and V apply the sense voltage to R . The opposite  
S G2  
ends of resistors R and R are forced to be at equal  
G1  
G2  
potentials by the voltage gain of amplifier A1. The current  
through R is forced to flow through transistor Q1 and is  
G2  
sourcedtonodeV .ThecurrentfromR flowingthrough  
O1  
G2  
resistor R gives a voltage gain of ten, V /V  
= R /  
O
O1 SENSE  
O
+
Kelvin connection of the LT6100’s V and V inputs to  
S
S
R
G2  
= 10V/V. The sense amplifier output at V is ampli-  
O1  
the sense resistor should be used to provide the highest  
accuracy in high current applications. Solder connections  
and PC board interconnect resistance (approximately  
0.5mΩ per square) can be a large error in high current  
systems. A 5A application might choose a 20mΩ sense  
resistor to give a 100mV full-scale input to the LT6100.  
Input offset voltage will limit resolution to 4mA. Neglect-  
ing contact resistance at solder joints, even one square  
of PC board copper at each resistor end will cause an  
error of 5%. This error will grow proportionately higher  
as monitored current levels rise.  
fied again by amplifier A2. The inputs of amplifier A2 can  
operate to ground which ensures that small sense voltage  
signals are detected. Amplifier A2 can be programmed to  
different gains via Pin 6 and Pin 7. Thus, the total gain of  
the system becomes A = 10 • A2 and V  
= V  
A .  
V
OUT  
SENSE V  
Gain Setting  
The LT6100 gain is set by strapping (or floating) the two  
gain pins (see Table 1). This feature allows the user to  
“zoom in” by increasing the gain for accurate measure-  
ment of low currents.  
A = 10V/V G2, G2 is the gain of op amp A2.  
V
6100fc  
10  
LT6100  
applicaTions inForMaTion  
Noise Filtering  
an amplified, level shifted representation of the R  
SENSE  
voltage is developed at V . The output is well behaved  
OUT  
The LT6100 provides signal filtering via pin FIL that is  
driving capacitive loads to 1000pF.  
internally connected to the resistors R and R . This pin  
E
O
maybeusedtofiltertheinputsignalenteringtheLT6100’s  
internal op amp, and should be used when fast ripple cur-  
rent or transients flow through the sense resistor. High  
frequency signals above the 300kHz bandwidth of the  
LT6100’s internal amplifier will cause errors. A capacitor  
Sense Input Signal Range  
The LT6100 has high CMRR over the wide input voltage  
range of 4.1V to 48V. The minimum operation voltage of  
the sense amplifier input is 1.4V above V . The output  
CC  
remains accurate even when the sense inputs are driven  
connected between FIL and V creates a single pole low  
EE  
to 48V. Figure 2 shows that V changes very slightly  
pass filter with corner frequency:  
OS  
over a wide input range. Furthermore, the sense inputs  
f
= 1/(2πR C)  
FIL  
+
–3dB  
V
and V can collapse to zero volts without incurring  
S
S
where R = 60k. A 220pF capacitor creates a pole at  
any damage to the device. The LT6100 can handle dif-  
FIL  
12kHz, a good choice for many applications.  
ferential sense voltages up to the voltage of the sense  
+
inputs supplies. For example, V = 48V and V = 0V can  
S
S
Output Signal Range  
be a valid condition in a current monitoring application  
(Figure 3) when an overload protection fuse is blown and  
TheLT6100’soutputsignalisdevelopedbycurrentthrough  
V
S
voltage collapses to ground. Under this condition, the  
R
intooutputresistorR .ThecurrentisV  
/R .The  
G2  
O
SENSE G2  
output of the LT6100 goes to the positive rail, V . There  
OH  
sense amplifier output, V , is buffered by the internal op  
O1  
is no phase inversion to cause an erroneous output signal.  
ampsothatconnectingtheoutputpinstoothersystemswill  
+
For the opposite case when V collapse to ground with  
S
preserve signal accuracy. For zero V  
, internal circuit  
SENSE  
V
S
held up at some higher voltage potential, the output  
saturation with loss of accuracy occurs at the minimum  
will sit at V . If both inputs fall below the minimum CM  
OL  
CC  
V
OUT  
swing, 15mV above V . V  
may swing positive  
EE OUT  
voltage, V + 1.4V, the output is indeterminate but the  
to within 75mV of V or a maximum of 36V, a limit set  
CC  
LT6100 will not be damaged.  
by internal junction breakdown. Within these constraints,  
1.5  
TO LOAD  
R
FUSE  
V
V
A
= 100mV  
SENSE  
1
SENSE  
CC  
DC  
1.0  
0.5  
= 3V  
SOURCE  
T
= 25°C  
C1  
0.1µF  
8
+
0
V
V
S
S
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
2
7
6
V
A4  
A2  
CC  
+
C2  
+
5V  
0.1µF  
3
FIL  
OUT  
4
5
OUTPUT  
V
EE  
LT6100  
0
40  
10  
20  
30  
50  
V
INPUT VOLTAGE (V)  
6100 F03  
S
6100 F02  
Figure 2. VOS vs VS Input Voltage  
Figure 3. Current Monitoring of a Fuse Protected Circuit  
6100fc  
11  
LT6100  
applicaTions inForMaTion  
Low Sense Voltage Operation  
V
= 15mV. The accuracy at small sense voltages can be  
OL  
improved by selecting higher gain. When gain of 50V/V  
is selected, as shown in Figure 7, V leaves the clipped  
Figure 4 shows the simplest circuit configuration in which  
OUT  
the LT6100 may be used. While V  
(output voltage)  
OUT  
region for a positive V  
to 2.5mV for gain of 10V/V (see Figure 6).  
greater than 1mV compared  
SENSE  
increases with positive sense current, at V  
= 0V,  
SENSE  
the LT6100’s buffered output can only swing as low as  
1.6  
V
V
A
= 4.4V TO 48V  
S
TO LOAD  
R
SENSE  
= 3V  
CC  
= 10V/V  
= 25°C  
1.4  
1.2  
1.0  
V
A
+
C1  
0.1µF  
T
5V  
1
8
+
V
S
V
S
2
7
6
V
A4  
A2  
CC  
0.8  
0.6  
+
C2  
+
3V  
0.1µF  
3
FIL  
0.4  
0.2  
0
OUT  
4
5
OUTPUT  
V
EE  
30  
60  
120  
0
150  
90  
+
LT6100  
SENSE VOLTAGE (V – V ) (mV)  
S
S
6100 F04  
6100 F05  
Figure 4. LT6100 Load Current Monitor  
Figure 5. Output Voltage vs VSENSE  
0.40  
0.35  
0.30  
0.25  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
V
V
A
T
= 4.4V TO 48V  
= 3V  
V
V
A
T
= 4.4V TO 48V  
= 3V  
S
CC  
V
A
S
CC  
V
A
= 10V/V  
= 50V/V  
= 25°C  
= 25°C  
0.20  
0.15  
0.10  
0.05  
0
0
5
10  
20  
0
25  
30  
15  
0
5
10  
15  
30  
20  
25  
+
+
SENSE VOLTAGE (V – V ) (mV)  
SENSE VOLTAGE (V – V ) (mV)  
S
S
S
S
6100 F06  
6100 F07  
Figure 6. Expanded View of Output Voltage vs VSENSE, AV = 10V/V  
Figure 7. Expanded View of Output Voltage vs VSENSE, AV = 50V/V  
6100fc  
12  
LT6100  
applicaTions inForMaTion  
Power Down While Connected to a Battery  
its inputs remain high impedance (see Figure 8). This is  
due to the implementation of Linear Technology’s Over-  
The-Top® input topology at its front end. When powered  
down, the LT6100 inputs draw less than 1µA of current.  
AnotheruniquebenefitoftheLT6100isthatyoucanleaveit  
connectedtoabatteryevenwhenitisdeniedpower. When  
the LT6100 loses power or is intentionally powered down,  
I
SENSE  
R
SENSE  
TO LOAD  
+
BATTERY  
4.1V TO 48V  
+
V
V
LT6100  
S
S
POWER  
+
DOWN OK  
V
CC  
3V  
0V  
V
CC  
INPUTS  
REMAIN  
Hi-Z  
FIL  
V
OUT  
V
A2  
A4  
EE  
6100 F08  
Figure 8. Input Remains Hi-Z when LT6100 is Powered Down  
Typical applicaTion  
Micro-Hotplate Voltage and Current Monitor  
Adjust Gain Dynamically for Enhanced Range  
+
I
SENSE  
V
DR  
R
SENSE  
TO LOAD  
FROM SOURCE  
+
V
S
V
LT6100  
S
10Ω  
1%  
+
V
V
V
S
S
+
I
HOTPLATE  
+
5V  
V
CC  
5V  
CURRENT  
MONITOR  
OUT  
CC  
LT6100  
EE A2 A4  
V
= 500mV/mA  
FIL  
V
V
OUT  
MICRO-HOTPLATE  
BOSTON  
MICROSYSTEMS  
MHP100S-005  
V
A2  
A4  
EE  
6100 TA05  
5V  
5V  
5V  
2N7002  
M9  
M3  
(GAIN = 50)  
0V  
(GAIN = 10)  
VOLTAGE  
MONITOR  
M1  
LT1991  
+
P1  
P3  
P9  
V
– V  
10  
DR  
DR  
V
=
OUT  
6100 TA06  
V
DR  
www.bostonmicrosystems.com  
6100fc  
13  
LT6100  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
R = 0.125  
0.40 0.10  
TYP  
5
8
0.70 0.05  
3.5 0.05  
2.10 0.05 (2 SIDES)  
1.65 0.05  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD8) DFN 0509 REV C  
4
1
0.25 0.05  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.50  
BSC  
2.38 0.10  
2.38 0.05  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-ꢀꢂꢂ0 Rev F)  
0.889 0.ꢀꢁ7  
(.035 .005)  
5.ꢁ3  
(.ꢁ0ꢂ)  
MIN  
3.ꢁ0 – 3.45  
(.ꢀꢁꢂ – .ꢀ3ꢂ)  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 3)  
0.5ꢁ  
(.0ꢁ05)  
REF  
0.ꢂ5  
(.0ꢁ5ꢂ)  
BSC  
0.4ꢁ 0.038  
(.0ꢀꢂ5 .00ꢀ5)  
TYP  
8
7 ꢂ  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 4)  
4.90 0.ꢀ5ꢁ  
(.ꢀ93 .00ꢂ)  
DETAIL “A”  
0.ꢁ54  
(.0ꢀ0)  
0° – ꢂ° TYP  
GAUGE PLANE  
3
4
0.53 0.ꢀ5ꢁ  
(.0ꢁꢀ .00ꢂ)  
ꢀ.ꢀ0  
(.043)  
MAX  
0.8ꢂ  
(.034)  
REF  
DETAIL “A”  
0.ꢀ8  
(.007)  
SEATING  
PLANE  
0.ꢁꢁ – 0.38  
0.ꢀ0ꢀꢂ 0.0508  
(.009 – .0ꢀ5)  
(.004 .00ꢁ)  
0.ꢂ5  
(.0ꢁ5ꢂ)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
ꢀ. DIMENSIONS IN MILLIMETER/(INCH)  
ꢁ. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.ꢀ0ꢁmm (.004") MAX  
6100fc  
14  
LT6100  
revision hisTory (Revision history begins at Rev C)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
C
11/12 Corrected value in Output Signal Range section.  
11  
6100fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT6100  
Typical applicaTions  
800mA/1A White LED Current Regulator  
D2  
LED  
WARNING! VERY BRIGHT  
DO NOT OBSERVE DIRECTLY  
L1  
3µH  
LED  
CURRENT  
D1  
B130  
0.030Ω  
LT6100  
+
V
V
S
S
V
IN  
V
V
SW  
3.3V TO 4.2V  
SINGLE Li-Ion  
IN  
V
CC  
LT3436  
+
22µF  
16V  
CER  
1210  
SHDN  
FB  
C
LED  
ON  
124k  
V
V
GND  
OUT  
V
EE A4 A2  
MMBT2222  
4.99k  
4.7µF  
6.3V  
CER  
8.2k  
0.1µF  
OPEN: 1A  
CLOSED: 800mA  
6100 TA02  
D1: DIODES INC.  
D2: LUMILEDS LXML-PW09 WHITE EMITTER  
L1: SUMIDA CDRH6D28-3R0  
Filtered Gain of 20 Current Sense  
Gain of 50 Current Sense  
I
I
SENSE  
SENSE  
R
SENSE  
R
SENSE  
V
V
SUPPLY  
6.4V TO 48V  
SUPPLY  
4.4V TO 48V  
+
+
V
V
S
LOAD  
V
V
S
LOAD  
LT6100  
LT6100  
S
S
+
+
V
CC  
V
3V  
5V  
CC  
FIL  
FIL  
V
V
OUT  
1000pF  
OUT  
20 • R  
• I  
50 • R  
• I  
SENSE SENSE  
SENSE SENSE  
V
A2  
A4  
V
A2  
A4  
EE  
EE  
6100 TA03  
6100 TA04  
–3dB AT 2.6kHz  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
Dual Precision Instrumentation Switched Capacitor Building Block 120dB CMRR, 3V to 18V Operation  
Dual and Quad Micropower Rail-to-Rail Input and Output Op Amps 50µA Amplifier, 2.7V to 40V Operation, Over-The-Top Inputs  
COMMENTS  
LTC1043  
LT1490/LT1491  
LT1620/LT1621  
Rail-to-Rail Current Sense Amplifiers  
Accurate Output Current Programming, Battery Charging  
to 32V  
LT1787  
Precision Bidirectional, High Side Current Sense Amplifier  
75µV V , 60V, 60µA Operation  
OS  
LTC6101/LTC6101HV High Voltage, High Side, Precision Current Sense Amplifiers  
4V to 60V/5V to 100V, Gain Configurable, SOT-23  
6100fc  
LT 1112 REV C • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT6100CDD#TRPBF

LT6100 - Precision, Gain Selectable High Side Current Sense Amplifier; Package: DFN; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT6100CMS8

Precision, Gain Selectable High Side Current Sense Amplifier
Linear

LT6100CMS8#TR

暂无描述
Linear

LT6100CMS8#TRPBF

LT6100 - Precision, Gain Selectable High Side Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LT6100HDD

Precision, Gain Selectable High Side Current Sense Amplifier
Linear

LT6100HDD#TR

LT6100 - Precision, Gain Selectable High Side Current Sense Amplifier; Package: DFN; Pins: 8; Temperature Range: -40°C to 125°C
Linear

LT6100HMS8

Precision, Gain Selectable High Side Current Sense Amplifier
Linear

LT6100IDD

Precision, Gain Selectable High Side Current Sense Amplifier
Linear

LT6100IMS8

Precision, Gain Selectable High Side Current Sense Amplifier
Linear

LT6100IMS8#PBF

LT6100 - Precision, Gain Selectable High Side Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT6100IMS8#TR

LT6100 - Precision, Gain Selectable High Side Current Sense Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT6100IMS8#TRPBF

暂无描述
Linear