LT6109-1_15 [Linear]

High Side Current Sense Amplifier with Reference and Comparators;
LT6109-1_15
型号: LT6109-1_15
厂家: Linear    Linear
描述:

High Side Current Sense Amplifier with Reference and Comparators

文件: 总28页 (文件大小:323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6109-1/LT6109-2  
High Side Current Sense  
Amplifier with Reference  
and Comparators  
FEATURES  
DESCRIPTION  
The LT®6109 is a complete high side current sense device  
that incorporates a precision current sense amplifier, an  
integrated voltage reference and two comparators. Two  
versions of the LT6109 are available. The LT6109-1 has  
the comparators connected in opposing polarity and the  
LT6109-2hasthecomparatorsconnectedinthesamepolar-  
ity.Inaddition,thecurrentsenseamplifierandcomparator  
inputs and outputs are directly accessible. The amplifier  
gainandcomparatortrippointsareconfiguredbyexternal  
resistors. The open-drain comparator outputs allows for  
easy interface to other system components.  
n
Current Sense Amplifier  
– Fast Step Response: 500ns  
– Low Offset Voltage: 125µV Maximum  
– Low Gain Error: 0.2% Maximum  
n
Internal 400mV Precision Reference  
n
Internal Latching Comparators with Reset  
– Fast Response Time: 500ns  
– Total Threshold Error: 1.25% Maximum  
Two Comparator Polarity Options  
n
Wide Supply Range: 2.7V to 60V  
n
Supply Current: 550µA  
Low Shutdown Current: 5µA Maximum  
Specified for –40°C to 125°C Temperature Range  
Available in 10-Lead MSOP Package  
n
The overall propagation delay of the LT6109 is typically  
only 1.4µs, allowing for quick reaction to overcurrent  
and undercurrent conditions. The 1MHz bandwidth al-  
lows the LT6109 to be used for error detection in critical  
applications such as motor control. The high threshold  
accuracy of the comparators, combined with the ability to  
latch both comparators, ensures the LT6109 can capture  
high speed events.  
n
n
APPLICATIONS  
n
Overcurrent, Undercurrent and Fault Detection  
n
Current Shunt Measurement  
n
Battery Monitoring  
Motor Control  
Automotive Monitoring and Control  
Remote Sensing  
Industrial Control  
The LT6109 is fully specified for operation from –40°C to  
125°C,makingitsuitableforindustrialandautomotiveap-  
plications.TheLT6109isavailableinasmall10-leadMSOP.  
L, LT, LTC, LTM, TimerBlox, Linear Technology and the Linear logo are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
n
n
n
n
TYPICAL APPLICATION  
Circuit Fault Protection with Latching Load Disconnect and Early Warning Indication  
Response to Overcurrent Event  
0.1Ω  
IRF9640  
12V  
TO LOAD  
V
LOAD  
0.1µF  
6.2V*  
10V/DIV  
0V  
100Ω  
1k  
3.3V  
SENSEHI SENSELO  
+
V
V
OUTA  
OUT  
I
10k 1.62k 100k  
LOAD  
LT6109-2  
6.04k  
2.37k  
200mA/DIV  
0mA  
RESET  
EN/RST  
INC2  
V
OUTC1  
5V/DIV  
1k  
100mA WARNING  
250mA DISCONNECT  
100mA WARNING  
OUTC2  
OUTC1  
0V  
0V  
250mA DISCONNECT  
V
OUTC2  
5V/DIV  
2N2700  
INC1  
V
1.6k  
610912 TA01a  
610912 TA01b  
5µs/DIV  
*CMH25234B  
610912fa  
1
LT6109-1/LT6109-2  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
+
TOP VIEW  
Total Supply Voltage (V to V ).................................60V  
Maximum Voltage  
SENSELO  
EN/RST  
OUTC2  
1
2
3
4
5
10 SENSEHI  
+
9
8
7
6
V
+
OUTA  
INC2  
INC1  
(SENSELO, SENSEHI, OUTA)............................... V + 1V  
OUTC1  
+
Maximum V – (SENSELO or SENSEHI)....................33V  
V
MS PACKAGE  
10-LEAD PLASTIC MSOP  
Maximum EN/RST Voltage........................................60V  
Maximum Comparator Input Voltage........................60V  
Maximum Comparator Output Voltage......................60V  
Input Current (Note 2)..........................................–10mA  
SENSEHI, SENSELO Input Current ....................... 10mA  
DifferentialSENSEHIorSENSELOInputCurrent... 2.5mA  
θ
JA  
= 160°C/W, θ = 45°C/W  
JC  
AmplifierOutputShort-CircuitDuration(toV ).. Indefinite  
Operating Temperature Range (Note 3)  
LT6109I................................................–40°C to 85°C  
LT6109H ............................................ –40°C to 125°C  
Specified Temperature Range (Note 3)  
LT6109I................................................–40°C to 85°C  
LT6109H ............................................ –40°C to 125°C  
Maximum Junction Temperature .......................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
ORDER INFORMATION  
LEAD FREE FINISH  
LT6109AIMS-1#PBF  
LT6109IMS-1#PBF  
LT6109AHMS-1#PBF  
LT6109HMS-1#PBF  
LT6109AIMS-2#PBF  
LT6109IMS-2#PBF  
LT6109AHMS-2#PBF  
LT6109HMS-2#PBF  
TAPE AND REEL  
PART MARKING*  
LTFNJ  
PACKAGE DESCRIPTION  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
SPECIFIED TEMPERATURE RANGE  
–40°C to 85°C  
LT6109AIMS-1#TRPBF  
LT6109IMS-1#TRPBF  
LT6109AHMS-1#TRPBF  
LT6109HMS-1#TRPBF  
LT6109AIMS-2#TRPBF  
LT6109IMS-2#TRPBF  
LT6109AHMS-2#TRPBF  
LT6109HMS-2#TRPBF  
LTFNJ  
–40°C to 85°C  
LTFNJ  
–40°C to 125°C  
LTFNJ  
–40°C to 125°C  
LTFWY  
–40°C to 85°C  
LTFWY  
–40°C to 85°C  
LTFWY  
–40°C to 125°C  
LTFWY  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
610912fa  
2
LT6109-1/LT6109-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 12V, VPULLUP = V+, VEN/RST = 2.7V, RIN = 100Ω,  
ROUT = R1 + R2 + R3 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless otherwise noted. (See Figure 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
+
l
V
Supply Voltage Range  
Supply Current (Note 4)  
2.7  
60  
+
I
V = 2.7V, R = 1k, V  
= 5mV  
= 5mV  
475  
600  
µA  
S
IN  
SENSE  
+
V = 60V, R = 1k, V  
700  
1000  
µA  
µA  
IN  
SENSE  
l
l
l
+
Supply Current in Shutdown  
V = 2.7V, V  
= 0V, R = 1k, V  
= 0.5V  
= 0.5V  
3
7
5
7
µA  
µA  
EN/RST  
IN  
SENSE  
+
V = 60V, V  
= 0V, R = 1k, V  
11  
13  
µA  
µA  
EN/RST  
IN  
SENSE  
+
EN/RST Pin Current  
EN/RST Pin Input High  
EN/RST Pin Input Low  
V
= 0V, V = 60V  
–200  
nA  
V
EN/RST  
+
l
l
V
V
V = 2.7V to 60V  
1.9  
IH  
IL  
+
V = 2.7V to 60V  
0.8  
V
Current Sense Amplifier  
V
Input Offset Voltage  
V
SENSE  
V
SENSE  
V
SENSE  
V
SENSE  
= 5mV, LT6109A  
= 5mV, LT6109  
= 5mV, LT6109A  
= 5mV, LT6109  
–125  
–350  
–250  
–450  
125  
350  
250  
450  
µV  
µV  
µV  
µV  
OS  
l
l
l
Input Offset Voltage Drift  
V
= 5mV  
0.8  
60  
µV/°C  
V /T  
SENSE  
+
OS  
I
Input Bias Current  
(SENSELO, SENSEHI)  
V = 2.7V to 60V  
300  
350  
nA  
nA  
B
l
+
I
I
Input Offset Current  
V = 2.7V to 60V  
5
nA  
OS  
l
l
Output Current (Note 5)  
1
mA  
OUTA  
+
PSRR  
Power Supply Rejection Ratio  
(Note 6)  
V = 2.7V to 60V  
120  
114  
127  
dB  
dB  
+
CMRR  
Common Mode Rejection Ratio  
V = 36V, V  
= 5mV, V  
= 5mV, V  
= 2.7V to 36V  
= 27V to 60V  
125  
125  
dB  
SENSE  
SENSE  
ICM  
ICM  
+
V = 60V, V  
110  
103  
dB  
dB  
l
l
V
Full-Scale Input Sense Voltage  
(Note 5)  
R
= 500Ω  
IN  
500  
mV  
SENSE(MAX)  
+
+
Gain Error (Note 7)  
V = 2.7V to 12V  
–0.08  
%
%
l
V = 12V to 60V, V  
= 5mV to 100mV  
–0.2  
0
SENSE  
+
+
l
l
SENSELO Voltage (Note 8)  
V = 2.7V, V  
= 100mV, R  
= 100mV  
= 2k  
OUT  
2.5  
27  
V
V
SENSE  
SENSE  
V = 60V, V  
+
+
l
l
Output Swing High (V to V  
)
V = 2.7V, V  
= 27mV  
0.2  
0.5  
V
V
OUTA  
SENSE  
SENSE  
+
V = 12V, V  
= 120mV  
BW  
Signal Bandwidth  
I
I
= 1mA  
1
MHz  
kHz  
OUT  
OUT  
+
= 100µA  
140  
t
t
Input Step Response (to 50% of  
Final Output Voltage)  
V = 2.7V, V  
V = 12V to 60V, V  
= 24mV Step, Output Rising Edge  
SENSE  
500  
500  
ns  
ns  
r
+
= 100mV Step, Output Rising Edge  
SENSE  
Settling Time to 1%  
V
= 10mV to 100mV, R = 2k  
OUT  
2
µs  
SETTLE  
SENSE  
610912fa  
3
LT6109-1/LT6109-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 12V, VPULLUP = V+, VEN/RST = 2.7V, RIN = 100Ω,  
ROUT = R1 + R2 + R3 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless otherwise noted. (See Figure 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference and Comparator  
+
+
l
l
V
Rising Input Threshold Voltage  
(LT6109-1 Comparator 1  
LT6109-2 Both Comparators)  
V = 2.7V to 60V, LT6109A  
395  
392  
400  
400  
405  
408  
mV  
mV  
TH(R)  
(Note 9)  
V = 2.7V to 60V, LT6109  
+
+
l
l
V
Falling Input Threshold Voltage  
(LT6109-1 Comparator 2)  
V = 2.7V to 60V, LT6109A  
395  
392  
400  
400  
405  
408  
mV  
mV  
TH(F)  
(Note 9)  
V = 2.7V to 60V, LT6109  
+
V
V
= V  
– V  
TH(F)  
V = 2.7V to 60V  
3
10  
15  
mV  
nA  
HYS  
OL  
HYS  
TH(R)  
+
l
l
Comparator Input Bias Current  
Output Low Voltage  
V
= 0V, V = 60V  
–50  
INC1,2  
+
V
I
= 500µA, V = 2.7V  
60  
150  
220  
mV  
mV  
OUTC1,C2  
High to Low Propagation Delay  
5mV Overdrive  
100mV Overdrive  
3
0.5  
µs  
µs  
Output Fall Time  
Reset Time  
0.08  
0.5  
µs  
µs  
µs  
t
t
RESET  
RPW  
l
Valid RST Pulse Width  
2
15  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: The full-scale input sense voltage and the maximum output  
current must be considered to achieve the specified performance.  
Note 6: Supply voltage and input common mode voltage are varied while  
amplifier input offset voltage is monitored.  
Note 2: Input and output pins have ESD diodes connected to ground. The  
SENSEHI and SENSELO pins have additional current handling capability  
specified as SENSEHI, SENSELO input current.  
Note 7: Specified gain error does not include the effects of external  
resistors R and R . Although gain error is only guaranteed between  
IN  
OUT  
+
12V and 60V, similar performance is expected for V < 12V, as well.  
Note 3: The LT6109I is guaranteed to meet specified performance from  
–40°C to 85°C. LT6109H is guaranteed to meet specified performance  
from –40°C to 125°C.  
Note 4: Supply current is specified with the comparator outputs high.  
When the comparator outputs go low the supply current will increase by  
75µA typically per comparator.  
Note 8: Refer to SENSELO, SENSEHI Range in the Applications  
Information section for more information.  
Note 9: The input threshold voltage which causes the output voltage of the  
comparator to transition from high to low is specified. The input voltage  
which causes the comparator output to transition from low to high is  
the magnitude of the difference between the specified threshold and the  
hysteresis.  
610912fa  
4
LT6109-1/LT6109-2  
Performance characteristics taken at T = 25°C,  
TYPICAL PERFORMANCE CHARACTERISTICS  
A
V+ = 12V, VPULLUP = V+, VEN/RST = 2.7V, RIN = 100Ω, ROUT = R1 + R2 + R3 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless  
otherwise noted. (See Figure 3)  
Supply Current vs Supply Voltage  
Start-Up Supply Current  
Enable/Disable Response  
700  
600  
500  
400  
300  
200  
100  
0
+
V
5V/DIV  
V
EN/RST  
2V/DIV  
0V  
0V  
I
S
I
S
500µA/DIV  
500µA/DIV  
0µA  
0µA  
40  
SUPPLY VOLTAGE (V)  
60  
0
10  
20  
30  
50  
10µs/DIV  
100µs/DIV  
610912 G02  
610912 G01  
610912 G03  
Input Offset Voltage  
vs Temperature  
Amplifier Offset Voltage  
vs Supply Voltage  
Offset Voltage Drift Distribution  
300  
200  
100  
0
12  
10  
8
100  
80  
5 TYPICAL UNITS  
5 TYPICAL UNITS  
60  
40  
20  
6
0
–20  
–40  
–60  
–80  
–100  
–100  
–200  
–300  
4
2
0
–2 –1.5 –1 –0.5  
OFFSET VOLTAGE DRIFT (µV/°C)  
0
0.5  
1
1.5  
2
0
10  
30  
40  
50  
60  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
610912 G04  
20  
SUPPLY VOLTAGE (V)  
610912 G06  
610912 G05  
Amplifier Output Swing  
vs Temperature  
Amplifier Gain Error  
vs Temperature  
Amplifier Gain Error Distribution  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.05  
0
25  
20  
V
= 5mV TO 100mV  
V
= 5mV TO 100mV  
SENSE  
SENSE  
+
V
= 12V  
R
IN  
= 1k  
V
= 120mV  
SENSE  
–0.05  
–0.10  
–0.15  
–0.20  
15  
R
IN  
= 100Ω  
10  
5
+
V
= 2.7V  
V
= 27mV  
SENSE  
0
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–0.048 –0.052  
–0.064 –0.68  
–50  
–25  
0
25  
–0.056 –0.060  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
GAIN ERROR (%)  
610912 G18  
610912 G07  
610912 G08  
610912fa  
5
LT6109-1/LT6109-2  
Performance characteristics taken at T = 25°C,  
TYPICAL PERFORMANCE CHARACTERISTICS  
A
V+ = 12V, VPULLUP = V+, VEN/RST = 2.7V, RIN = 100Ω, ROUT = R1 + R2 + R3 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless  
otherwise noted. (See Figure 3)  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Amplifier Gain vs Frequency  
46  
40  
34  
28  
22  
16  
140  
120  
100  
80  
160  
140  
120  
100  
80  
G = 100  
G = 50, R  
G = 20, R  
I
= 5k  
= 2k  
OUT  
60  
OUT  
60  
40  
40  
20  
= 1mA  
= 100µA  
20  
OUTA  
I
OUTA  
0
0
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
610912 G11  
610912 G10  
610912 G09  
Amplifier Input Bias Current  
vs Temperature  
Amplifier Step Response  
(VSENSE = 0mV to 100mV)  
System Step Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
SENSE  
R
= 100Ω  
IN  
100mV/DIV  
G = 100V/V  
0V  
V
OUTA  
1V/DIV  
0V  
V
OUTA  
SENSEHI  
2V/DIV  
SENSELO  
V
OUTC1  
0V  
2V/DIV  
0V  
V
SENSE  
V
EN/RST  
50mV/DIV  
5V/DIV  
0V  
0V  
R
OUT  
= 2k,100mV INC1 OVERDRIVE  
2µs/DIV  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
610912 G13  
2µs/DIV  
610912 G12  
610912 G14  
Amplifier Step Response  
(VSENSE = 10mV to 100mV)  
Amplifier Step Response  
(VSENSE = 10mV to 100mV)  
Amplifier Step Response  
(VSENSE = 0mV to 100mV)  
R
= 100Ω  
R
= 1k  
R
R
= 1k  
IN  
IN  
IN  
OUT  
G = 100V/V  
R
= 20k  
= 20k  
OUT  
G = 20V/V  
G = 20V/V  
V
V
OUTA  
OUTA  
V
OUTA  
1V/DIV  
1V/DIV  
2V/DIV  
0V  
0V  
0V  
V
V
SENSE  
SENSE  
V
SENSE  
100mV/DIV  
0V  
100mV/DIV  
0V  
50mV/DIV  
0V  
2µs/DIV  
2µs/DIV  
2µs/DIV  
610912 G16  
610912 G15  
610912 G17  
610912fa  
6
LT6109-1/LT6109-2  
Performance characteristics taken at T = 25°C,  
TYPICAL PERFORMANCE CHARACTERISTICS  
A
V+ = 12V, VPULLUP = V+, VEN/RST = 2.7V, RIN = 100Ω, ROUT = R1 + R2 + R3 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless  
otherwise noted. (See Figure 3)  
Comparator Threshold  
vs Temperature  
Comparator Threshold  
Distribution  
Hysteresis Distribution  
30  
25  
20  
15  
10  
5
408  
406  
404  
402  
25  
20  
5 TYPICAL PARTS  
–40°C  
25°C  
125°C  
15  
400  
398  
10  
5
396  
394  
392  
0
0
–10  
5
20 35  
80 95  
3.0  
6.2 7.7 9.3 10.9 12.5 14.1 15.7 17.3  
4.6  
COMPARATOR HYSTERESIS (mV)  
–40 –25  
110 125  
50 65  
396  
397.6 399.2 400.8 402.8  
COMPARATOR THRESHOLD (mV)  
404  
TEMPERATURE (°C)  
610912 G20  
610912 G21  
610912 G19  
EN/RST Current vs Voltage  
Hysteresis vs Temperature  
Hysteresis vs Supply Voltage  
20  
18  
16  
14  
12  
10  
8
50  
0
14  
12  
10  
8
5 TYPICAL PARTS  
–50  
–100  
–150  
–200  
–250  
6
6
4
4
2
2
0
0
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
610912 G22  
0
20  
30  
40  
50  
60  
40  
60  
10  
0
10  
20  
30  
50  
+
EN/RST VOLTAGE (V)  
V
(V)  
610912 G24  
610912 G23  
Comparator Input Bias Current  
vs Input Voltage  
Comparator Input Bias Current  
vs Input Voltage  
Comparator Output Low Voltage  
vs Output Sink Current  
10  
5
10  
5
1.00  
0.75  
0.50  
0.25  
0
125°C  
25°C  
–40°C  
0
0
–5  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
125°C  
125°C  
25°C  
25°C  
–40°C  
–40°C  
0
20  
40  
60  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
1
2
3
I
(mA)  
COMPARATOR INPUT VOLTAGE (V)  
COMPARATOR INPUT VOLTAGE (V)  
OUTC  
610912 G25  
610912 G26  
610912 G27  
610912fa  
7
LT6109-1/LT6109-2  
Performance characteristics taken at T = 25°C,  
TYPICAL PERFORMANCE CHARACTERISTICS  
A
V+ = 12V, VPULLUP = V+, VEN/RST = 2.7V, RIN = 100Ω, ROUT = R1 + R2 + R3 = 10k, gain = 100, RC = 25.5k, CL = CLC = 2pF, unless  
otherwise noted. (See Figure 3)  
Comparator Propagation Delay  
vs Input Overdrive  
Comparator Rise/Fall Time  
vs Pull-Up Resistor  
Comparator Output Leakage  
Current vs Pull-Up Voltage  
23  
18  
13  
8
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10000  
1000  
100  
V
V
= 0.9 • V  
= 0.1 • V  
OH  
OL  
PULLUP  
PULLUP  
100mV INC1 OVERDRIVE  
C
= 2pF  
L
RISE TIME  
125°C  
H TO L  
L TO H  
FALL TIME  
3
–40°C AND 25°C  
–2  
10  
0
20  
30  
40  
50  
60  
10  
0
40  
80  
120  
160  
200  
1
10  
100  
1000  
COMPARATOR OUTPUT PULL-UP VOLTAGE (V)  
R
PULL-UP RESISTOR (kΩ)  
COMPARATOR INPUT OVERDRIVE (mV)  
C
610912 G28  
610912 G30  
610912 G29  
Comparator Step Response  
(5mV INC1 Overdrive)  
Comparator Step Response  
(100mV INC1 Overdrive)  
Comparator Reset Response  
V
V
INC  
INC  
0.5V/DIV  
0V  
0.5V/DIV  
0V  
V
OUTC  
5V/DIV  
0V  
V
OUTC  
V
OUTC  
2V/DIV  
2V/DIV  
0V  
0V  
V
EN/RST  
2V/DIV  
V
V
EN/RST  
EN/RST  
5V/DIV  
5V/DIV  
0V  
0V  
0V  
5µs/DIV  
5µs/DIV  
5µs/DIV  
610912 G32  
610912 G33  
610912 G31  
PIN FUNCTIONS  
SENSELO (Pin 1): Sense Amplifier Input. This pin must  
be tied to the load end of the sense resistor.  
OUTC2 (Pin 3): Open-Drain Comparator 2 Output. Off-  
state voltage may be as high as 60V above V , regardless  
+
of V used.  
EN/RST (Pin 2): Enable and Latch Reset Input. When the  
EN/RSTpinispulledhightheLT6109isenabled. Whenthe  
EN/RST pin is pulled low for longer than typically 40µs,  
the LT6109 will enter the shutdown mode. Pulsing this pin  
low for between 2µs and 15µs will reset the comparators  
of the LT6109.  
OUTC1 (Pin 4): Open-Drain Comparator 1 Output. Off-  
state voltage may be as high as 60V above V , regardless  
+
of V used.  
V (Pin 5): Negative Supply Pin. This pin is normally con-  
nected to ground.  
610912fa  
8
LT6109-1/LT6109-2  
PIN FUNCTIONS  
INC1 (Pin 6): This is the inverting input of comparator 1.  
Thesecondinputofthiscomparatorisinternallyconnected  
to the 400mV reference.  
+
+
V (Pin 9): Positive Supply Pin. The V pin can be con-  
nected directly to either side of the sense resistor, R  
.
SENSE  
+
When V is tied to the load end of the sense resistor, the  
+
SENSEHI pin can go up to 0.2V above V . Supply current  
INC2 (Pin 7): This is the input of comparator 2. For the  
LT6109-1 this is the noninverting input of comparator 2.  
For the LT6109-2 this is the inverting input of compara-  
tor 2. The second input of each of these comparators is  
internally connected to the 400mV reference.  
is drawn through this pin.  
SENSEHI (Pin 10): Sense Amplifier Input. The internal  
sense amplifier will drive SENSEHI to the same potential  
as SENSELO. A resistor (typically R ) tied from supply  
IN  
to SENSEHI sets the output current, I  
where V  
= V  
/R ,  
SENSE  
OUT  
SENSE IN  
OUTA (Pin 8): Current Output of the Sense Amplifier. This  
is the voltage developed across R  
.
SENSE  
pin will source a current that is equal to the sense voltage  
divided by the external gain setting resistor, R .  
IN  
BLOCK DIAGRAMS  
9
+
LT6109-1  
V
100Ω  
34V  
6V  
3k  
SENSEHI  
10  
+
SENSELO  
3k  
OUTA  
8
1
V
V
+
V
V
200nA  
EN/RST  
ENABLE AND  
RESET TIMING  
2
RESET  
+
V
INC2  
7
+
UNDERCURRENT FLAG  
OUTC2  
3
+
V
V
400mV  
REFERENCE  
+
OVERCURRENT FLAG  
OUTC1  
4
INC1  
6
V
5
610912 F01  
Figure 1. LT6109-1 Block Diagram (Comparators with Opposing Polarity)  
610912fa  
9
LT6109-1/LT6109-2  
BLOCK DIAGRAMS  
LT6109-2  
9
+
V
100Ω  
34V  
6V  
3k  
3k  
SENSEHI  
10  
+
SENSELO  
1
OUTA  
8
7
6
V
V
+
V
V
200nA  
EN/RST  
ENABLE AND  
RESET TIMING  
2
RESET  
+
V
+
INC2  
OVERCURRENT FLAG  
OUTC2  
3
+
V
V
400mV  
REFERENCE  
+
OVERCURRENT FLAG  
OUTC1  
4
INC1  
V
5
610912 F02  
Figure 2. LT6109-2 Block Diagram (Comparators with the Same Polarity)  
APPLICATIONS INFORMATION  
The LT6109 high side current sense amplifier provides  
accuratemonitoringofcurrentsthroughanexternalsense  
resistor. The input sense voltage is level-shifted from the  
sensed power supply to a ground referenced output and  
is amplified by a user-selected gain to the output. The  
output voltage is directly proportional to the current flow-  
ing through the sense resistor.  
Amplifier Theory of Operation  
An internal sense amplifier loop forces SENSEHI to have  
the same potential as SENSELO as shown in Figure 3.  
Connecting an external resistor, R , between SENSEHI  
IN  
and V  
forces a potential, V  
, across R . A  
SUPPLY  
corresponding current, I  
SENSE IN  
, equal to V  
/R , will  
SENSE IN  
OUTA  
flow through R . The high impedance inputs of the sense  
IN  
TheLT6109comparatorshaveathresholdsetwithabuilt-in  
400mV precision reference and have 10mV of hysteresis.  
The open-drain outputs can be easily used to level shift  
to digital supplies.  
amplifier do not load this current, so it will flow through  
an internal MOSFET to the output pin, OUTA.  
610912fa  
10  
LT6109-1/LT6109-2  
APPLICATIONS INFORMATION  
The output current can be transformed back into a voltage  
voltage be 100mV. If this application is expected to draw  
by adding a resistor from OUTA to V (typically ground).  
2A at peak load, R  
should be set to 50mΩ.  
SENSE  
The output voltage is then:  
Once the maximum R  
value is determined, the mini-  
SENSE  
V
OUT  
= V + I  
• R  
OUT  
mum sense resistor value will be set by the resolution or  
dynamic range required. The minimum signal that can be  
accuratelyrepresentedbythissenseamplifierislimitedby  
theinputoffset.Asanexample,theLT6109hasamaximum  
input offset of 125µV. If the minimum current is 20mA, a  
OUTA  
where R  
= R1 + R2 + R3 as shown in Figure 3.  
OUT  
Table 1. Example Gain Configurations  
GAIN  
20  
R
R
V
FOR V  
= 5V  
I
AT V  
= 5V  
OUT  
IN  
OUT  
SENSE  
OUT  
OUTA  
sense resistor of 6.25mΩ will set V  
to 125µV. This is  
499Ω  
200Ω  
100Ω  
10k  
10k  
10k  
250mV  
100mV  
50mV  
500µA  
500µA  
500µA  
SENSE  
the same value as the input offset. A larger sense resistor  
will reduce the error due to offset by increasing the sense  
50  
100  
voltage for a given load current. Choosing a 50mΩ R  
SENSE  
Useful Equations  
Input Voltage: VSENSE = ISENSE RSENSE  
will maximize the dynamic range and provide a system  
that has 100mV across the sense resistor at peak load  
(2A), while input offset causes an error equivalent to only  
2.5mA of load current.  
VOUT  
VSENSE RIN  
ROUT  
Voltage Gain:  
Current Gain:  
=
In the previous example, the peak dissipation in R  
SENSE  
IOUTA RSENSE  
ISENSE  
is 200mW. If a 5mΩ sense resistor is employed, then  
the effective current error is 25mA, while the peak sense  
voltage is reduced to 10mV at 2A, dissipating only 20mW.  
=
RIN  
Note that V  
can be exceeded without damag-  
SENSE(MAX)  
The low offset and corresponding large dynamic range of  
theLT6109makeitmoreexiblethanothersolutionsinthis  
respect.The125µVmaximumoffsetgives72dBofdynamic  
range for a sense voltage that is limited to 500mV max.  
ing the amplifier, however, output accuracy will degrade  
as V exceeds V , resulting in increased  
SENSE  
SENSE(MAX)  
output current, I  
.
OUTA  
Selection of External Current Sense Resistor  
Theexternalsenseresistor,R ,hasasignificanteffect  
Sense Resistor Connection  
SENSE  
Kelvin connection of the SENSEHI and SENSELO inputs  
to the sense resistor should be used in all but the lowest  
power applications. Solder connections and PC board  
interconnections that carry high currents can cause sig-  
nificant error in measurement due to their relatively large  
resistances.One10mm× 10mmsquaretraceof1ozcopper  
is approximately 0.5mΩ. A 1mV error can be caused by as  
little as 2A flowing through this small interconnect. This  
on the function of a current sensing system and must be  
chosen with care.  
First, the power dissipation in the resistor should be  
considered. The measured load current will cause power  
dissipation as well as a voltage drop in R  
. As a  
SENSE  
result, the sense resistor should be as small as possible  
while still providing the input dynamic range required by  
the measurement. Note that the input dynamic range is  
the difference between the maximum input signal and the  
minimum accurately reproduced signal, and is limited  
primarily by input DC offset of the internal sense ampli-  
fier of the LT6109. To ensure the specified performance,  
will cause a 1% error for a full-scale V  
of 100mV.  
SENSE  
A 10A load current in the same interconnect will cause  
a 5% error for the same 100mV signal. By isolating the  
sense traces from the high current paths, this error can  
be reduced by orders of magnitude. A sense resistor with  
integratedKelvinsenseterminalswillgivethebestresults.  
Figure3illustratestherecommendedmethodforconnect-  
ing the SENSEHI and SENSELO pins to the sense resistor.  
R
should be small enough that V  
SENSE(MAX)  
example, an application may require the maximum sense  
does not  
SENSE  
exceed V  
SENSE  
under peak load conditions. As an  
610912fa  
11  
LT6109-1/LT6109-2  
APPLICATIONS INFORMATION  
V
SUPPLY  
+
R
IN  
R
SENSE  
V
SENSE  
LT6109-1  
SENSEHI 10  
1
SENSELO  
LOAD  
+
V
SENSE  
R
SENSE  
C1  
I
=
+
SENSE  
V
V
9
+
V
2
3
EN/RST  
OUTA 8  
INC2 7  
V
RESET  
V
OUT  
V
+
PULLUP  
V
I
OUTA  
R3*  
R2*  
C
L
+
R
C
OUTC2  
UNDERCURRENT  
FLAG  
C
LC  
+
V
400mV  
REFERENCE  
R
C
V
+
4
5
OUTC1  
OVERCURRENT  
FLAG  
INC1 6  
C
LC  
V
R1*  
V
610912 F03  
*R  
OUT  
= R1 + R2 + R3  
Figure 3. LT6109-1 Typical Connection  
+
Selection of External Input Gain Resistor, R  
V
IN  
R
should be chosen to allow the required speed and  
IN  
R
D
SENSE  
SENSE  
resolution while limiting the output current to 1mA. The  
maximum value for R is 1k to maintain good loop sta-  
610912 F04  
IN  
SENSE  
LOAD  
bility. For a given V  
, larger values of R will lower  
IN  
power dissipation in the LT6109 due to the reduction  
Figure 4. Shunt Diode Limits Maximum Input Voltage to Allow  
Better Low Input Resolution Without Overranging  
in I  
while smaller values of R will result in faster  
OUT  
IN  
response time due to the increase in I . If low sense  
OUT  
currents must be resolved accurately in a system that has  
Care should be taken when designing the board layout for  
R , especially for small R values. All trace and inter-  
connect resistances will increase the effective R value,  
causing a gain error.  
a very wide dynamic range, a smaller R may be used  
IN  
IN  
IN  
if the maximum I  
such as with a Schottky diode across R  
current is limited in another way,  
OUTA  
IN  
(Figure 4).  
SENSE  
This will reduce the high current measurement accuracy  
by limiting the result, while increasing the low current  
measurement resolution.  
The power dissipated in the sense resistor can create a  
thermal gradient across a printed circuit board and con-  
sequently a gain error if R and R  
are placed such  
IN  
OUT  
This approach can be helpful in cases where occasional  
bursts of high currents can be ignored.  
that they operate at different temperatures. If significant  
power is being dissipated in the sense resistor then care  
610912fa  
12  
LT6109-1/LT6109-2  
APPLICATIONS INFORMATION  
should be taken to place R and R  
such that the gain  
In this case, the only error is due to external resistor  
mismatch, which provides an error in gain only. However,  
offset voltage, input bias current and finite gain in the  
amplifier can cause additional errors:  
IN  
OUT  
error due to the thermal gradient is minimized.  
Selection of External Output Gain Resistor, R  
OUT  
The output resistor, R , determines how the output cur-  
OUT  
Output Voltage Error, V  
, Due to the Amplifier  
OUT(VOS)  
rent is converted to voltage. V  
is simply I  
• R  
.
OUT  
OUTA  
OUT  
DC Offset Voltage, V  
OS  
Typically, R  
is a combination of resistors configured  
as a resistor divider which has voltage taps going to the  
OUT  
ROUT  
RIN  
VOUT(VOS) = VOS •  
comparator inputs to set the comparator thresholds.  
In choosing an output resistor, the maximum output volt-  
age must first be considered. If the subsequent circuit is a  
The DC offset voltage of the amplifier adds directly to the  
valueofthesensevoltage, V . AsV isincreased,  
SENSE  
SENSE  
buffer or ADC with limited input range, then R  
must be  
OUT  
accuracyimproves.Thisisthedominanterrorofthesystem  
and it limits the available dynamic range.  
chosen so that I  
• R  
is less than the allowed  
OUTA(MAX)  
OUT  
maximum input range of this circuit.  
In addition, the output impedance is determined by R  
.
Output Voltage Error, V  
, Due to the Bias  
OUT  
OUT(IBIAS)  
+
If another circuit is being driven, then the input impedance  
ofthatcircuitmustbeconsidered.Ifthesubsequentcircuit  
has high enough input impedance, then almost any use-  
ful output impedance will be acceptable. However, if the  
subsequent circuit has relatively low input impedance, or  
draws spikes of current such as an ADC load, then a lower  
outputimpedancemayberequiredtopreservetheaccuracy  
oftheoutput. MoreinformationcanbefoundintheOutput  
Filtering section. As an example, if the input impedance of  
Currents I and I  
B
B
+
The amplifier bias current I flows into the SENSELO pin  
B
while I flows into the SENSEHI pin. The error due to I  
B
B
is the following:  
RSENSE  
RIN  
VOUT(IBIAS) = ROUT IB+ •  
IB  
+
Since I ≈ I = I  
, if R  
<< R then,  
SENSE IN  
B
B
BIAS  
the driven circuit, R  
, is 100 times R , then the  
IN(DRIVEN)  
OUT  
V  
= –R  
(I  
)
OUT(IBIAS)  
OUT BIAS  
accuracy of V  
will be reduced by 1% since:  
ROUT RIN(DRIVEN)  
ROUT + RIN(DRIVEN)  
100  
OUT  
It is useful to refer the error to the input:  
V = –R (I  
VOUT = IOUTA  
)
IN BIAS  
VIN(IBIAS)  
For instance, if I  
is 100nA and R is 1k, the input re-  
IN  
BIAS  
= IOUTA ROUT  
= 0.99IOUTA ROUT  
ferred error is 100µV. This error becomes less significant  
101  
as the value of R decreases. The bias current error can  
IN  
+
be reduced if an external resistor, R , is connected as  
IN  
Amplifier Error Sources  
shown in Figure 5, the error is then reduced to:  
The current sense system uses an amplifier and resistors  
to apply gain and level-shift the result. Consequently, the  
output is dependent on the characteristics of the amplifier,  
suchasgainerrorandinputoffset, aswellasthematching  
of the external resistors.  
+
V
= R  
• I ; I = I – I  
OUT(IBIAS)  
OUT OS OS B B  
Minimizing low current errors will maximize the dynamic  
range of the circuit.  
Ideally, the circuit output is:  
R
RIN  
VOUT = VSENSE  
OUT ; VSENSE = RSENSE ISENSE  
610912fa  
13  
LT6109-1/LT6109-2  
APPLICATIONS INFORMATION  
+
V
There is also power dissipated due to the quiescent power  
supply current:  
9
+
V
LT6109  
V
BATT  
+
P = I • V  
S
S
R
IN  
+
10 SENSEHI  
The comparator output current flows into the comparator  
R
SENSE  
output pin and out of the V pin. The power dissipated in  
OUTA  
8
1
SENSELO  
V
OUT  
+
the LT6109 due to each comparator is often insignificant  
and can be calculated as follows:  
R
IN  
R
OUT  
V
5
I
SENSE  
610912 F05  
P
= (V  
– V ) • I  
OUTC1,C2  
OUTC1,C2  
OUTC1,C2  
Figure 5. RIN+ Reduces Error Due to IB  
The total power dissipated is the sum of these  
dissipations:  
Output Voltage Error, V , Due to  
OUT(GAIN ERROR)  
P
TOTAL  
= P  
+ P  
+ P + P  
OUTC2 S  
External Resistors  
OUTA  
OUTC1  
At maximum supply and maximum output currents, the  
total power dissipation can exceed 100mW. This will  
cause significant heating of the LT6109 die. In order to  
prevent damage to the LT6109, the maximum expected  
dissipation in each application should be calculated. This  
The LT6109 exhibits a very low gain error. As a result,  
the gain error is only significant when low tolerance  
resistors are used to set the gain. Note the gain error is  
systematically negative. For instance, if 0.1% resistors  
are used for R and R  
then the resulting worst-case  
IN  
OUT  
number can be multiplied by the θ value, 160°C/W, to  
gain error is –0.4% with R = 100Ω. Figure 6 is a graph  
JA  
IN  
find the maximum expected die temperature. Proper heat  
sinking and thermal relief should be used to ensure that  
the die temperature does not exceed the maximum rating.  
of the maximum gain error which can be expected versus  
the external resistor tolerance.  
10  
1
Output Filtering  
The AC output voltage, V , is simply I  
• Z . This  
OUT  
OUT  
OUTA  
R
IN  
= 100Ω  
makes filtering straightforward. Any circuit may be used  
which generates the required Z to get the desired filter  
OUT  
R
= 1k  
IN  
response. For example, a capacitor in parallel with R  
OUT  
0.1  
will give a lowpass response. This will reduce noise at the  
output, and may also be useful as a charge reservoir to  
keep the output steady while driving a switching circuit  
such as a MUX or ADC. This output capacitor in parallel  
0.01  
0.01  
0.1  
1
10  
RESISTOR TOLERANCE (%)  
with R  
will create an output pole at:  
OUT  
610912 F06  
Figure 6. Gain Error vs Resistor Tolerance  
1
f–3dB  
=
2π ROUT CL  
Output Current Limitations Due to Power Dissipation  
The LT6109 can deliver a continuous current of 1mA to the  
SENSELO, SENSEHI Range  
The difference between V  
OUTA pin. This current flows through R and enters the  
+
IN  
(see Figure 7) and V , as  
SENSE  
BATT  
current sense amplifier via the SENSEHI pin. The power  
dissipated in the LT6109 due to the output signal is:  
well as the maximum value of V  
, must be considered  
to ensure that the SENSELO pin doesn’t exceed the range  
listed in the Electrical Characteristics table. The SENSELO  
and SENSEHI pins of the LT6109 can function from 0.2V  
P
= (V  
– V  
) • I  
OUT  
SENSEHI  
OUTA  
OUTA  
+
+
Since V  
≈ V , P  
≈ (V – V  
) • I  
OUTA OUTA  
SENSEHI  
OUTA  
610912fa  
14  
LT6109-1/LT6109-2  
APPLICATIONS INFORMATION  
above the positive supply to 33V below it. These operat-  
ing voltages are limited by internal diode clamps shown  
in Figures 1 and 2. On supplies less than 35.5V, the lower  
60  
50  
40  
range is limited by V + 2.5V. This allows the monitored  
supply, V  
, to be separate from the LT6109 positive  
BATT  
40.2V  
supply as shown in Figure 7. Figure 8 shows the range of  
operating voltages for the SENSELO and SENSEHI inputs,  
VALID SENSELO/  
SENSEHI RANGE  
+
30  
27  
for different supply voltage inputs (V ). The SENSELO and  
SENSEHI range has been designed to allow the LT6109 to  
monitor its own supply current (in addition to the load),  
20.2V  
20  
as long as V  
Figure 9.  
is less than 200mV. This is shown in  
SENSE  
10  
2.8V  
2.5V  
Minimum Output Voltage  
2.7  
10  
20  
30 35.5 40  
(V)  
50  
60  
610912 F08  
+
V
The output of the LT6109 current sense amplifier can  
produceanon-zerooutputvoltagewhenthesensevoltage  
Figure 8. Allowable SENSELO, SENSEHI Voltage Range  
is zero. This is a result of the sense amplifier V being  
OS  
forced across R as discussed in the Output Voltage Er-  
IN  
ror, V  
section. Figure 10 shows the effect of the  
OUT(VOS)  
9
+
input offset voltage on the transfer function for parts at  
V
LT6109  
the V limits. With a negative offset voltage, zero input  
OS  
V
BATT  
sense voltage produces an output voltage. With a positive  
offset voltage, the output voltage is zero until the input  
sense voltage exceeds the input offset voltage. Neglect-  
R
IN  
+
10 SENSEHI  
R
SENSE  
OUTA  
8
1
SENSELO  
V
OUT  
ing V , the output circuit is not limited by saturation of  
OS  
R
OUT  
pull-down circuitry and can reach 0V.  
V
5
I
SENSE  
610912 F09  
Response Time  
The LT6109 amplifier is designed to exhibit fast response  
to inputs for the purpose of circuit protection or current  
monitoring. This response time will be affected by the  
external components in two ways, delay and speed.  
Figure 9. LT6109 Supply Current Monitored with Load  
120  
G = 100  
100  
80  
+
V
9
+
V
= –125µV  
OS  
V
LT6109  
V
60  
BATT  
R
IN  
+
10 SENSEHI  
40  
20  
0
V
= 125µV  
OS  
R
SENSE  
OUTA  
8
1
SENSELO  
V
OUT  
R
I
OUT  
SENSE  
V
5
0
100 200 300 400 500 600 700 800 900 1000  
INPUT SENSE VOLTAGE (µV)  
610912 F07  
610912 F10  
Figure 7. V+ Powered Separately from Load Supply (VBATT  
)
Figure 10. Amplifier Output Voltage vs Input Sense Voltage  
610912fa  
15  
LT6109-1/LT6109-2  
APPLICATIONS INFORMATION  
If the output current is very low and an input transient  
occurs, there may be an increased delay before the  
outputvoltagebeginstochange. TheTypicalPerformance  
Characteristics show that this delay is short and it can  
be improved by increasing the minimum output current,  
require a separate system or user to reset the outputs. In  
applications where the comparator output can intervene  
and disconnect loads from the supply, latched outputs are  
required to avoid oscillation. Latching outputs are also  
useful for detecting problems that are intermittent. The  
comparator outputs on the LT6109 are always latching  
and there is no way to disable this feature.  
either by increasing R  
or decreasing R . Note that  
SENSE  
IN  
the Typical Performance Characteristics are labeled with  
respect to the initial sense voltage.  
Eachofthecomparatorshasoneinputavailableexternally,  
with the two versions of the part differing by the polarity  
of those available inputs. The other comparator inputs are  
connected internally to the 400mV precision reference.  
The input threshold (the voltage which causes the output  
to transition from high to low) is designed to be equal to  
that of the reference. The reference voltage is established  
The speed is also affected by the external components.  
Using a larger R  
OUT OUTA OUT  
will decrease the response time, since  
OUT  
V
= I  
• Z  
where Z  
is the parallel combination  
OUT  
of R  
and any parasitic and/or load capacitance. Note  
OUT  
that reducing R or increasing R  
will both have the  
IN  
OUT  
effect of increasing the voltage gain of the circuit. If the  
output capacitance is limiting the speed of the system, R  
with respect to the device V connection.  
IN  
and R  
can be decreased together in order to maintain  
OUT  
Comparator Inputs  
the desired gain and provide more current to charge the  
output capacitance.  
ThecomparatorinputscanswingfromV to60Vregardless  
of the supply voltage used. The input current for inputs  
well above the threshold is just a few pAs. With decreas-  
ing input voltage, a small bias current begins to be drawn  
out of the input near the threshold, reaching 50nA max  
when at ground potential. Note that this change in input  
bias current can cause a small nonlinearity in the OUTA  
transfer function if the comparator inputs are coupled to  
the amplifier output with a voltage divider. For example, if  
the maximum comparator input current is 50nA, and the  
resistance seen looking out of the comparator input is 1k,  
then a change in output voltage of 50µV will be seen on the  
analog output when the comparator input voltage passes  
through its threshold. If both comparator inputs are con-  
nected to the output then they must both be considered.  
The response time of the comparators is the sum of the  
propagation delay and the fall time. The propagation  
delay is a function of the overdrive voltage on the input  
of the comparators. A larger overdrive will result in a  
lower propagation delay. This helps achieve a fast system  
response time to fault events. The fall time is affected by  
the load on the output of the comparator as well as the  
pull-up voltage.  
The LT6109 amplifier has a typical response time of 500ns  
andthecomparatorshaveatypicalresponsetimeof500ns.  
When configured as a system, the amplifier output drives  
the comparator input causing a total system response  
time which is typically greater than that implied by the  
individually specified response times. This is due to the  
overdrive on the comparator input being determined by  
the speed of the amplifier output.  
Setting Comparator Thresholds  
The comparators have an internal precision 400mV refer-  
ence. In order to set the trip points of the LT6109-1 com-  
Internal Reference and Comparators  
parators, the output currents, I  
and I  
, as well  
OVER  
UNDER  
, must be calculated:  
The integrated precision reference and comparators com-  
bined with the high precision current sense allow for rapid  
andeasydetectionofabnormalloadcurrents. Thisisoften  
critical in systems that require high levels of safety and  
reliability. The LT6109 comparators are optimized for fault  
detection and are designed with latching outputs. Latch-  
ing outputs prevent faults from clearing themselves and  
as the maximum output current, I  
MAX  
V
VSENSE(UNDER)  
IOVER  
=
SENSE(OVER) , IUNDER  
=
,
RIN  
VSENSE(MAX)  
RIN  
IMAX  
=
RIN  
610912fa  
16  
LT6109-1/LT6109-2  
APPLICATIONS INFORMATION  
where I  
and I  
are the over and under currents  
OVER  
UNDER  
400mV  
R1=  
R2 =  
R3 =  
through the sense resistor which cause the comparators  
I
OVER  
to trip. I  
resistor.  
is the maximum current through the sense  
MAX  
400mV I  
R1  
(
)
UNDER  
I
UNDER  
Depending on the desired maximum amplifier output volt-  
age (V ) the three output resistors, R1, R2 and R3, can  
V
–I  
R1+ R2  
(
)
MAX  
MAX MAX  
be configured in two ways. If:  
I
MAX  
If:  
400mV IUNDER R1  
400mV  
IOVER  
( )  
VMAX  
>
+
I
MAX  
IUNDER  
400mV IUNDER R1  
400mV  
IOVER  
( )  
VMAX  
<
+
I
MAX  
IUNDER  
then use the configuration shown in Figure 3. The desired  
trip points and full-scale analog output voltage for the  
circuit in Figure 3 can then be achieved using the follow-  
ing equations:  
then use the configuration shown in Figure 11.  
V
SUPPLY  
+
R
IN  
R
SENSE  
V
SENSE  
LT6109-1  
SENSEHI 10  
1
SENSELO  
LOAD  
+
V
SENSE  
R
SENSE  
C1  
I
=
+
SENSE  
V
V
9
+
V
2
3
EN/RST  
8
7
OUTA  
INC2  
V
RESET  
V
+
PULLUP  
V
I
C
OUTA  
L
+
R
C
OUTC2  
UNDERCURRENT  
FLAG  
C
LC  
R3  
+
V
V
400mV  
REFERENCE  
V
R
C
OUT  
R2  
+
4
5
OUTC1  
OVERCURRENT  
FLAG  
INC1  
6
C
LC  
V
R1  
V
610912 F11  
Figure 11. Typical Configuration with Alternative ROUT Configuration  
610912fa  
17  
LT6109-1/LT6109-2  
APPLICATIONS INFORMATION  
Thedesiredtrippointsandfull-scaleanalogoutputvoltage  
for the circuit in Figure 13 can be achieved as follows:  
OUTC1  
(LT6109-1/LT6109-2)  
OUTC2  
(LT6109-2)  
400mV  
OUTC2  
(LT6109-1)  
INCREASING  
R1=  
V
INC1,2  
I
OVER  
610912 F12  
V
V
HYS HYS  
V
–I  
R1  
(
)
MAX MAX  
V
TH  
R2 =  
R3 =  
I
MAX  
Figure 12. Comparator Output Transfer Characteristics  
400mV I  
I
R1+ R2  
(
)
UNDER  
ing input thresholds, V (the actual internal threshold  
UNDER  
TH  
remains unaffected).  
Trip points for the LT6109-2 can be set by replacing I  
with a second overcurrent, I  
UNDER  
.
OVER2  
Figure 13 shows how to add additional hysteresis to a  
noninverting comparator.  
Hysteresis  
R6canbecalculatedfromtheextrahysteresisbeingadded,  
Each comparator has a typical built-in hysteresis of 10mV  
to simplify design, ensure stable operation in the pres-  
ence of noise at the inputs, and to reject supply noise that  
might be induced by state change load transients. The  
hysteresis is designed such that the threshold voltage is  
altered when the output is transitioning from low to high  
as is shown in Figure 12.  
V
and the amplifier output current which you  
HYS(EXTRA)  
want to cause the comparator output to trip, I  
HYS(EXTRA)  
to the typical 10mV of built-in hysteresis.  
. Note  
UNDER  
, isinaddition  
thatthehysteresisbeingadded, V  
400mV – VHYS(EXTRA)  
R6=  
IUNDER  
External positive feedback circuitry can be employed  
to increase the effective hysteresis if desired, but such  
circuitry will have an effect on both the rising and fall-  
R1 should be chosen such that R1 >> R6 so that V  
OUTA  
does not change significantly when the comparator trips.  
+
V
9
+
V
LT6109-1  
+
V
R
IN  
+
10 SENSEHI  
R
SENSE  
1
SENSELO  
OUTA  
INC2  
8
7
I
LOAD  
+
V
+
V
R5  
R6  
V
R1  
+
VTH  
R3  
3
OUTC2  
400mV  
REFERENCE  
V
5
R2  
610912 F13  
Figure 13. Noninverting Comparator with Added Hysteresis  
610912fa  
18  
LT6109-1/LT6109-2  
APPLICATIONS INFORMATION  
R3 should be chosen to allow sufficient V and compara-  
In the previous example, this is an error of 4.3mV at the  
output of the amplifier or 43µV at the input of the amplifier  
assuming a gain of 100.  
OL  
tor output rise time due to capacitive loading.  
R2 can be calculated:  
When using the comparators with their inputs decoupled  
fromtheoutputoftheamplifier,theymaybedrivendirectly  
by a voltage source. It is useful to know the threshold  
voltageequationswiththeadditionalhysteresis. Theinput  
fallingedgethresholdwhichcausestheoutputtotransition  
from high to low is:  
R1V+ – 400mV – V  
R3  
(
)
(
)
HYS(EXTRA)  
R2 =  
VHYS(EXTRA)  
For very large values of R2 PCB related leakage may  
become an issue. A tee network can be implemented to  
reduce the required resistor values.  
+
1
1
V R1  
R2+ R3  
VTH(F) = 400mV R1•  
+
The approximate total hysteresis will be:  
R1 R2+ R3  
+
V – 400mV  
VHYS = 10mV + R1•  
The input rising edge threshold which causes the output  
to transition from low to high is:  
R2+ R3  
For example, to achieve I  
= 100µA with 50mV of  
UNDER  
1
1
VTH(R) = 410mV R1•  
+
total hysteresis, R6 = 3.57k. Choosing R1 = 35.7k, R3 =  
R1 R2  
+
10k and V = 5V results in R2 = 4.12M.  
Figure 14 shows how to add additional hysteresis to an  
inverting comparator.  
The analog output voltage will also be affected when the  
comparator trips due to the current injected into R6 by  
the positive feedback. Because of this, it is desirable to  
R7canbecalculatedfromtheamplifieroutputcurrentwhich  
have (R1 + R2 + R3) >> R6. The maximum V  
caused by this can be calculated as:  
error  
OUTA  
is required to cause the comparator output to trip, I  
.
OVER  
400mV  
IOVER  
R7=  
, Assuming R1+R2 >> R7  
(
)
R6  
VOUTA = V+ •  
R1+ R2+ R3+ R6  
+
V
9
+
V
LT6109-1  
SENSEHI  
+
V
R
IN  
+
10  
1
R
SENSE  
SENSELO  
OUTA  
8
6
I
LOAD  
+
V
V
+
R6  
R7  
V
R1  
INC1  
VTH  
R3  
4
OUTC1  
+
400mV  
REFERENCE  
V
5
V
DD  
R2  
610912 F14  
Figure 14. Inverting Comparator with Added Hysteresis  
610912fa  
19  
LT6109-1/LT6109-2  
APPLICATIONS INFORMATION  
To ensure (R1 + R2) >> R7, R1 should be chosen such  
The input falling edge threshold which causes the output  
to transition from low to high is:  
that R1 >> R7 so that V  
does not change significantly  
OUTA  
when the comparator trips.  
R1  
R2  
R1  
R2  
VTH(F) = 390mV 1+  
–V  
DD  
R3 should be chosen to allow sufficient V and compara-  
OL  
tor output rise time due to capacitive loading.  
R2 can be calculated:  
Comparator Outputs  
The comparator outputs can maintain a logic low level of  
150mV while sinking 500µA. The outputs can sink higher  
VDD 390mV  
VHYS(EXTRA)  
R2 = R1•  
currents at elevated V levels as shown in the Typical  
OL  
PerformanceCharacteristics.Loadcurrentsareconducted  
Note that the hysteresis being added, V  
, is in  
HYS(EXTRA)  
to the V pin. The output off-state voltage may range  
additiontothetypical10mVofbuilt-inhysteresis. Forvery  
large values of R2 PCB related leakage may become an  
issue. A tee network can be implemented to reduce the  
required resistor values.  
between 0V and 60V with respect to V , regardless of the  
supply voltage used. As with any open-drain device, the  
outputs may be tied together to implement wire-OR logic  
functions. The LT6109-1 can be used as a single-output  
window comparator in this way.  
The approximate total hysteresis is:  
V 390mV  
DD  
EN/RST Pin  
VHYS = 10mV+ R1•  
R2  
The EN/RST pin performs the two functions of resetting  
the latch on the comparators as well as shutting down the  
LT6109. After powering on the LT6109, the comparators  
must be reset in order to guarantee a valid state at their  
outputs.  
For example, to achieve I  
= 900µA with 50mV of total  
OVER  
hysteresis, R7 = 442Ω. Choosing R1 = 4.42k, R3 = 10k  
and V = 5V results in R2 = 513k.  
DD  
The analog output voltage will also be affected when the  
comparator trips due to the current injected into R7 by  
the positive feedback. Because of this, it is desirable to  
have (R1 + R2) >> R7. The maximum V  
by this can be calculated as:  
Applying a pulse to the EN/RST pin will reset the compara-  
tors from their tripped state as long as the input on the  
comparator is below the threshold and hysteresis for an  
invertingcomparatororabovethethresholdandhysteresis  
error caused  
OUTA  
for a noninverting comparator. For example, if V  
is  
INC1  
R7  
pulled higher than 400mV and latches the comparator, a  
reset pulse will not reset that comparator unless its input  
is held below the threshold by a voltage greater than the  
10mVtypicalhysteresis.Thecomparatoroutputstypically  
unlatch in 0.5µs with 2pF of capacitive load. Increased  
capacitive loading will cause increased unlatch time.  
VOUTA = V •  
DD  
R1+ R2+ R7  
In the previous example, this is an error of 4.3mV at the  
output of the amplifier or 43µV at the input of the amplifier  
assuming a gain of 100.  
When using the comparators with their inputs decoupled  
fromtheoutputoftheamplifiertheymaybedrivendirectly  
by a voltage source. It is useful to know the threshold  
voltage equations with additional hysteresis. The input  
rising edge threshold which causes the output to transi-  
tion from high to low is:  
Figure 15 shows the reset functionality of the EN/RST  
pin. The width of the pulse applied to reset the compara-  
tors must be greater than t  
RPW(MAX)  
(2µs) but less than  
RPW(MIN)  
t
(15µs). Applying a pulse that is longer than  
40µs typically (or tying the pin low) will cause the part  
to enter shutdown. Once the part has entered shutdown,  
the supply current will be reduced to 3µA typically and the  
amplifier,comparatorsandreferencewillceasetofunction  
610912fa  
R1  
R2  
VTH(R) = 400mV 1+  
20  
LT6109-1/LT6109-2  
APPLICATIONS INFORMATION  
until the EN/RST pin is transitioned high. When the part  
is disabled, both the amplifier and comparator outputs  
are high impedance.  
on V  
. Circuitry connected to OUTA can be protected  
OUTA  
from these transients by using an external diode to clamp  
V
or a capacitor to filter V  
.
OUTA  
OUTA  
When the EN/RST pin is transitioned from low to high  
to enable the part, the amplifier output PMOS can turn  
on momentarily causing typically 1mA of current to flow  
into the SENSEHI pin and out of the OUTA pin. Once the  
amplifier is fully on, the output will go to the correct cur-  
rent. Figure 16 shows this behavior and the impact it has  
Power Up  
After powering on the LT6109, the comparators must be  
reset in order to guarantee a valid state at their outputs.  
Fast supply ramps may cause a supply current transient  
during start-up as shown in the Typical Performance  
Characteristics. This current can be lowered by reducing  
the edge speed of the supply.  
RESET PULSE WIDTH LIMITS  
COMPARATOR  
EN/RST  
RESET  
t
RPW(MIN)  
2µs  
Reverse-Supply Protection  
t
RPW(MAX)  
15µs  
The LT6109 is not protected internally from external rever-  
sal of supply polarity. To prevent damage that may occur  
during this condition, a Schottky diode should be added  
610912 F15  
OUTC1  
OUTC2  
in series with V (Figure 17). This will limit the reverse  
t
RESET  
0.5µs (TYPICAL)  
current through the LT6109. Note that this diode will limit  
the low voltage operation of the LT6109 by effectively  
Figure 15. Comparator Reset Functionality  
reducing the supply voltage to the part by V .  
D
+
V
R
R
= 60V  
= 100Ω  
Alsonotethatthecomparatorreference,comparatoroutput  
IN  
OUT  
= 10k  
and EN/RST input are referenced to the V pin. In order to  
V
EN/RST  
preservetheprecisionofthereferenceandtoavoiddriving  
2V/DIV  
the comparator inputs below V , R2 must connect to the  
0V  
V pin. This will shift the amplifier output voltage up by  
V .V  
canbeaccuratelymeasureddifferentiallyacross  
V
OUTA  
D
OUTA  
2V/DIV  
R1 and R2. The comparator output low voltage will also be  
shifted up by V . The EN/RST pin threshold is referenced  
D
0V  
to the V pin. In order to provide valid input levels to the  
50µs/DIV  
LT6109 and avoid driving EN/RST below V the negative  
610912 F14  
supply of the driving circuit should be tied to V .  
Figure 16. Amplifier Enable Response  
610912fa  
21  
LT6109-1/LT6109-2  
APPLICATIONS INFORMATION  
+
V
9
+
V
LT6109-1  
+
V
R
IN  
+
10  
1
SENSEHI  
SENSELO  
R
SENSE  
OUTA  
INC  
8
6
V
DD  
I
+
LOAD  
+
V
V
V
R1  
R2  
DD  
R3  
+
4
2
OUTC  
V
OUTA  
400mV  
REFERENCE  
V
DD  
EN/RST  
V
5
610912 F17  
+
V
D
Figure 17. Schottky Prevents Damage During Supply Reversal  
TYPICAL APPLICATIONS  
Overcurrent and Undervoltage Battery Fault Protection  
12 LITHIUM  
40V CELL STACK  
IRF9640  
0.1Ω  
TO  
LOAD  
+
+
+
10µF  
1M  
INC2  
100k  
6.2V*  
R10  
100Ω  
10  
9
1
8
SENSEHI SENSELO  
+
13.3k  
0.1µF  
V
OUTA  
V
OUT  
0.8A  
OVERCURRENT  
DETECTION  
5V  
LT6109-1  
+
9.53k  
475Ω  
6
7
2
4
3
10k  
RESET  
EN/RST  
OUTC1  
OUTC2  
INC1  
INC2  
100k  
2N7000  
30V  
V
UNDERVOLTAGE  
DETECTION  
5
6109 TA02  
*CMH25234B  
The comparators monitor for overcurrent and undervolt-  
age conditions. If either fault condition is detected the  
battery will immediately be disconnected from the load.  
The latching comparator outputs ensure the battery stays  
disconnected from the load until an outside source resets  
the LT6109 comparator outputs.  
610912fa  
22  
LT6109-1/LT6109-2  
TYPICAL APPLICATIONS  
MCU Interfacing with Hardware Interupts  
0.1Ω  
+
V
TO LOAD  
Example:  
5V  
100Ω  
OUTC2 GOES LOW  
0V  
10  
1
8
SENSEHI SENSELO  
+
9
V
OUT  
V
OUTA  
ADC IN  
AtMega1280  
5V  
MCU INTERUPT  
LT6109-1  
5
2k  
PB0  
7
6
2
3
4
RESET  
6
7
2
3
1
10k  
10k  
EN/RST  
OUTC2  
OUTC1  
INC2  
INC1  
PB1  
PCINT2  
PCINT3  
ADC2  
6.65k  
UNDERCURRENT ROUTINE  
5V  
V
V
/ADC IN  
1.33k  
OUT  
5
PB5  
RESET COMPARATORS  
6109 TA03  
610912 TA03b  
The comparators are set to have a 50mA undercurrent  
threshold and a 300mA overcurrent threshold. The MCU  
willreceivethecomparatoroutputsashardwareinterrupts  
and immediately run an appropriate fault routine.  
Simplified DC Motor Torque Control  
V
MOTOR  
100µF  
1k  
0.1Ω  
SENSEHI SENSELO  
+
CURRENT SET POINT (0V TO 5V)  
BRUSHED  
DC MOTOR  
(0A TO 5A)  
MABUCHI  
RS-540SH  
V
OUTA  
V
OUT  
1µF  
0.47µF  
1N5818  
100k  
LT6109  
5.62k  
3.4k  
1k  
5V  
RESET  
EN/RST  
OUTC2  
OUTC1  
INC2  
INC1  
5
2
4
7
+
V
1
3
6
6
MOD OUT  
IRF640  
3 +  
LTC6246  
V
LTC6992-1  
100k  
4
78.7k  
SET DIV  
GND  
5V  
280k  
1M  
2
610912 TA04  
The figure shows a simplified DC motor control circuit.  
The circuit controls motor current, which is proportional  
to motor torque; the LT6109 is used to provide current  
feedback to a difference amplifier that controls the current  
in the motor. The LTC®6992 is used to convert the output  
of the difference amp to the motors PWM control signal.  
610912fa  
23  
LT6109-1/LT6109-2  
TYPICAL APPLICATIONS  
Power-On Reset or Disconnect Using a TimerBlox® Circuit  
5V  
9
+
V
LT6109-1  
+
R
V
IN  
100Ω  
10 SENSEHI  
+
R
SENSE  
1
SENSELO  
OUTA  
INC2  
8
7
I
+
LOAD  
V
V
R1  
8.06k  
R5  
10k  
+
3
OUTC2  
+
R4  
10k  
V
V
400mV  
REFERENCE  
R2  
1.5k  
5V  
+
4
2
OUTC1  
R8  
CREATES A DELAYED  
10µs RESET PULSE  
ON START-UP  
30k  
C1  
INC1  
6
Q1  
0.1µF  
2N2222  
EN/RST  
R3  
499Ω  
TRIG  
GND  
SET  
OUT  
OPTIONAL:  
LTC6993-3  
R7  
1M  
V
DISCHARGES C1  
WHEN SUPPLY  
+
V
610912 TA06  
5
IS DISCONNECTED  
DIV  
R6  
487k  
TheLTC6993-1providesa1SresetpulsetotheLT6109-1.  
TheresetpulseisdelayedbyR7andC1whosetimeconstant  
must be greater than 10ms and longer than the supply  
turn-on time. Optional components R8 and Q1 discharge  
capacitor C1 when the supply and/or ground are discon-  
nected. This ensures that when the power supply and/or  
ground are restored, capacitor C1 can fully recharge and  
triggertheLTC6993-3toproduceanothercomparatorreset  
pulse. These optional components are particularly useful  
if the power and/or ground connections are intermittent,  
as can occur when PCB are plugged into a connector.  
610912fa  
24  
LT6109-1/LT6109-2  
TYPICAL APPLICATIONS  
Precision Power-On Reset Using a TimerBlox® Circuit  
5V  
9
+
V
LT6109-1  
+
R
V
IN  
100Ω  
10 SENSEHI  
+
R
SENSE  
1
SENSELO  
OUTA  
INC2  
8
7
I
+
LOAD  
V
V
R1  
8.06k  
R5  
10k  
+
3
OUTC2  
+
R4  
10k  
V
V
400mV  
REFERENCE  
R2  
1.5k  
R8  
+
100k  
4
2
OUTC1  
1 SECOND DELAY  
ON START-UP  
10µs RESET PULSE  
GENERATOR  
INC1  
6
EN/RST  
R3  
TRIG  
OUT  
TRIG  
OUT  
499Ω  
C1  
0.1µF  
LTC6994-1  
LTC6993-1  
+
+
GND  
V
GND  
V
V
C2  
0.1µF  
R6  
1M  
610912 TA07  
5
SET  
DIV  
SET  
DIV  
R7  
191k  
R5  
681k  
R4  
487k  
610912fa  
25  
LT6109-1/LT6109-2  
PACKAGE DESCRIPTION  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661 Rev E)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
0.50  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
(.0197)  
10 9  
8
7 6  
BSC  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4 5  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ± 0.0508  
(.004 ± .002)  
0.50  
(.0197)  
BSC  
MSOP (MS) 0307 REV E  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
610912fa  
26  
LT6109-1/LT6109-2  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
12/12 Addition of A-grade Performance and Electrical Characteristics  
Correction to Typical Application diagram  
1, 3, 4, 11, 13, 15 (Fig10), 28  
1
Addition of A-grade Order Information  
2
Clarification to Absolute Maximum Short Circuit Duration  
Edits to Electrical Characteristics conditions and notes  
Clarification to nomenclature used in Typical Performance Characteristics  
Clarification to Description of Pin Functions  
2
3, 4  
5-8  
8, 9  
9, 10, 12, 17, 18, 19, 25, 26  
10-16, 18, 20-25  
28  
Internal Reference Block redrawn for consistency  
Edits to Applications Information  
Addition of LT6108 to Related Parts  
610912fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT6109-1/LT6109-2  
TYPICAL APPLICATION  
ADC Driving Application  
SENSE  
HIGH  
SENSE  
LOW  
0.1Ω  
0.1µF  
IN  
OUT  
V
V
REF  
CC  
100Ω  
10  
COMP  
1
8
SENSEHI SENSELO  
9
+
+
V
OUTA  
IN  
LTC2470  
TO  
MCU  
0.1µF  
V
CC  
LT6109-1  
2k  
V
CC  
7
6
2
3
4
RESET  
EN/RST  
OUTC2  
OUTC1  
INC2  
INC1  
10k  
10k  
6.65k  
1.33k  
V
5
OVERCURRENT  
6109 TA05  
UNDERCURRENT  
The low sampling current of the LTC2470 16-bit delta  
sigma ADC is ideal for the LT6109.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1787  
LTC4150  
LT6100  
LTC6101  
LTC6102  
LTC6103  
LTC6104  
LT6105  
LT6106  
LT6107  
LT6108  
Bidirectional High Side Current Sense Amplifier  
Coulomb Counter/Battery Gas Gauge  
2.7V to 60V, 75µV Offset, 60µA Quiescent, 8V/V Gain  
Indicates Charge Quantity and Polarity  
Gain-Selectable High Side Current Sense Amplifier  
High Voltage High Side Current Sense Amplifier  
Zero Drift High Side Current Sense Amplifier  
Dual High Side Current Sense Amplifier  
4.1V to 48V, Gain Settings: 10, 12.5, 20, 25, 40, 50V/V  
Up to 100V, Resistor Set Gain, 300µV Offset, SOT-23  
Up to 100V, Resistor Set Gain, 10µV Offset, MSOP8/DFN  
4V to 60V, Resistor Set Gain, 2 Independent Amps, MSOP8  
4V to 60V, Separate Gain Control for Each Direction, MSOP8  
–0.3V to 44V Input Range, 300µV Offset, 1% Gain Error  
2.7V to 36V, 250µV Offset, Resistor Set Gain, SOT-23  
2.7V to 36V, 55°C to 150°C, Fully Tested: –55°C, 25°C, 150°C  
Bidirectional High Side Current Sense Amplifier  
Precision Rail-to-Rail Input Current Sense Amplifer  
Low Cost High Side Current Sense Amplifier  
High Temperature High Side Current Sense Amplifier  
High Side Current Sense Amplifier with Reference and  
Comparator  
2.7V to 60V, 125µV Offset, Resistor Set Gain, 1.25% Threshold  
Error  
LT6700  
Dual Comparator with 400mV Reference  
1.4V to 18V, 6.5µA Supply Current  
610912fa  
LT 1212 REV A • PRINTED IN USA  
28 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY