LT6110 [Linear]

Cable/Wire Drop Compensator; 电缆/电线掉落补偿
LT6110
型号: LT6110
厂家: Linear    Linear
描述:

Cable/Wire Drop Compensator
电缆/电线掉落补偿

文件: 总38页 (文件大小:523K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6110  
Cable/Wire Drop  
Compensator  
FeaTures  
DescripTion  
The LT®6110 is a precision high side current sense with a  
current mode output, designed for controlling the output  
voltageofanadjustablepowersupplyorvoltageregulator.  
This can be used to compensate for drops in voltage at  
a remote load due to resistance in a wire, trace or cable.  
n
Improve Voltage Regulation to a Remote Load by 10×  
n
Ideal for Resistor-Adjustable Voltage Regulators  
n
Gain Configurable with a Single Resistor  
High Side Current Sensing:  
n
Integrated 20mSense Resistor for Up to 3A  
Ability to Use an External Sense Resistor  
The LT6110 monitors load current via a series-connected  
internal or external sense resistor. Two current mode out-  
puts, one sinking and one sourcing, are provided that are  
proportional to the load current. This allows the LT6110 to  
adjust the output voltage of a wide variety of regulators.  
Either output may be used to monitor the load current.  
n
300µV Maximum Input Offset Voltage  
n
Output Current Accuracy of 1% Maximum  
n
30µA Maximum Supply Current  
n
2V to 50V Supply Range  
n
Fully Specified from –40°C to 125°C  
n
Available in Low Profile (1mm) ThinSOT™ and  
Low DC offset allows for the use of a small sense resis-  
tor, as well as precise control of small variations in wire  
voltage drop.  
L, LT, LTC, LTM, Linear Technology, the Linear logo and µModule are registered trademarks  
and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
(2mm × 2mm) DFN Packages  
applicaTions  
n
Automotive and Industrial Power Distribution  
n
USB Power  
n
DC/DC Converters  
n
Plug-In DC Adapters  
n
Power over Ethernet  
Typical applicaTion  
R
WIRE  
I
V
LOAD  
V
LOAD  
REG  
V
IN  
OUT  
IN  
REGULATOR  
R
IN  
REMOTE  
LOAD  
FB  
+
+IN  
V
RS –IN  
5V  
5V  
GND  
V
V
UNCOMPENSATED  
COMPENSATED  
LOAD  
+
LT6110  
IOUT  
6110 TA01  
LOAD  
2A  
1A  
I
LOAD  
V
IMON  
200µs/DIV  
6110f  
1
For more information www.linear.com/LT6110  
LT6110  
absoluTe MaxiMuM raTings (Note 1)  
+
Total Supply Voltage (V to V ).................................55V  
Specified Temperature Range (Note 3)  
+
+IN, –IN, IOUT, IMON to V Voltage ............................ V  
+IN, -IN, IOUT, IMON Current.................................10mA  
IOUT to IMON Voltage....................................36V, –0.6V  
LT6110I................................................–40°C to 85°C  
LT6110H............................................. –40°C to 125°C  
Junction Temperature .......................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
+
V , +IN to IOUT Voltage.............................................36V  
+
Differential Input Voltage ............................................ V  
R
Current (Note 2)  
TS8...................................................................300°C  
SENSE  
Continuous .............................................................3A  
Transient (<0.1 Second)..........................................5A  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
1
2
3
4
8
7
6
5
NC*  
+IN  
NC* 1  
IOUT 2  
8 +IN  
7 V  
6 RS  
5 –IN  
+
V
IOUT  
IMON  
9
+
V
RS  
IMON 3  
–IN  
V
V
4
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
DC PACKAGE  
8-LEAD (2mm × 2mm) PLASTIC DFN  
T
= 150°C, θ = 195°C/W  
JA  
JMAX  
T
= 150°C, θ = 80.6°C/W  
JMAX  
JA  
*NC PIN NOT INTERNALLY CONNECTED  
EXPOSED PAD (PIN 9) IS V , MUST BE SOLDERED TO PCB  
*NC PIN NOT INTERNALLY CONNECTED  
orDer inForMaTion  
Lead Free Finish  
TAPE AND REEL (MINI)  
LT6110ITS8#TRMPBF  
LT6110HTS8#TRMPBF  
LT6110IDC#TRMPBF  
LT6110HDC#TRMPBF  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LT6110ITS8#TRPBF  
LTGCQ  
8-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
LT6110HTS8#TRPBF LTGCQ  
8-Lead Plastic TSOT-23  
LT6110IDC#TRPBF  
LT6110HDC#TRPBF  
LGCP  
LGCP  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
6110f  
2
For more information www.linear.com/LT6110  
LT6110  
elecTrical characTerisTics The l denotes the specifications which apply over the full specified  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, V= VIMON = 0V, I+IN = 100µA, VIOUT – VIMON = 1.2V, unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
V
Supply Range  
2.0  
50  
V
V
Amplifier Input Offset Voltage  
100  
300  
400  
500  
550  
µV  
µV  
µV  
µV  
OS  
l
l
l
0°C ≤ T ≤ 85°C (Note 5)  
A
85°C ≤ T ≤ 125°C (Note 5)  
A
–40°C ≤ T ≤ 0°C (Note 5)  
A
Amplifier Input Offset Voltage Change  
I
= 10µA to 1mA  
0.15  
0.3  
0.5  
1.5  
mV/mA  
mV/mA  
mV/mA  
V /I  
OS +IN  
+IN  
l
l
with I  
0°C ≤ T ≤ 85°C (Note 6)  
A
+IN  
l
l
l
l
Amplifier Input Offset Voltage Change  
with IOUT Voltage  
V
V
= 0.4V to 5V  
= 0V to 1V  
0.005  
0.3  
0.02  
mV/V  
mV/V  
µV/°C  
V /V  
IOUT  
OS  
IOUT  
Amplifier Input Offset Voltage Change  
with IMON Voltage  
1
V /V  
IMON  
OS  
IMON  
Amplifier Input Offset Voltage Drift  
Amplifer Input Bias Current (–IN)  
1
V /T  
OS  
+
I
V = 5V  
35  
70  
200  
nA  
nA  
B
+
I
Amplifier Input Offset Current  
Power Supply Rejection Ratio  
V = 5V  
1
nA  
OS  
+
l
l
PSRR  
V = 2.0V to 36V  
96  
90  
110  
100  
dB  
dB  
+
V = 36V to 50V  
IOUT Current Error (Note 4)  
I
= 10µA  
0.6  
0.5  
0.75  
1.5  
1.5  
1.7  
1.6  
2
%
%
%
+IN  
l
l
(Referred to I  
)
0°C ≤ T ≤ 85°C, (Note 6)  
A
+IN  
2.5  
I
= 100µA  
1
1.5  
2.3  
%
%
%
+IN  
l
l
0°C ≤ T ≤ 85°C, (Note 6)  
A
I
= 1mA  
2.5  
3
4
%
%
%
+IN  
l
l
0°C ≤ T ≤ 85°C, (Note 6)  
A
IMON Current Error (Note 4)  
(Referred to I  
I
= 10µA  
3
3.5  
5
%
%
%
+IN  
l
l
)
+IN  
0°C ≤ T ≤ 85°C, (Note 6)  
A
I
= 100µA  
3
3.5  
5
%
%
%
+IN  
l
l
0°C ≤ T ≤ 85°C, (Note 6)  
A
I
= 1mA  
4
5
6
%
%
%
+IN  
l
l
0°C ≤ T ≤ 85°C, (Note 6)  
A
l
l
∆I  
∆I  
/V  
IOUT Current Error Change with  
IOUT Voltage (Note 4)  
V
V
= 0.4V to 3.5V  
= 0.4V to 5V  
0.2  
0.4  
%/V  
%/V  
IOUT IOUT  
IOUT  
IOUT  
l
l
l
l
/V  
IMON Current Error Change with  
IMON Voltage (Note 4)  
V
= 0V to 3.1V, V = 5V  
IOUT  
0.2  
%/V  
IMON IMON  
IMON  
+IN Current Range  
Supply Current  
0.01  
1
mA  
+
I
V = 5V, I = 0µA  
16  
30  
30  
50  
µA  
µA  
S
+IN  
+
V = 50V, I = 0µA, V  
= 25V  
50  
100  
µA  
µA  
+IN  
IOUT  
R
R
Resistance  
(Note 2)  
0.0165  
0.02  
180  
2
0.0225  
kHz  
µs  
SENSE  
SENSE  
BW  
Signal Bandwidth (–3dB)  
Rise Time  
I
= 100µA, R  
= 1k  
+IN  
IOUT  
t
r
6110f  
3
For more information www.linear.com/LT6110  
LT6110  
elecTrical characTerisTics  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime. In addition to the Absolute Maximum Ratings, the  
output current and supply current must be limited to insure that the power  
dissipation in the LT6110 does not allow the die temperature to exceed  
150°C. See the Applications Information section Power Dissipation for  
further information.  
Note 4: Specified error is for the LT6110 output current mirror and does  
not include errors due to V or resistor tolerances. Since most systems  
OS  
will not have 100% correction, the total system error can be compensated  
to less than the specified error with proper design. See the Applications  
Information section for details.  
Note 5: Measurement errors limit automatic testing accuracy. These  
measurements are guaranteed by design correlation, characterization and  
testing to wider limits.  
Note 2: R  
resistance and maximum R  
currents are guaranteed  
SENSE  
SENSE  
Note 6: The 0°C ≤ T ≤ 85°C temperature range is guaranteed by  
A
by characterization and process controls.  
characterization and correlation to testing at–40°C, 25°C and 85°C.  
Note 3: The LT6110I is guaranteed to meet specified performance from  
–40°C to 85°C. The LT6110H is guaranteed to meet specified performance  
from –40°C to 125°C.  
Typical perForMance characTerisTics  
VOS Distribution  
VOS vs Supply Voltage  
VOS vs Supply Voltage  
200  
175  
150  
125  
100  
75  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
+
V
V
V
= 5V  
800 UNITS  
I
V
V
= 100µA  
= 0.4V  
IMON  
I
V
V
= 100µA  
= 25V  
IOUT  
+IN  
IOUT  
+IN  
= 1.2V  
IOUT  
IMON  
= 0V  
= 0V  
= 0V  
IMON  
I
= 100µA  
+IN  
T
= 125°C  
A
T
= 85°C  
A
T
= 85°C  
A
T
= 125°C  
A
T
= 0°C  
A
T
= 0°C  
A
T
= –40°C, –55°C  
A
T
= 25°C  
A
50  
T
= –40°C, –55°C  
A
T
= 25°C  
A
–100  
–200  
–100  
–200  
25  
0
–350 –250 –150 –50 50 150 250 350  
0
5
10 15 20 25 30 35 40  
35  
40  
45  
50  
INPUT OFFSET VOLTAGE (µV)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6110 G01  
6110 G02  
6110 G03  
VOS Temperature Coefficient  
VOS vs IOUT Voltage  
VOS vs IOUT Voltage  
12  
400  
300  
200  
100  
0
10  
9
8
7
6
5
4
3
2
1
0
+
+
+
V
V
V
= 5V  
40 UNITS  
–40°C TO 125°C  
V
V
I
= 36V  
= 0V  
V
V
I
= 50V  
= 25V  
IMON  
= 1.2V  
= 0V  
IOUT  
IMON  
+IN  
IMON  
+IN  
10  
8
= 100µA  
= 100µA  
+IN  
I
= 100µA  
T
= 25°C  
A
T
= 85°C  
A
T
= 125°C  
= –55°C  
A
T
= 125°C  
A
6
T
= 85°C  
A
T
A
= 25°C  
4
T
A
T
= 0°C  
T
= –55°C  
A
A
T
= –40°C  
10  
2
–100  
A
T
= 0°C  
35  
T = –40°C  
A
A
0
–200  
–3.0 –2.0 –1.0  
0
1.0  
2.0  
3.0  
0.1  
1
40  
30  
40  
45  
50  
INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (µV/°C)  
IOUT VOLTAGE (V)  
IOUT VOLTAGE (V)  
6110 G04  
6110 G05  
6110 G06  
6110f  
4
For more information www.linear.com/LT6110  
LT6110  
Typical perForMance characTerisTics  
VOS vs VSENSE Voltage  
VOS vs IMON Voltage  
VOS vs +IN Current  
400  
300  
200  
100  
0
10  
9
8
7
6
5
4
3
2
1
0
1000  
800  
600  
400  
0
+
+
+
V
= 5V  
V
+IN  
= V = 36V  
V
V
= 5V  
= 1.2V  
IOUT  
I
= 100µA  
OUT  
T
= 25°C  
A
T
= 85°C  
T
= 125°C  
A
A
T
= 85°C  
A
T = 125°C  
A
T
= 85°C  
T
= 125°C  
A
A
T
= 0°C  
A
T
= 25°C  
A
T
= –40°C, –55°C  
A
T
= 25°C  
A
–100  
–200  
200  
–200  
T
= –40°C  
T
= –55°C  
A
A
T
= 0°C  
A
T
= –40°C, –55°C  
10  
A
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
0.1  
1
40  
0.001  
0.01  
0.1  
1
2
V
IMON VOLTAGE (V)  
OUTPUT CURRENT (mA)  
SENSE  
6110 G07  
6110 G08  
6110 G09  
IOUT Current Error vs Supply  
Voltage  
IOUT Current Error vs Supply  
Voltage  
IOUT Current Error Distribution  
300  
250  
200  
150  
100  
50  
3
2
3
2
+
V
V
V
= 5V  
800 UNITS  
V
I
= 0.4V  
V
+IN  
= 25V  
IOUT  
IOUT  
+IN  
= 1.2V  
= 100µA  
I
= 100µA  
IOUT  
IMON  
+IN  
= 0V  
= 100µA  
T
= –40°C  
A
I
T = –40°C  
A
T
= 0°C  
A
T
= –55°C  
A
T
= –55°C  
A
T
= 0°C  
A
1
1
0
0
T
= 85°C, 125°C  
A
T
= 85°C, 125°C  
A
T
= 25°C  
T
= 25°C  
A
A
–1  
–2  
–3  
–1  
–2  
–3  
0
–1.2 –0.8 –0.4  
0
0.4  
0.8  
1.2  
0
5
10 15 20 25 30 35 40  
35  
40  
45  
50  
IOUT CURRENT ERROR (%)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6110 G10  
6110 G11  
6110 G12  
IOUT Current Error vs Output  
Voltage  
IOUT Current Error vs Output  
Voltage  
IOUT Current Error vs +IN Current  
3
2
3
2
3
2
+
+
+
V
V
I
= 5V  
= 0V  
V
V
I
= 36V  
= 0V  
V
V
= 5V  
= 1.2V  
IMON  
+IN  
IMON  
+IN  
OUT  
T
= 0°C  
T
= –40°C  
A
A
= 100µA  
= 100µA  
T
= –40°C  
T
= –40°C  
A
A
T
= –55°C  
A
T = –55°C  
A
1
T
= –55°C  
A
1
1
0
T
= 85°C, 125°C  
A
0
0
T
= 85°C, 125°C  
T
= 85°C, 125°C  
A
A
–1  
–2  
–3  
–4  
T
= 25°C  
T
A
= 25°C  
A
T
= 25°C  
A
T
= 0°C  
A
T
= 0°C  
A
–1  
–2  
–3  
–1  
–2  
–3  
0.001  
0.01  
0.1  
1
2
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
10  
20  
30  
40  
+IN CURRENT (mA)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
6110 G13  
6110 G14  
6110 G15  
6110f  
5
For more information www.linear.com/LT6110  
LT6110  
Typical perForMance characTerisTics  
IMON Current Error vs Supply  
IMON Current Error vs Supply  
Voltage  
IMON Current Error Distribution  
Voltage  
300  
250  
200  
150  
100  
50  
7
6
7
6
+
V
V
V
= 5V  
800 UNITS  
V
I
= 0.4V  
V
= 25V  
IOUT  
IOUT  
= 1.2V  
= 100µA  
I
= 100µA  
IOUT  
IMON  
+IN  
+IN  
= 0V  
= 100µA  
I
+IN  
5
5
4
4
T
= –55°C  
T = –55°C  
A
A
3
3
T
= –40°C  
T
= 0°C  
T
= –40°C  
A
A
A
T
= 0°C  
2
2
A
T
= 25°C  
A
T = 25°C  
A
1
1
T
= 85°C, 125°C  
A
T
= 85°C, 125°C  
A
0
0
0
–1  
–1  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
0
5
10 15 20 25 30 35 40  
35  
40  
45  
50  
IMON CURRENT ERROR (%)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6110 G16  
6110 G17  
6110 G18  
Minimum IOUT to IMON Voltage  
vs Temperature  
IMON Current Error vs Output  
Voltage  
IMON Current Error vs Output  
Voltage  
1.0  
0.8  
0.6  
0.4  
0.2  
0
7
6
7
6
+
+
+
V
V
= 5V  
= 0V  
V
= 5V  
= 100µA  
V
V
= 36V  
= 0V  
I
IMON  
+IN  
IMON  
= 100µA  
+IN  
∆IOUT ERROR < 1%  
I
5
5
4
4
T
T
= –55°C  
= –40°C  
A
T
= –55°C  
= –40°C  
A
I
= 1mA  
+IN  
3
3
A
T
= 0°C  
T
A
T
A
T = 0°C  
A
2
2
I
I
= 100µA  
= 10µA  
+IN  
1
1
T
= 125°C  
+IN  
A
T = 125°C  
A
0
0
T
= 85°C  
= 25°C  
T
= 25°C  
T = 85°C  
A
A
A
A
–1  
–1  
–55 –35 –15  
5
25 45 65 85 105 125  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
5
10 15 20 25 30 35 40  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
6110 G19  
6110 G20  
6110 G21  
IMON Current Error vs +IN Current  
Supply Current vs Supply Voltage  
Supply Current vs +IN Current  
5
4
60  
50  
40  
30  
20  
10  
0
10  
1.0  
+
+
I
= 0µA  
V
V
= 5V  
= 1.2V  
V
V
= 5V  
= 1.2V  
+IN  
OUT  
OUT  
T
= –55°C  
A
3
T
= –40°C  
A
T = 85°C  
A
T
= 0°C  
A
2
T
= 125°C  
A
1
T = 25°C  
A
T
= 125°C  
A
T
= 125°C  
A
0
T
= –40°C  
A
0.1  
T
= 25°C  
T
= 85°C  
A
A
T
= 85°C  
A
–1  
–2  
–3  
T
= –55°C  
A
T
= –40°C, –55°C  
A
T
= 25°C  
0.01  
A
0.01  
0.001  
0.01  
0.1  
1
2
0
5
10 15 20 25 30 35 40 45 50  
0.001  
0.1  
1
2
+IN CURRENT (mA)  
SUPPLY VOLTAGE (V)  
+IN CURRENT (mA)  
6110 G22  
6110 G23  
6110 G24  
6110f  
6
For more information www.linear.com/LT6110  
LT6110  
Typical perForMance characTerisTics  
Input Bias Current vs Supply  
Voltage  
Output Short-Circuit Current vs  
Temperature  
RSENSE vs Temperature  
180  
160  
140  
120  
100  
80  
50  
40  
30  
20  
10  
0
35  
30  
25  
20  
15  
10  
5
+
V
V
= V  
IOUT  
IMON  
= 0V  
SHORT DURATION = 1ms  
+
V
= 36V  
= 5V  
T
= 125°C  
A
T
= –40°C  
A
T
= –55°C  
A
60  
+
V
40  
T
= 85°C  
A
T
= 25°C  
A
20  
0
0
5
10 15 20 25 30 35 40 45 50  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6110 G25  
6110 G26  
6110 G27  
Frequency Response  
PSRR vs Frequency  
10  
+
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+
V
V
V
= 5V  
V
I
= 5V  
= 100µA  
= 1.2V  
IOUT  
+IN  
5
0
= 0V  
I
= 10µA  
R
= R  
= 1k  
IMON  
+IN  
IN  
IOUT  
I
= 1mA  
+IN  
–5  
I
= 100µA  
+IN  
–10  
–15  
–20  
–25  
–30  
I
I
I
= 10µA, R = R  
= 10k  
IOUT  
IOUT  
+IN  
+IN  
+IN  
IN  
= 100µA, R = R  
= 1k  
IN  
= 1mA, R = R  
= 100Ω  
10k  
IN  
IOUT  
10  
100  
1k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6110 G28  
6110 G29  
0µA to 10µA  
IOUT Current Step Response  
0µA to 100µA  
IOUT Current Step Response  
0µA to 1mA  
IOUT Current Step Response  
V
V
V
SENSE  
SENSE  
SENSE  
50mV/DIV  
50mV/DIV  
50mV/DIV  
V
V
V
IOUT  
IOUT  
IOUT  
6110 G30  
6110 G31  
6110 G32  
20µs/DIV  
+
20µs/DIV  
+
20µs/DIV  
+
V
R
R
R
= 5V  
V
R
R
R
= 5V  
V = 5V  
= 10k  
= 0Ω  
= 10k TO 1.2V  
= 1k  
= 0Ω  
= 1k TO 1.2V  
R
R
R
= 100Ω  
+IN  
–IN  
+IN  
–IN  
+IN  
–IN  
= 0Ω  
= 100Ω TO 1.2V  
IOUT  
IOUT  
IOUT  
6110f  
7
For more information www.linear.com/LT6110  
LT6110  
Typical perForMance characTerisTics  
0µA to 30µA  
IMON Current Step Response  
0µA to 300µA  
IMON Current Step Response  
0µA to 3mA  
IMON Current Step Response  
V
V
V
SENSE  
SENSE  
SENSE  
50mV/DIV  
50mV/DIV  
50mV/DIV  
V
V
V
IOUT  
IOUT  
IOUT  
6110 G34  
6110 G33  
6110 G35  
20µs/DIV  
+
20µs/DIV  
+
20µs/DIV  
+
V
R
R
R
= 5V  
V
R
R
R
= 5V  
V = 5V  
= 1k  
= 10k  
= 0Ω  
= 3.4k TO GND  
R
R
R
= 100Ω  
+IN  
–IN  
+IN  
–IN  
+IN  
–IN  
= 0Ω  
= 340Ω TO GND  
= 0Ω  
= 34Ω TO GND  
IMON  
IMON  
IMON  
VSENSE = 5mV Step Response  
VSENSE = 50mV Step Response  
VSENSE = 500mV Step Response  
V
V
SENSE  
SENSE  
20mV/DIV  
200mV/DIV  
V
SENSE  
20mV/DIV  
V
V
V
IOUT  
IOUT  
IOUT  
50mV/DIV  
50mV/DIV  
50mV/DIV  
6110 G36  
6110 G37  
6110 G38  
100µs/DIV  
+
20µs/DIV  
20µs/DIV  
+
+
V
R
R
R
= 5V  
V = 5V  
V
= 5V  
= 49.9Ω  
= 0Ω  
= 1k TO 1.2V  
R
R
R
= 499Ω  
R
R
R
= 4.99k  
+IN  
–IN  
+IN  
–IN  
IOUT  
+IN  
–IN  
IOUT  
= 0Ω  
= 1k TO 1.2V  
= 0Ω  
= 1k TO 1.2V  
IOUT  
VSENSE = 1V Step Response  
Unbalanced Inputs  
VSENSE = 1V Step Response  
Balanced Inputs  
V
V
SENSE  
500mV/DIV  
SENSE  
500mV/DIV  
V
V
IOUT  
50mV/DIV  
IOUT  
50mV/DIV  
6110 G39  
6110 G40  
20µs/DIV  
+
20µs/DIV  
+
V
R
R
R
= 5V  
V
R
R
R
= 5V  
= 10k  
= 0Ω  
= 1k TO 1.2V  
= 10k  
= 10k  
+IN  
–IN  
+IN  
–IN  
= 1k TO 1.2V  
IOUT  
IOUT  
6110f  
8
For more information www.linear.com/LT6110  
LT6110  
pin FuncTions (TSOT-23/DFN)  
+
NC (Pin 1/Pin 8): Not Internally Connected.  
V (Pin 7/Pin 2): Positive Power Supply. Connect to the  
more positive side of the sense resistor. A minimum ca-  
pacitance of 0.1µF is required from V to V .  
IOUT (Pin 2/Pin 7): Sinking Current Output. IOUT will sink  
+
a current that is equal to V  
/R  
V
is the voltage  
SENSE IN. SENSE  
developed across the sense resisor.  
+IN (Pin 8/Pin 1): Positive Input to the Internal Sense  
Amplifier. The internal sense amplifier will drive +IN to the  
IMON (Pin 3/Pin 6): Sourcing Current Output. IMON will  
+
same potential as –IN. A resistor, R , tied from V to +IN  
+IN  
source a current that is equal to 3 • V  
/R .  
SENSE IN  
sets the IOUT and IMON output currents as defined in the  
V (Pin 4/Pin 5): Negative Power Supply. Normally con-  
the IOUT and IMON pin functions description.  
nected to ground.  
Exposed Pad (Pin 9, DFN Only): V . Must be soldered  
to the PCB.  
–IN (Pin 5/Pin 4): Negative Input to the Internal Sense  
Amplifier. Must be tied to system load side of the sense  
resistor, either directly or through a resistor.  
RS (Pin 6/Pin 3): Internal Sense Resistor. Connect to the  
load to use. Leave open when using an external sense  
resistor.  
6110f  
9
For more information www.linear.com/LT6110  
LT6110  
block DiagraM  
I
LOAD  
R
WIRE  
V
+
V
REG  
SENSE  
+
V
IN  
OUT  
V
LOAD  
IN  
R
REGULATOR  
ADJ  
F
0.1µF  
I
+IN  
R
IN  
+
GND  
+IN  
V
RS  
–IN  
R
SENSE  
0.020Ω  
1k  
NC  
+
IOUT  
R
G
IMON  
V
6110 F01  
R
WIRE  
V
LOAD  
Figure 1. Block Diagram and Typical Connection  
6110f  
10  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
INTRODUCTION  
The LT6110 has two output pins, IOUT and IMON. Either  
pinmaybeusedtoprovideacurrentthatisproportionalto  
the load current. The IOUT pin provides a sinking current  
to compensate regulators with a ground referred voltage-  
reference, such as the LT3980. The IMON pin provides a  
sourcing current to compensate regulators with an output  
referred reference like the LT1083 and current-referenced  
regulatorsliketheLT3080.Asanaddedfeature,theoutput  
current from either pin can be converted to a voltage via a  
simple resistor, creating a voltage that is also proportional  
to load current. This voltage may be used to measure  
or monitor the load current. Either or both pins may be  
used for regulator control, and either or both pins may  
be used for monitoring, allowing substantial flexibility in  
system design.  
The LT6110 provides a simple and effective solution to  
a common problem in power distribution. When a load  
draws current through a long or thin wire, wire resistance  
causes an IR drop that reduces the voltage delivered to  
the load. A regulator IC cannot detect this drop without a  
Kelvin sense at the load, which requires a multi-conductor  
wire that is not supported in some applications.  
The LT6110 detects the load current and sets a propor-  
tional current at an output that can be used to control the  
output voltage of an adjustable regulator to compensate  
for the drop in the wire.  
TheaccuracyandwideoutputcurrentrangeoftheLT6110  
allowittocompensateforeithersmallorlargevoltagedrops  
to a high degree of precision. The LT6110 can sense the  
load current with its internal sense resistor or an external  
senseresistorcanbeusedtoimproveaccuracyandhandle  
currents greater than 3A. Resistor-programmable gain  
gives substantial flexibility to the compensation circuit. A  
signal bandwidth of 180kHz enables fast response time  
to load changes and provides good loop characteristics  
so that the power supply circuit remains stable.  
THEORY OF OPERATION  
The outputs of the LT6110 are proportional to a sense  
voltage, V  
, developed across an internal or external  
SENSE  
SENSE  
sense resistor, R  
(see Figure 1).  
A sense amplifier loop forces +IN to the same voltage as  
+
–IN. Connecting an external resistor, R , between V and  
IN  
+IN forces a voltage across R equal to V  
, creating  
/R . This current  
IN  
SENSE  
The LT6110 requires that the resistance of the wire be  
known. However, that resistance does not have to be very  
accurate for the LT6110 to provide good compensation  
since the regulation at the load is the product of the error  
due to the wire resistance and the error in the LT6110  
compensation circuit.  
a current into +IN, I , equal to V  
+IN  
SENSE IN  
is precisely mirrored to IOUT. The emitter currents of  
the three transistors in the mirror are combined to form  
the IMON output current. Ideally, the IOUT sink current  
is equal to I and the IMON source current is equal to  
+IN  
three times I  
.
+IN  
For example, a 5V regulator circuit has 10% regulation at  
the load due to a wire resistance drop of 0.5V. Even if the  
wire resistance doubled, causing an error in the LT6110  
compensation circuit of 50%, the regulation at the load  
is still reduced to 10% • 50% = 5%.  
+
V and V  
The LT6110 is designed to operate with a supply voltage  
+
(V to V ) up to 50V. However, when using a supply volt-  
age greater than 36V additional care must be taken not  
+
to exceed the absolute maximum ratings. The V to IOUT  
voltagemustbekeptlessthan36Vtoavoidthebreakdown  
of internal transistors.  
For systems that are better controlled, the load regula-  
tion can be improved to far exceed that possible without  
the LT6110. As an example, for a known wire resistance,  
and with an external 1% sense resistor, the same 10%  
load regulation in the previous example can be reduced  
to less than 0.5%.  
+
The V pin needs to be bypassed with at least a 0.1µF  
capacitor placed close to the pin.  
6110f  
11  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
+IN and –IN  
DESIGN PROCEDURE  
The design of an LT6110 compensation circuit is a simple  
3-step process. To start, the following parameters must  
be known:  
The +IN and –IN inputs can have a maximum differential  
voltage equal to the supply voltage. This protects the  
LT6110 if the –IN pin (the remote load side) is accidentally  
shorted to ground. In this case, the IOUT current must be  
limited to less than 2mA (see the Limiting the Regulator  
Boost Voltage section).  
R
R
, total wire resistance to the load  
WIRE  
, resistor used to sense the load current  
SENSE  
R , feedback resistor of the regulator  
F
The +IN to IOUT voltage must be kept below 36V to avoid  
the breakdown of internal transistors.  
I , maximum load current  
LOADMAX  
The circuit in Figure 2 shows an adjustable voltage regula-  
tor with an LT6110 compensation circuit. The regulator  
has an internal ground referred voltage reference to set  
it’s output voltage. There are two wires to the load, one  
IOUT and IMON  
The IOUT to IMON outputs can have a maximum differ-  
ential voltage of 36V for IOUT above IMON and –0.6V for  
IOUT below IMON. A 36V Zener diode can be connected  
from IOUT to IMON to prevent damage to the output NPN  
transistor in the event of a fault condition. In this case, a  
low leakage Zener diode should be used to reduce error  
in the IOUT current.  
source (R  
) and one return (R  
). Since it is the  
SWIRE  
RWIRE  
most common configuration it will be used for the follow-  
ing design example. Current referenced regulators and  
regulators with an output referred reference are covered  
in later sections.  
Step 1: Determine the drop in voltage at the load due to  
the wire resistance and sense resistor at the maximum  
load current.  
RS (Internal R  
)
SENSE  
The internal sense resistor can reliably carry a continuous  
current up to 3A and transient currents of 5A for up to 0.1  
seconds. For currents greater than this, an external sense  
resistor should be used. The internal sense resistor has a  
temperature coefficient similar to copper.  
V
DROP  
V
DROP  
= (R  
+ R  
+ R  
) • I  
SWIRE  
RWIRE  
SENSE LOADMAX  
= (0.125Ω + 0.125Ω + 0.02Ω) • 2A = 0.54V  
V
DROP  
R
SWIRE  
I
LOAD  
0.125Ω  
V
REG  
V
IN  
I
+IN  
R
R
F
V
REGULATOR  
FB  
I
= 2A  
SENSE  
LOADMAX  
3.65k  
IN  
+
V
+
+IN  
RS –IN  
+
LOAD  
R
SENSE  
R
G
20mΩ  
CIRCUIT  
OR  
BATTERY  
V
LOAD  
+
LT6110  
IOUT  
R
RWIRE  
IMON  
V
0.125Ω  
V
6110 F02  
DROP  
Figure 2. 2-Wire Compensation, One Wire Is Connected to the Load and One Wire Is the Ground Return Wire  
6110f  
12  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
Step2:Determinetheresistoronthe+INpin,R required  
external sense resistor with a tighter tolerance. See the  
section on External Current Sense Resistors for more  
information.  
IN,  
to cancel V  
.
DROP  
The regulator output voltage will increase as current is  
pulled from the IOUT pin through the feedback resistor,  
R , creating a compensation voltage.  
F
In most cases, the internal sense resistor, wire resistance  
tolerances and temperature mismatch of the R  
WIRE  
and  
SENSE  
R
resistances will contribute the largest portion of the  
V
COMP  
= I  
R  
IOUT F  
overall compensation circuit error. See the sections on  
Error Sources, Copper Wire Information and Temperature  
Errors for a comprehensive discussion.  
To cancel the voltage drop at the load, set V  
equal  
COMP  
to V  
.
DROP  
V
= I  
R = V  
F DROP  
COMP  
IOUT  
ADDITIONAL DESIGN CONSIDERATIONS  
IOUT Current  
Since the IOUT current is equal to the current going into  
the +IN pin and the current in the +IN pin is equal to the  
sense voltage divided by R , R can be determined by  
the following equations:  
IN IN  
The recommended range of IOUT current is 30µA I  
IOUT  
300µA for the best precision. For performance outside  
of this range, see the Typical Performance Curves to  
determine typical errors.  
VSENSE  
RIN  
IIOUT =I+IN  
=
If the IOUT current is less than 30µA, the feedback resis-  
tor may need to be adjusted to reduce the error in the  
compensation circuit.  
where V  
= I  
R  
SENSE  
SENSE  
LOADMAX  
Combining the above equations,  
RF  
VDROP  
In the previous example,  
R = ILOADMAX RSENSE  
(
)
IN  
VSENSE 0.04  
I
=
=
=148µA  
IOUT  
3.65k  
0.54V  
RIN  
270  
R = 2A 0.02•  
= 270Ω  
(
)
IN  
Since this is within the recommended range no further  
adjustment is needed.  
Step 3: The final step is to consider the errors in the  
compensation circuit to determine if the resulting voltage  
error at the load meets the desired performance.  
SeethesectiononCompensatingaLowQuiescentCurrent  
Design for IOUT current less than 30µA.  
Forexample,theinternalR  
oftheLT6110hasatypical  
SENSE  
Load Regulation  
toleranceof 7.5%.Iftheothererrorsinthecompensation  
circuit such as V , IOUT current error and the resistor  
OS  
Load regulation is often specified as an error in output  
voltage ata given load current, asin the previous example,  
but it is also specified as a percentage of the regulator  
outputvoltage. Iftheoutputvoltageoftheregulatorcircuit  
in Figure 2 is 5V, the resulting compensated load regula-  
tion, in percent, would be the following:  
tolerances of R and R add an additional 2.5% error,  
F
IN  
then the total error in the compensation circuit would be  
10%resultinginavoltageerrorattheloadofthefollowing:  
V
V
= V  
Compensation Error  
COMP  
LOADERROR  
= 0.54V • (±10%) = ±0.054V  
LOADERROR  
VLOADERROR  
A 10× improvement.  
LoadRegCOMP % =  
100  
( )  
VREG  
If this is not adequate for the given application, steps can  
be taken to reduce the sources of error, such as using an  
0.054V  
5V  
LoadRegCOMP % =  
100= 1.1%  
( )  
6110f  
13  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
Without the compensation circuit (no R  
regulation in percent would be,  
) the load  
Kelvin Sense Connection to R  
SENSE  
SENSE  
To reduce R  
error due to trace resistance, the –IN pin  
SENSE  
–0.5V  
5V  
and R resistor should be connected as close to R  
IN  
SENSE  
LoadRegUNCOMP % =  
( )  
100= –10%  
as possible, as reflected in Figure 2.  
The regulator’s output will also change due to its own  
load regulation effects (per the regulator’s specification).  
In general, this change in voltage is small compared to  
the wire-drop, and can be ignored. If it is considered to  
be a significant source of error, it can be included as part  
of the wire-drop compensation. To include the regulator’s  
load regulation effect, simply add the voltage drop due to  
Compensating a Low Quiescent Current Design  
Switching regulator circuits are used for high power ef-  
ficiency. Many are required to maintain high efficiency at  
light or no load conditions. In these cases the quiescent  
operating current is minimized by using larger valued  
resistors to program the output voltage so very little cur-  
rent is wasted in the feedback network.  
theregulator’sloadregulationatI  
toV  
, when  
LOADMAX  
DROP  
A large value for resistor R could require too low of a  
calculating the compensation circuit parameters.  
F
compensating current (<30µA) from IOUT of the LT6110.  
PCB Trace Resistance  
In this situation the feedback resistor, R , can be split  
F
into two resistor values. A small value resistor to conduct  
Printed circuit trace resistance between the output of the  
regulator and the load will cause additional voltage drops.  
Aswiththeregulator’sloadregulationeffects, thesedrops  
I
from the LT6110 and compensate the output voltage  
IOUT  
when the load current is high, and a second, larger valued  
resistor, to keep the no-load quiescent current drain low.  
can be compensated for by adding them to V  
when  
DROP  
With this arrangement, as shown in Figure 3, I  
can  
IOUT  
calculatingthecompensationcircuitparameters.Thisalso  
allows the use of narrower traces to deliver power to the  
load and still retain good load regulation. See the PCB  
Copper Resistor section for more information on how to  
determine trace resistance.  
be designed for 100µA to preserve V  
compensation  
DROP  
accuracy. At no load the quiescent current drawn through  
the feedback resistors, I , can be kept very low.  
Q
I
R
WIRE  
LOAD  
V
REG  
V
LOAD  
V
IN  
I
+IN  
V
R
FA  
REGULATOR  
FB  
SENSE  
R
IN  
+
V
I
Q
+
<30µA  
+IN  
RS –IN  
R
R
LOAD  
FB  
20mΩ  
G
+
LT6110  
IOUT  
IMON  
V
6110 F03  
Figure 3. Low Quiescent Current Wire Compensation Using Three Regulator Resistors  
6110f  
14  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
In Figure 3 R is split into R and R . V is the no-load  
Compensating a Current Referenced  
Regulator Power Source  
F
FA  
FB REG  
quiescent output voltage of the regulator. The design of  
these two feedback resistors follows:  
Figure 5 shows a cable drop compensation circuit using a  
currentreferencedregulator,theLT3080.Aprecision10µA  
VDROP  
RFA =  
set current, I , is sourced through two series connected  
I
SET  
IOUT  
resistors to program the output voltage for the remote  
load. To compensate for the load connecting cable drop  
requires sourcing an additional current into this resistor  
pair to increase the output voltage. The LT6110 provides  
a sourced current at the IMON pin which is also directly  
proportional to the current flowing to the load. This cur-  
rent is three times the normal IOUT current. The following  
equations are used to design this circuit:  
I
can be sized to be 100µA at full load current and  
IOUT  
onlythisresistorcreatestheV  
compensationvoltage.  
DROP  
VREG – V  
FB  
RFB =  
RFA  
IQ  
I is the no-load quiescent current flowing through the  
resistor string.  
Q
V
V
= I • (R  
+ R  
)
REG  
SET  
SET1  
SET2  
Figure 4 is a circuit using the LT6110 and a three resistor  
voltage setting technique to compensate the voltage loss  
due to a 2A load connected through 6 feet of stranded  
copper wire (300mΩ of wire resistance). The LT3980 is a  
2A buck switching regulator programmed for 5V out with  
= I  
R  
SENSE  
SENSE  
LOAD  
VSENSE  
RIN  
I+IN  
=
only 10µA of current, I , through the feedback resistor  
Q
I
= 3 • I  
IMON  
+IN  
string when there is no load current. At the full 2A load the  
LT6110 uses the internal 20mΩ sense resistor to produce  
100µA at IOUT to compensate for the 640mV drop.  
V
V
BD  
IN  
IN  
RUN/SS BOOST  
LT3980  
0.47µF  
10µH  
100k  
V
REG  
PGOOD  
SW  
DA  
FB  
47µF  
10pF  
6.49k  
DFLS240L  
402Ω  
97.6k  
NC  
+IN  
R
T
0.1µF  
LT6110  
+
IOUT  
V
1.5nF  
422k  
15k  
V
FB  
= 0.79V  
20mΩ  
V
C
R
WIRE  
IMON  
GND  
GND  
RS  
0.3Ω  
80.6k  
100pF  
5V  
2A  
–IN  
100µF  
6110 F04  
Figure 4. LT3980 Buck Regulator with LT6110 Cable Drop Compensation Circuit  
6110f  
15  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
R
WIRE  
0.5Ω  
V
3V  
1A  
LOAD  
R
IN  
LT3080  
IN  
200Ω  
V
IN  
+
+IN  
V
RS –IN  
I
SET  
LOAD  
20mΩ  
+
+
LT6110  
V
IOUT  
REG  
SET  
R
SET1  
301k  
IMON  
V
6110 F05  
I
MON  
MON  
R
SET2  
+
1.69k  
I
= 3 I  
IN  
Figure 5. Wire Loss Compensation Using a Current Referenced LDO  
To compensate for V  
at I  
set:  
As shown in Figure 6 an LT6110 can add cable drop com-  
pensation by using the current sourced from the IMON  
pin. In this type of circuit the voltages appearing at the  
IOUT and IMON pins can be higher so care not to exceed  
their voltage ratings is important. To preserve accuracy  
DROP  
LOAD(MAX)  
VDROP  
IIMON  
RSET2  
=
and  
RSET1  
the voltage at IMON should be kept within 5V of V , or  
VREG  
ISET  
=
–RSET2  
ground in this example. By using two resistors for the bot-  
tom resistor in the voltage regulator programming string,  
the cable drop compensation voltage can be added to a  
voltage near ground appearing at the IMON pin.  
As an example, to compensate this 3V regulator for a  
500mVcabledropwitha1AloadcurrentsetI for100µA  
+IN  
for best accuracy. Then:  
The following equations are used to design this circuit  
using an LT1083, 7A adjustable voltage regulator:  
R
SET1  
= 301k and R  
= 1.69k using nearest 1%  
SET2  
tolerance standard resistor values.  
V
REF  
=1.25VbetweenOUTandADJpins,I =7Atyp  
ADJ  
1A 20mΩ  
100µA  
VREF  
R1  
RIN =  
= 200Ω  
ISET  
=
IADJ  
V
(I  
= 0) = (I + I ) • (R2 + R ) + V  
SET ADJ G REF  
LOAD LOAD  
Compensating an Output Referred  
Adjustable Voltage Regulator  
V
= I  
R  
SENSE  
SENSE  
LOAD  
VSENSE  
RIN  
Many adjustable voltage regulators are biased from a  
floating voltage reference that sets a voltage between the  
output pin and an adjust pin. Three terminal fixed voltage  
regulators can also be made adjustable by biasing up  
the ground terminal. A feedback resistor string is used  
to program the output voltage. The amount of current  
through these resistors is scaled to a level to minimize  
error caused by any bias current at the adjust pin.  
I+IN  
=
I
= 3 • I  
+IN  
IMON  
Asanexample,Figure6isa12Vregulatorfora5Aremotely  
connected load with a wire resistance of 250mΩ. For the  
higher load current an external 25mΩ sense resistor is  
6110f  
16  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
R
WIRE  
0.25Ω  
R
SENSE  
0.025Ω  
V
12V  
5A  
LOAD  
R
IN  
+
+IN  
V
RS –IN  
1.25V  
ISET  
R1=  
20mΩ  
R1VLOAD VREF  
IADJ R1+ VREF  
(
)
–RG  
R2=  
+
LT6110  
LT1083  
V
IOUT  
REG  
V
IN  
10µF  
IN  
OUT  
ILOAD RSENSE +RWIRE  
(
)
RG  
=
R1  
499Ω  
ADJ  
I
1.62k  
10µF  
3I+IN  
V
IMON(MAX) =RG ISET +IADJ +3I+IN  
ADJ  
(
)
I
SET  
IMON  
V
6110 F06  
R2  
3.16k  
I
IMON  
IMON  
I
= 3 I  
+IN  
R
1k  
G
Figure 6. Wire Compensation Using a High Current Adjustable Regulator  
used. The cable drop voltage for such a high current ap-  
plication is significant:  
For 1.375V of compensation, using a convenient value 1k  
resistor for R will require 1.375mA from the IMON pin  
G
which is near the mid range of accurate current levels.  
V
DROP  
= I  
• (R  
+ R ) = 5A • 275mΩ  
WIRE  
LOAD(MAX)  
SENSE  
= 1.375V  
To program the regulator output voltage and compensate  
for V at I the following procedure can be  
With this selection for R then:  
G
R2 = 4.175k – 1k = 3.175k  
DROP  
LOAD(MAX)  
usea3.16kstandard1%tolerancevaluetosettheno-load  
output voltage to 12V.  
used:  
Make I >> I , if I = 33.3 • I then I = 2.5mA  
SET  
ADJ  
SET  
ADJ  
SET  
To program the LT6110 compensation current requires  
VREF 1.25V  
=
a selection for R :  
IN  
R1=  
= 499Ω  
ISET 2.5mA  
VSENSE VSENSE  
RIN =  
=
I
I+IN  
IMON  
For 12V output with no-load current:  
3
VLOAD VREF 10.75V  
V
SENSE  
= 5A • 25mΩ = 125mV and  
R2+R =  
=
= 4.175k  
(
)
G
ISET +IADJ  
2.575mA  
I
1.375mA  
IMON  
3
=
= 460µA so  
Resistor R is used to develop the maximum load current  
3
G
compensation voltage. A smaller value for R minimizes  
G
125mV  
460µA  
RIN =  
= 271Ω  
the voltage programming error at no load but requires  
more current from the LT6110 IMON pin to compensate  
forcabledroploss. TheIMONpincurrentismostaccurate  
over a range from 30µA to 3mA.  
use a 274Ω standard value.  
The IOUT pin can be connected to the 12V regulator out-  
put. The LT1083 requires a minimum output load current  
of 10mA so an additional 1.62k resistor (not required if  
VDROP  
RG =  
IIMON  
I
is always greater than 10mA) is added to the output.  
LOAD  
6110f  
17  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
The voltage that appears at the IMON pin can impact the  
accuracyofthecompensationcircuitandshouldbenoted.  
In this example the voltage will be a maximum at full load  
current and voltage compensation. This voltage is:  
example circuit that indicates the various error terms to be  
considered. For this example a 5V regulator is to provide  
2A maximum to a remote load connected through 6 feet  
(~2 meters) of 28AWG (19/40) stranded hook-up wire. At  
2A of current, 28 gauge is the thinnest, low cost wire suit-  
able. From this an estimate of the wire resistance can be  
made. From wire tables the DC resistance of 28AWG can  
V
= (I + I + I  
) • R = (2.5mA + 75µA  
IMON(MAX)  
+ 1.375mA) • 1k = 3.95V.  
SET ADJ IMON G  
be determined making R  
= 6ft • 58.7mΩ/ft = 352mΩ.  
WIRE  
ERROR SOURCES  
At 2A full load current this will create a V  
of 704mV.  
DROP  
Without the LT6110 compensator the regulation of the 5V  
supply at the load would be 14%.  
The LT6110 output current allows for reliable compensa-  
tion for small or large connection wiring voltage drops.  
The voltage regulation at the remote load can be improved  
dramatically using the LT6110. With properly designed  
cable drop compensation the load voltage variation will  
be reduced to only the error in the compensation voltage  
created. This error voltage is a combination of several  
circuit characteristics.  
To emphasize error terms this example design will use  
the internal 20mΩ sense resistor of the LT6110 and will  
assume that the feedback resistor network in the voltage  
regulator cannot be modified or optimized for compensa-  
tion. The R used to develop the compensation voltage  
F
is fixed at 10k and the reference voltage at the feedback  
node where the compensator connects is 1.2V. From  
these parameters the basic compensation circuit can be  
The first step in determining the error is to determine the  
amount of compensation voltage required. Figure 7 is an  
+ V  
DROP  
I
+ V  
WIRE  
+ V  
SENSE  
LOAD  
V
REG  
V
IN  
IN  
OUT  
V
LOAD  
+
R
≥0.1µF  
I
WIRE  
R
F
V
REGULATOR  
COMP  
6 FT, AWG 28  
19/40 STRANDED  
WIRE  
10k  
+IN  
R
IN  
ADJ  
GND  
+
LT6110  
V
+IN  
V
RS  
–IN  
LOAD  
R
SENSE  
* +  
OS  
0.020Ω  
1k  
NC  
I
+IN  
+
V
IOUT  
IOUT  
BIAS  
I
IOUT  
IOUT  
ERROR  
IMON  
V
6110 F07  
I
IMON  
V
IMON  
IMON  
ERROR  
VOS VOS  
VOS  
*
VOS = VOS  
+
+
+
+TCVOS T  
I+IN V  
V  
IOUT  
IMON  
Figure 7. Cable Drop Compensation Error Sources  
6110f  
18  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
easily designed:  
is ohms and is accounted for as a small resistance in  
serieswithR .Thevoltageacrossthissmallresistance  
IN  
V
SENSE  
at full load is 20mΩ • 2A or 40mV  
is included in the total offset voltage term. The change  
The compensation voltage, V , required is:  
COMP  
in I current is relative to 100µA where the LT6110  
+IN  
is trimmed for accuracy.  
V
+ V  
, 704mV + 40mV, or 744mV  
SENSE  
WIRE  
V /V  
is a change in the offset voltage caused  
OS  
IOUT  
To create this compensation voltage will require a current  
throughfeedbackresistorR ofV /R , 744mV/10kfor  
by a change in the voltage applied to the IOUT pin  
F
COMP  
F
specified in mV/V. The change in V is relative to  
1.2V DC where the LT6110 is trimmed for accuracy.  
IOUT  
an I  
of 74.4µA. This is well within the most accurate  
IOUT  
rangeofcurrent(30µAto300µA)flowingintotheIOUTpin.  
V /V  
is a change in the offset voltage caused  
OS  
IMON  
To create this current at full load requires an R value of  
IN  
by a change in the voltage applied to the IMON pin  
V
/I  
,40mV/74.4µA,or537.6Ω.Usingthenearest  
SENSE IOUT  
specified in mV/V.  
standard 1% tolerance value of 536Ω will be sufficient.  
Without considering any error terms other than this slight  
IOUTcurrenterroristheaccuracyoftheinternalcurrent  
mirror. This is a percent deviation from I  
change in value for R results in nearly perfect cable drop  
.
IN  
+IN  
compensation. The theoretical load regulation would be  
IMON current error is the accuracy of the total internal  
improved from 14% to less than 0.01%.  
mirror current sourced to the IMON output. This is a  
percent deviation from 3 • I  
The single largest source of compensation error comes  
from any change in the connecting wire resistance from  
thedesignassumptions.Thiscouldbecausedbytempera-  
ture, aging and possibly corrosion. In the compensator  
circuit itself component tolerances and errors terms will  
combinetodeviatefromthenearperfectdesignedamount  
of compensation. Figure 7 shows this simple example  
design and indicates the various error sources within the  
LT6110. All of the error terms can be determined from  
the Electrical Characteristics Table. The error terms for  
any compensator design include:  
.
+IN  
Temperature Related Errors (see Temperature Errors  
section)  
Table 1 is an example of the stack-up of all error terms in  
the design of Figure 7. This table uses typical variances to  
be seen at 25°C. It is not a rigorous worst case analysis  
over all possible operating conditions, but instead serves  
toillustratewhattoexpectforloadregulationimprovement  
under nominal conditions.  
Inthisexample,includingalltypicalerrorterms,theLT6110  
stillprovidesafactorof10improvementinvoltageregula-  
tion at the remote load. To obtain the same level of load  
voltage stability without using the LT6110 would require  
reducing the amount of cable drop loss. The easiest way  
to do so would be to increase the wire gauge used to  
connect to the load. For a 70mV change in load voltage  
at 2A full load current would require a wire resistance of  
only 33mΩ and for a 6 foot length 16AWG gauge wire is  
required. A larger wire gauge can be significantly more  
costly and is less flexible in routing to the load. These are  
two significant design compromises to be considered.  
R  
tolerance  
SENSE  
R tolerance  
IN  
R tolerance  
F
V , the offset voltage in µV of the internal current  
OS  
sense amplifier  
V /I is an error term caused by the finite gain  
OS +IN  
of the current sense amplifier.  
This is the change in the offset voltage as the sense  
voltage and resulting input current varies from 0 to the  
maximum value. It is a factor specified in mV/mA which  
6110f  
19  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
Table 1. Compensation Error Using Typical Variances Expected at 25°C.  
FIGURE 7 DESIGN EXAMPLE. TOTAL VDROP TO COMPENSATE = 744mV,  
I+IN = 74.6µA  
FOR MAXIMUM V  
FOR MINIMUM V  
COMP  
COMP  
TERM  
DESIGN VALUE/SPEC UNITS COMMENT/CALCULATION  
TYPICAL ERROR VALUE TYPICAL ERROR VALUE  
R
R
20  
536  
0
mΩ  
Ω
Internal Sense Resistor  
7.50%  
–0.5%  
–100  
21.5  
533  
–7.50%  
0.5%  
100  
18.5  
539  
SENSE  
IN  
V
OS  
µV  
–100  
0.135  
0.0045  
0.27  
100  
0.15  
0.005  
0.3  
mV/mA Relative to I = 100µA  
–10%  
–10%  
–10%  
10%  
0.165  
0.0055  
0.33  
V /I  
+IN  
OS +IN  
mV/V Relative to V  
mV/V Relative to V  
= 0.8V  
= 0V  
10%  
V /V  
IOUT  
OS  
IOUT  
10%  
V /V  
IMON  
OS  
IMON  
Total Offset  
Total V  
V
+ V /I • (100µA – 74.6µA) + V /V  
• (1.2V – 0.8V) + V /V  
• 0V  
OS  
OS +IN  
OS  
IOUT  
OS  
IMON  
µV  
%
%
–94.5  
0.004  
0.015  
106.4  
–0.004  
–0.015  
OS  
I
I
Error  
Error  
0
0
% IOUT Current Error Relative to I  
0.4%  
–0.4%  
IOUT  
+IN  
% IMON Current Error Relative to 3 • I  
1.50%  
–1.50%  
IMON  
+IN  
Summary of Terms  
V
40  
mV  
µA  
µA  
µA  
kΩ  
mV  
%
I
R  
SENSE  
43  
37  
68.5  
SENSE  
LOAD(MAX)  
I
I
I
74.6  
74.4  
223.8  
10  
(V  
– Total V )/R  
IN  
80.8  
+IN  
SENSE  
OS  
I
+IN  
• (1 + I Error)  
IOUT  
81.1  
68.2  
IOUT  
3 • I • (1 + I Error)  
IMON  
246.0  
10.05  
815  
202.4  
9.95  
IMON  
+IN  
R
Fixed Resistor Value in Power Source  
R  
0.5%  
–0.5%  
F
V
COMP  
V
COMP  
746  
0
I
679  
IOUT  
F
Error  
9.26%  
–9.04%  
With Compensation  
V
2
mV  
%
V
COMP  
– V  
DROP  
71  
–65  
LOAD_ERROR  
Load Regulation  
0.04  
1.42%  
–1.31%  
FREQUENCY RESPONSE AND TRANSIENTS  
inFigure9. Anyringingwhilesettlingoutcanbesmoothed  
by additional filtering components in the control loop. A  
small feedback capacitor across the regulator feedback  
The LT6110 has a –3dB bandwidth of 180kHz. This  
smooth frequency response is shown in Figure 8. This  
defines the response time from the sensed input voltage  
to the compensation output currents. Power sources will  
typically have a large output capacitance making their  
loop response bandwidth much slower than the LT6110.  
The cable drop compensation loop is much faster than  
the power source so there should be little impact on loop  
stability in driving a remote load.  
resistor,R ,canprovideeffectivesmoothingoftransients.  
F
Specific values to use depend on the particular application  
component values.  
One important consideration for transients is a sudden  
open or removal of the load current from a high current  
condition. There is a risk of overvoltage at the load before  
the LT6110 can reduce the compensation voltage. A good  
solution to this potential issue is to bypass the remote  
load with a capacitance greater than the capacitance at the  
output of the regulator or power source. Figure 10 shows  
a load removal transient using a 100µF load. Fortunately  
the amount of compensation in most applications should  
not be so large as to cause a serious overvoltage risk but  
should always be considered.  
For fast or step change variations in load current some  
transients will be observed at the power source output  
and at the remote load due to the finite reaction time of  
the compensation loop. The amount of voltage transient  
seen will depend mostly on the size and quality of the  
supply bypass capacitors used at each end of the load  
connecting wire. An example of these transients is shown  
6110f  
20  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
0dB  
R
–IN  
R
+IN  
C1  
1k  
–3dB  
0
+
–30  
–60  
–90  
–120  
+IN  
V
RS –IN  
20mΩ  
+
1
I
10  
100  
1000  
6110 F08  
LT6110  
IOUT  
= 100µA  
FREQUENCY (kHz)  
IOUT  
Figure 8. LT6110 Frequency Response  
IMON  
V
6110 F11  
V
REG  
500mV/DIV  
Figure 11. LT6110 Frequency Compensation  
V
LOAD  
500mV/DIV  
Loop compensation with an LT6110 RC filter is not  
required if the regulator’s loop is compensated with a  
zero in the feedback divider (refer to the Regulator Loop  
Stability section).  
2A  
1A  
6110 F09  
100µs/DIV  
Figure 9. VLOAD Compensated  
EXTERNAL CURRENT SENSE RESISTORS  
The LT6110 internal current sense resistor, R  
, is  
SENSE  
V
REG  
provided for convenient use in many applications with a  
maximum load current less than 3A. For higher current  
or greater precision wire loss compensation an external  
500mV/DIV  
V
LOAD  
500mV/DIV  
sense resistor can be used. The external R  
resistor  
SENSE  
2A  
0A  
can be a low valued current sense or shunt resistor, the  
DC resistance (DCR) of an inductor, or the resistance of  
a printed circuit board trace. Figure 12 shows an LT6110  
circuit configuration using an external sense resistor. The  
internal resistor at the RS pin is left open circuited.  
6110 F10  
C
= 100µF  
10ms/DIV  
LOAD  
Figure 10. Removing Load  
In addition to using a regulator capacitortoadjust the loop  
response, an RC pole in the LT6110 circuit can provide  
frequencycompensation.Figure11showsanLT6110with  
an input RC filter. Using the input RC filter introduces a  
second pole to the LT6110 one pole response (Figure 9).  
The LT6110 poles become a zero in the regulator’s open-  
loop response that includes the LT6110 in it’s feedback  
EXTERNAL  
SENSE  
TO LOAD  
TO V  
REG  
R
R
IN  
+
+IN  
V
RS –IN  
20mΩ  
path (providing the same function as the regulator’s R  
+
F
LT6110  
IOUT  
with a shunt capacitor). Typically the RC pole frequency  
should be about one-tenth of the regulator’s switching  
frequency.  
IMON  
V
6110 F12  
1
fCLK  
fPOLE  
=
=
2πR–INC1 10  
Figure 12. Using an External RSENSE  
(Resistor, Inductor or PCB Trace)  
6110f  
21  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
ThevalueofR  
externaldeterminestheV  
voltage.  
Precision Current Shunt Resistor  
A precision, very low V error, compensation circuit  
SENSE  
is 100µA then a V  
SENSE  
If I  
of 50mV is large enough  
IOUT  
SENSE  
LOAD  
to minimize the compensating IOUT current error due to  
can be implemented with an LT6110 and a precision ex-  
V
to less than 1% (see Figure 13).  
OS  
ternal R  
. A 1% to 5% tolerance or better R  
SENSE  
SENSE  
compensation current  
resistor significantly reduces I  
100  
IOUT  
+
0.4V ≤ V  
≤ V – 1.5V  
IOUT  
error due to part to part variations. In addition, the low  
temperature coefficient (TCR of typically 100ppm/°C) of  
anexternalsenseresistorgreatlyreducesthecontribution  
V
V
= V = 0V  
IMON  
OS(MAX)  
10  
1
of R  
to the total voltage drop loss at higher operating  
SENSE  
temperatures. Figure 14 shows a 5V, 3.5A buck regulator  
with an LT6110 using an external R  
of typical current sense resistors.  
. Table 2 is a list  
SENSE  
I
I
I
= 300µA  
= 100µA  
= 30µA  
IOUT  
IOUT  
IOUT  
0.1  
0
10 20 30 40 50 60 70 80 90 100  
V
(mV)  
SENSE  
6110 F13  
Figure 13. VSENSE  
V
IN  
V
BD  
IN  
8V TO 36V  
22µF  
4.7µF  
RUN/SS  
BOOST  
0.047µF  
6.8µH  
SW  
FB  
V
C
47µF  
9.53k  
47pF  
15k  
1nF  
866Ω  
LT3972  
GND  
NC  
+IN  
MBRA340  
+
IOUT  
V
523k  
100k  
EXTERNAL  
0.1µF  
LT6110  
100pF  
R
RT  
SENSE  
25mΩ  
5ꢀ  
R
0.79V  
WIRE  
IMON  
RS  
63.4k  
0.25Ω  
SYNC  
GND  
–IN  
V
LOAD  
10 FT  
24AWG  
5V  
LOAD  
I = 600kHz  
3.5A  
6110 F14  
Figure 14. LT6110 with an External RSENSE and LT3972 Buck Regulator  
Table 2. Surface Mount RSENSE Resistors  
PART NUMBER THICK FILM  
IRC LRC-LRF-2512  
VALUE RANGE  
TOLERANCE  
1% to 5%  
1% to 5%  
1% to 5%  
1% to 5%  
TCR  
POWER  
2W  
SIZE  
2512  
2512  
2512  
2512  
2mΩ to 1Ω  
10mΩ to 1Ω  
33mΩ to 51Ω  
1mΩ to 20mΩ  
100ppm  
200ppm  
200ppm  
100ppm  
Stackpole Electronics CSR2512  
Vishay RCWE2512  
2W  
2W  
Panasonic ERJM1W  
2W  
Susumu PRL1632  
Susumu PRL3264  
10mΩ to 100mΩ  
10mΩ to 100mΩ  
1% to 2%  
1% to 2%  
100ppm (20mΩ to 51mΩ)  
100ppm (20mΩ to 51mΩ)  
1W  
2W  
1206  
2512  
6110f  
22  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
24  
22  
20  
18  
16  
14  
12  
10  
8
Copper Resistor Made from an R Inductor  
F
An inductor made of copper wire will have a small DC  
resistance, DCR or R , with a temperature coefficient  
COIL  
2oz COPPER  
thatmatchesthatofthecopperwireconnectingtheremote  
load. Copper wire resistance has a positive temperature  
coefficient of approximately +3900ppm/°C. If the current  
sense resistor and the remote load are in the same operat-  
ingenvironmentandsubjecttoanincreaseintemperature,  
1oz COPPER  
6
4
theresistanceincreaseinR  
willincreasebothV  
2
SENSE  
SENSE  
0
andtheLT6110compensationcurrenttodirectlytrackand  
cancel the increase in wire voltage drop to the load(refer  
to the Temperature Errors section). Table 3 shows a list  
of small air core inductors suitable for use as external  
0
50 100 150 200 250 300 350 400 450 500  
PCB TRACE WIDTH (MILS)  
6110 F15  
Figure 15. PCB Trace Current vs Trace Width  
(<10°C Temperature Rise)  
R
resistors.  
SENSE  
Example: Design a 2oz copper PCB trace sense resistor to  
Table 3. Coilcraft Air Core Inductors for External RSENSE  
compensateforwirevoltagedropforanI  
of10A.  
COILCRAFT PART  
NUMBER  
INDUCTANCE DCR NOMINAL (mΩ)  
I
RMS  
LOAD(MAX)  
(nH)*  
( 6ꢀ TYPICAL)  
(A)  
A V  
of 60mV is large enough to minimize the com-  
SENSE  
0908SQ-27N  
2222SQ-221  
27  
8.5  
9.8  
4.4  
5
pensatingIOUTcurrenterrorduetotheinputoffsetvoltage  
221  
of the LT6110.  
1010 US-141  
146  
3.1  
14  
VSENSE  
ILOAD(MAX) 10A  
60mV  
*Inductance is not relevant for current sense.  
RPCB  
=
=
= 6mΩ  
PCB Copper Resistor  
Using Figure 15, the 2oz copper minimum trace width for  
10A is 150mils. This sets the current handling capability  
of the trace.  
In a high load current application without a high preci-  
sion load regulation specification, the cost of an external  
SENSE  
R
resistor can be eliminated using the resistance of  
a printed circuit board, PCB, trace as a sense resistor. The  
The resistance of the trace resistor is set by the length of  
the trace. Each 150mil wide square of 2oz copper will have  
a resistance of 0.25mΩ. A total resistance of 6mΩ will  
require 24 squares (6mΩ/0.25mΩ/square). The length of  
the PCB trace will then be 24sq × 150mils or 3.6 inches.  
resistance,R ,isafunctionofcopperresistivity(ρ),PCB  
PCB  
copper thickness (T), trace width (W) and trace length (L),  
R
= ρ (L/(T W)). The typical manufacturing of PCB  
PCB  
fabrication limits the trace resistance tolerance to 15%.  
A simplified R calculation sets the length equal to the  
PCB  
A serpentine layout can be used to reduce the footprint of  
width (L/W = 1) and approximates 0.5mΩ and 0.25mΩ  
per square trace area for 1oz and 2oz copper respectively.  
The maximum current of a PCB trace depends on the  
trace cross sectional area, trace width (W) times cop-  
per thickness (T) and the amount of heating of the trace  
permitted. Figure 15 plots PCB trace current vs PCB trace  
width for 1oz (T = 1.4mils) and 2oz (T = 2.8mils) copper  
for less than 10˚C temperature rise (this graph provides  
a conservative maximum trace current estimate based on  
the ANSI IPC2221 standard).  
R
. Figure 16 shows a serpentine layout for a 6mΩ PCB  
PCB  
sense resistor and the V  
connections to the LT6110.  
SENSE  
The corners of the serpentine resistor count as 3/4 of a  
square. In Figure 16, R consists of six 3.5 square rect-  
PCB  
angular traces (two whole squares and two 3/4 squares).  
The R six rectangular traces equal 21 0.15in × 0.15in  
PCB  
squares. Using a 2oz copper trace the resistance of the  
21 squares is 5.25mΩ at 25°C (21 • 0.25mΩ per square).  
An additional very small trace resistance is due to the  
0.015in × 0.15in trace that connects the rectangular  
6110f  
23  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
5.4mΩ 15ꢀ AT 25°C PCB RESISTOR  
21 2oz COPPER SQUARES  
ONE SQUARE  
0.15 INCH × 0.15 INCH  
TO  
TO  
LOAD  
3/4 CORNER SQUARES  
0.15 INCH × 0.15 INCH  
REGULATOR  
A
B
A 3.5-SQUARE COLUMN  
— 3/4 SQUARE  
R
IN  
21 SQUARES (6 COLUMNS)  
— ONE SQUARE  
— ONE SQUARE  
— 3/4 SQUARE  
6110 F16  
A
B
Figure 16. LT6110 and PCB Trace Resistor Layout  
tracesatthetopandbottomcornersquares. Therearefive  
connecting traces and their total resistance is 0.125mΩ  
([0.015 inch/0.15 inch] • 0.25mΩ • 5).  
The error sources due to temperature of an LT6110  
circuit are:  
The IOUT current error vs temperature coefficient is  
–50ppm/°C  
Temperature Errors  
The V temperature coefficient is 1µV/°C  
OS  
In addition to the initial errors at 25°C the errors due to  
a temperature variation must be included. The ambient  
temperature variation of the LT6110 and the wire can  
have the following cases: The LT6110 and wire are at  
the same temperature, the LT6110 and wire are at much  
different temperatures or the temperature of the LT6110  
circuit is known and the wire temperature can only be ap-  
proximated. The design procedure targets a load voltage  
The R and R resistors temperature coefficient is  
IN  
F
100ppm/°C  
The internal R  
+3400ppm/°C  
resistor temperature coefficient is  
SENSE  
An additional temperature error is due to R  
. The  
WIRE  
copper wire temperature coefficient is +3900ppm/°C  
equal to V  
DROP  
at maximum load current and cancels  
REG(NOM)  
by setting I  
The IOUT current, V , R and R errors are small com-  
OS IN  
F
V
R = V  
. If, over the specified  
IOUT  
F
DROP  
pared to the errors of the internal R  
and R  
OS IN  
. For  
SENSE  
WIRE  
temperature range, {I  
R – V  
} is not zero volts,  
IOUT  
F
DROP  
a 50°C temperature rise the IOUT current, V , R and R  
F
then there will be an error to the expected load voltage  
at maximum load current (for example, if V = 5V at  
resistor error is 0.25%, 50µV and 0.5% respectively and  
LOAD  
} is 5mV then the  
the internal R  
respectively.  
and R  
error is 17% and 19.5%  
SENSE  
WIRE  
25°C and at 75°C {I  
LOAD  
R – V  
IOUT  
F
DROP  
V
error is 100 • (5mV/5V) = 0.1%).  
Using the example of V  
= 5V, I  
= 2A, I  
=
IOUT  
LOAD  
LOAD  
WIRE  
Since I  
= V  
/R , the temperature errors must  
SENSE IN  
IOUT  
71.2µA, R = 10k, R = 562Ω and R  
= 0.336Ω the  
F
IN  
include the errors due to R , R  
and V .  
IN SENSE  
OS  
V
error due to the following three example cases is  
LOAD  
calculated:  
6110f  
24  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
Case 1: LT6110 and the wire are at 75°C and the V  
Copper Wire Information  
LOAD  
error is –0.36%. If the R  
temperature coefficient  
SENSE  
The wire used in the power distribution of electronic sys-  
tems is annealed (heated and cooled) copper wire and is  
specified for it’s resistance per unit length, weight per unit  
mass and current capacity. In the American Wire Gauge  
standard, AWG is the gauge number and corresponds to  
thediameterofasolidwire(asthegaugenumberincreases  
thewirediameterdecreases, thewireresistanceincreases  
and the current capacity decreases). Stranded copper  
wire is an insulated bundle of packed and twisted bare  
solid strands and its resistance, weight or cost depends  
on the type of coating (tin, silver or nickel) and stranding  
options (how the strands are grouped and twisted). The  
stranded wire’s flexibility is useful for building and rout-  
ing wire harness. The current capacity of copper wire is  
inversely proportional to its gauge number, number of  
wire conductors and operating temperature (increasing  
gauge, conductors and temperature, decreases current  
capacity). In addition the wire insulation temperature rat-  
ing determines the maximum operating current (typical  
insulation ratings range from 80°C to 200°C).  
matchesthewire’stemperaturecoefficientof3900ppm/°C  
then the V error is reduced. Using the copper wire  
LOAD  
resistance of an inductor as an R  
external the V  
SENSE  
LOAD  
error is reduced to –0.025%.  
Case 2: The LT6110 is at 75°C, the wire is at 25°C and the  
error is 2.3%. The 2.3% error is mostly due to the  
V
LOAD  
internal R  
temperature coefficient. Using an external  
SENSE  
100ppm/°C R  
reduces the V  
error to 0.05%.  
SENSE  
LOAD  
In addition, using a thermistor across R to increase the  
IN  
IOUT current as the temperature increases can reduce the  
temperature induced V  
error.  
LOAD  
Case 3: The LT6110 is at 25°C, the wire is at 75°C and the  
error is –2.6%. The error is due only to the copper  
V
LOAD  
wire resistance increase vs temperature. The Case 3 error  
can be reduced by designing for the maximum R at  
WIRE  
a specified temperature. Copper wire specifications from  
a reliable manufacturer are required.  
The maximum current per wire is a function of the wire  
temperatureriseduetocurrent,themaximumwireinsula-  
tion temperature and the number of cable wires (refer to  
the Copper Wire Information section).  
Copper wire resistance increases directly with operating  
temperature. The temperature coefficient of copper α is  
equal to 0.0039/°C at 20°C (a useful linear approxima-  
Table 4 is a random list of AWG wire resistance versus  
current based on lab measurements.  
tion from 0°C to 100°C). If R  
is the resistance at a  
LOW  
T
temperature and R  
is the resistance at a T  
LOW  
HIGH HIGH  
Table 4. A Random List of Wire Resistance vs Current at 20°C  
AWG 18  
AWG 20  
AWG 22  
AWG 24  
AWG 26  
AWG 28  
AWG 30  
STRANDS/GAUGE STRANDS/GAUGE STRANDS/GAUGE STRANDS/GAUGE STRANDS/GAUGE STRANDS/GAUGE STRANDS/GAUGE  
16/30  
7/28  
7/30  
19/36  
19/38  
7/36  
7/38  
Current  
(AMPS)  
R
R
R
R
R
R
R
WIRE  
WIRE  
WIRE  
WIRE  
WIRE  
WIRE  
WIRE  
(mΩ/ft)  
6.53  
6.54  
6.56  
6.59  
6.62  
6.65  
6.71  
6.79  
6.83  
6.91  
(mΩ/ft)  
(mΩ/ft)  
(mΩ/ft)  
22.47  
22.66  
22.99  
23.38  
23.78  
(mΩ/ft)  
37.97  
38.41  
39.08  
40.21  
(mΩ/ft)  
(mΩ/ft)  
1
2
9.61  
9.63  
9.68  
9.73  
9.82  
9.90  
10.02  
10.15  
15.42  
15.51  
15.66  
15.84  
15.99  
16.32  
62.31  
63.32  
65.23  
102.36  
109.14  
3
4
5
6
7
8
9
10  
6110f  
25  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
temperature then the wire’s resistance vs temperature is:  
Example: Find the weight of one hundred thousand feet of  
18AWG wireandcompareittotheweightofa24AWG wire:  
R
HIGH  
= R  
• (1 + α • (T  
– T  
)).  
LOW  
LOW  
HIGH  
Table 4 shows 6.5mΩ/ft for 18AWG and 22.43mΩ/ft for  
24AWG.  
An approximation to the temperature rise in a wire due  
to current can be derived from the wire’s resistance vs  
temperature equation using the wire’s resistance increase  
The weight of the 18AWG wire is:  
vs safe operating current. If R  
is the wire resistance at  
–6  
2
–3  
LOW  
(31.39 • 10 ) • [(100000) /(6.5 • 10 • 100000)] =  
a low current and R  
is the wire resistance at a higher  
HIGH  
483 pounds.  
current and T  
is equal to T  
– T  
then the tem-  
RISE  
HIGH  
LOW  
The weight of the 24AWG wire is:  
perature rise in a wire is:  
–6  
2
–3  
(31.39 • 10 ) • [(100000) / (22.43 • 10 • 100000)]  
T
(°C) = 256.4 • (R  
/R  
– 1).  
RISE  
HIGH LOW  
= 141 pounds.  
Table 4 is a list of measured copper wire resistance ver-  
sus current at 20°C for an arbitrary group of 18AWG to  
30AWG wires.  
Theweightofthe18AWG is3.4× theweightofthe24AWG.  
Using an LT6110 simplifies wire drop compensation and  
provides the option to specify the smallest size and lowest  
cost of copper wire.  
Example: Find the wire temperature rise for 3A flowing in  
a 28AWG wire. The 28AWG wire on Table 4 has 62.31mΩ/  
ft R  
resistance at 1A and 65.23mΩ/ft R  
resistance  
LOW  
at 3A.  
HIGH  
The US Department of Commerce, National Bureau of  
Standards Handbook 100 is a comprehensive source of  
copper wire information.  
T
RISE  
for 3A is equal to 256.4 • (65.23/62.31 – 1) = 12°C.  
An LT6110 wire drop compensation design requires reli-  
able information of wire resistance and current capacity.  
Published copper wire tables are a convenient quick-start  
guidetocopperwireinformation.Howeveraccuratecopper  
wire data is obtained by actual measurements of samples  
of copper wire to be used from a reputable manufacturer.  
A statistically small sample of copper wire is sufficient for  
measurements (the average measured mass resistivity  
deviationofalargesampleofcopperwireisonly 0.26%).  
Power Dissipation  
The LT6110 power dissipation is at a minimum for I  
100µAorless.IftheI currentisatitsspecifiedmaximum  
of1mAorgreaterthenthemaximumpowerdissipationand  
operating temperature must be considered. The LT6110  
power dissipation is the sum of three components:  
+IN  
+IN  
V
V
I  
,
IOUT IOUT  
• (I + I ) and  
SUPPLY  
REG  
+IN  
The International Annealed Copper Standard of mass  
resistivity is:  
2
I
R  
(if the internal R  
is used)  
LOAD  
SENSE  
SENSE  
Example of an extreme power dissipation case:  
–6  
2
153.28 • 10 (Ω-kg)/m in Metric and  
V
V
= 50V, I = 1mA.  
+IN  
–6  
2
REG  
31.39 • 10 (Ω-lb)/ft in English units.  
= 36V, I  
= 1mA,  
IOUT  
IOUT  
Mass resistivity is the product of Resistance/Length and  
Mass/Length and is useful for estimating the weight of  
copper wire required and its cost (the cost of copper wire  
depends on its weight and the price fluctuation of copper  
in the commodities market).  
I
=2.7mA(I  
isafunctionofI .SeetheI  
SUPPLY  
SUPPLY +IN SUPPLY  
vs I plot under Typical Performance Characteristics).  
+IN  
I
= 2A and R  
= 20mΩ  
LOAD  
SENSE  
Calculate LT6110 power dissipation:  
The weight of copper wire is:  
2
Power = 36 • 0.001 + 50 • (0.001 + 0.0027) + 2 • 0.02  
–6  
–6  
2
153.2810 (Lengthinm )/(ResistanceinΩ)inkilograms  
2
Power = 0.301 Watts  
or31.3910 (Lengthinft )/(ResistanceinΩ)inpounds.  
6110f  
26  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
I
I
LOAD  
R
LOAD  
WIRE  
DROP  
V
V
REG  
REG  
V
LOAD  
V
V
IN  
IN  
I
I
SWITCHING  
REGULATOR  
SWITCHING  
REGULATOR  
+IN  
SUPPLY  
V
R
FA  
LOAD  
R
IN  
R
IN  
I
OUT  
FB  
FB  
I
+
+
IOUT  
+IN  
V
RS –IN  
+IN  
V
RS –IN  
R
R
20mΩ  
20mΩ  
FB  
R
IOUT  
+
G
+
V
IOUT  
IOUT  
IOUT  
LT6110  
6110 F17  
LT6110  
IMON  
V
IMON  
V
6110 F18  
Figure 17. LT6110 Power Dissipation  
Figure 18. Limiting Regulator Voltage Boost (VREGMAX)  
The maximum operating ambient temperature T  
is  
2. Calculate R  
:
AMAX  
IOUT  
equal to T  
θ Power.  
JMAX  
JA  
R
FA  
V –  
LOAD  
V  
R  
FB  
FA  
T
is 150°C and θ is 195°C/W for a TSOT-23 pack-  
JMAX  
age and  
JA  
R
G
R
=
IOUT  
V
– V  
LOAD  
REGMAX  
T
T
is 150°C and θ is 80.6°C/W for a DFN package.  
JMAX  
JA  
Example:Limittheoutputofa5Vregulatortolessthan6V.  
= 5V, I = 2A and I = 100µA.  
= 150°C – 0.301W • 195°C/W = 91°C for the TSOT-  
23 package and  
AMAX  
V
LOAD  
LOADMAX  
IOUT  
T
= 150°C – 0.301W • 80.6°C/W = 126°C for the  
R = 6.49k, R = 422k and R = 80.6k, R = 402Ω, V  
AMAX  
DFN package.  
FA  
FB  
G
IN  
FB  
= 0.79V (Figure 4).  
Calculate R  
:
IOUT  
Limiting the Regulator Boost Voltage (V  
)
REGMAX  
6490  
80600  
6–5  
= 32k and 5.649V ≤ V  
In some wire drop compensation applications it may be  
necessary to limit the maximum voltage at the regulator  
output to ensure the safe operation of all load circuitry.  
5–  
0.79 6490  
RIOUT  
=
Addingaresistor,R  
,inserieswiththeoutputpinlimits  
IOUT  
R
≤ 6V.  
REGMAX  
IOUT  
the maximum compensation current. This in turn limits  
the maximum voltage boosting at the regulator output,  
Limiting V  
IOUT  
V . The increasing I  
REGMAX  
current through R  
IOUT IOUT  
The absolute maximum voltage at the IOUT pin (V  
) is  
IOUT  
drops the voltage at the IOUT pin to a minimum level and  
limits the maximum IOUT current (refer to the Minimum  
IOUTtoIMONVoltagevsTemperaturegraphunderTypical  
Performance Characteristics). If the limited IOUT current  
is greater than 1mA, a 0.1µF capacitor should be placed  
from the IOUT pin to ground to ensure stable operation.  
36V. If V  
is greater than 36V then a Zener diode from  
IOUT  
the IOUT pin to the regulator resistors and a resistor from  
the IOUT pin to V can limit the V  
voltage to ≤36V.  
IOUT  
The Zener diode voltage, V  
, is typically specified as  
ZENER  
a nominal voltage with a minimum and a maximum. For  
limiting V , use the minimum Zener voltage rating,  
IOUT  
. V  
The R  
resistor limits the regulator’s voltage to an  
IOUT  
V
is typically specified at a current  
ZENERMIN ZENERMIN  
of 2mA to 5mA and at the low LT6110 I  
arbitrary value higher than V  
+ R I  
.
LOAD  
FA IOUT  
currents  
IOUT  
Design Procedure:  
(≤1mA), the actual V  
can be up to 2V less than  
ZENERMIN  
theminimumvoltagelistedinadiodedatasheet.Therefore  
1. Select a V  
voltage > V  
+ R I  
.
REGMAX  
LOAD  
FA IOUT  
select a Zener diode with a minimum voltage at least 2V  
6110f  
27  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
I
I
LOAD  
R
WIRE  
R
LOAD  
WIRE  
V
V
REG  
REG  
V
V
LOAD  
LOAD  
V
V
IN  
IN  
SWITCHING  
REGULATOR  
SWITCHING  
REGULATOR  
V
V
DROP  
DROP  
R
FA  
R
FA  
LOAD  
LOAD  
R
R
IN1  
IN  
I
OUT  
FB  
FB  
+
+IN  
V
RS –IN  
R
IN2  
R
R
R
R
20mΩ  
FB  
FB  
V
ZENER  
+
+IN  
V
RS –IN  
G
+
G
20mΩ  
V
IOUT  
IOUT  
+
R
Z
V
IOUT  
IOUT  
10M  
LT6110  
IMON  
V
6110 F19  
LT6110  
IMON  
V
Figure 19. Limiting the Voltage at the IOUT Pin (VOUT ≤ 36V)  
greater than the calculated V  
voltage.  
ZENERMIN  
V
REG  
V
+I  
R  
+
FA  
V
IOUT IOUT  
REGMAX  
V
V  
R
I
ZENERMIN  
LOAD  
REGMAX  
FA  
V  
I
I
LOADMAX  
LOADCOMP  
FB  
R
G
WIRE DROP  
COMPENSATION  
THRESHOLD  
V
= V  
+ I  
• (R  
+ R ).  
WIRE  
REGMAX  
LOAD  
LOADMAX  
SENSE  
6110 F20  
Example: Limit V  
to 20V.  
IOUT  
Figure 20. Setting the Wire Drop Compensation Threshold  
V
= 48V and I  
= 2A, R  
= 1Ω.  
LOAD  
LOADMAX  
WIRE  
threshold, I  
, for the start of wire drop compen-  
LOADCOMP  
R
= 20mΩ, R = 20.5k, R = 453k, R = 12.4k, R  
SENSE  
FA  
FB  
G
IN  
sation. When the load current is equal to I  
the  
LOADCOMP  
= 402Ω, V = 1.223V, I  
= 100µA.  
FB  
IOUT  
maximum error in voltage at the load occurs. For I  
greater than I  
decreases to zero at I  
LOAD  
Calculate V  
Calculate V  
= 48 + 2(0.02 + 1) = 50.04V.  
REGMAX  
:
ZENERMIN  
the error in voltage at the load  
LOADMAX  
LOADCOMP  
.
Design Procedure:  
–6  
20+ 10010  
(
)
1. Choose a threshold current.  
2. Calculate R and R  
3
:
IN2  
IN1  
VZENERMIN 50.0420.510 +  
(
)
VLOAD +ILOADMAX RWIRE  
20.5103  
ILOADMAX RSENSE  
I
1.223  
IOUT  
3
RIN1  
=
=
12.410  
VLOAD  
ILOADCOMP RSENSE  
I
IOUT  
–1  
V
= 26V.  
ZENERMIN  
VLOAD  
LOADCOMP RSENSE  
The minimum Zener diode voltage must be ≥28V.  
RIN2  
–1 RIN1  
I
Setting the Wire Compensation Threshold  
Example:Designthestartofwiredropcompensationat1A.  
= 5V, I = 3.5A, R = 0.25Ω, R  
With light load currents, wire drop compensation may not  
be desirable. An additional resistor, R , from the +IN  
V
=
SENSE  
IN2  
LOAD  
25mΩ and I  
LOADMAX  
WIRE  
pin to ground provides the option to set a load current  
= 100µA.  
IOUT  
6110f  
28  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
I
LOAD  
V
1/2R  
The R  
resistor is a 6mΩ PCB trace.  
REG  
WIRE  
SENSE  
µModule  
REGULATOR  
R
V
SENSE  
IN  
+
I
= 10A and set I  
= 100µA.  
R
INT  
R
LOAD  
IOUT  
F
LOAD  
V
R
LOAD  
IN  
I
V
OUT  
FB  
1/2R  
+
Calculate R , R and R .  
+IN  
V
RS –IN  
F
G
IN  
WIRE  
R
G
For I  
= 100µA, R = (10 • 0.006)/0.0001 = 600Ω and  
IN  
IOUT  
to the nearest 1% resistor R = 604Ω.  
+
IN  
IOUT  
If R = 604Ω then I  
SENSE IN  
= 99.34µA [I  
= (I  
IN  
IOUT  
IOUT  
LOAD  
R
/R )].  
LT6110  
IMON  
V
6110 F21  
10  
105 •  
0.006+0.15  
(
)
99.3410–6  
RF =  
10  
Figure 21. An LT6110 with a µModule Regulator  
105 –  
0.006+0.15  
(
)
99.3410–6  
1. I  
= 1A.  
LOADCOMP  
R = 18.7k (to the nearest 1% value).  
F
2. Calculate R and R : R = 576Ω and R = 115k.  
IN1  
IN2 IN1  
IN2  
18.7103 105 0.6  
AtI  
=1AV  
=4.75VandatI  
=3.5AV  
=5V.  
(
)
LOAD  
LOAD  
LOAD  
LOAD  
RG =  
18.7103 +105 30.6  
Typically a µModule® regulator contains a resistor (R  
)
INT  
(
)
)
(
from the regulator’s output to the error amplifier’s input.  
The µModule resistor is inaccessible and is in parallel to  
R = 3.92k (to the nearest 1% value).  
G
the external feedback resistor (R ) required for wire drop  
F
compensation with an LT6110 (the R value is listed in  
Regulator Loop Stability  
INT  
the µModule regulator data sheet).  
A regulator’s control loop response is optimized for a  
variety of load, input voltage and temperature conditions.  
Adding an LT6110 to a regulator circuit does not disturb  
control loop stability. However an LT6110 adds a pole  
that reduces the loop’s phase margin. The effect of the  
LT6110 pole in the loop is easily compensated by a zero  
in the feedback divider.  
Design Procedure:  
1.ChoosethecompensationcurrentI  
(100µAtypically).  
IOUT  
2. Calculate R , R and R .  
F
G
IN  
ILOAD  
RINT  
RINT  
R  
+RWIRE  
+RWIRE  
(
)
)
SENSE  
I
IOUT  
RF =  
Figure 22 shows a small-signal model for a current mode  
buckregulatorwithanLT6110inthecontrolloop.Theopen  
ILOAD  
R  
(
SENSE  
I
IOUT  
looptransferfunctionfromtheerroramplifieroutput(V ),  
C
RF RINT  
R +R  
V
FB  
to the modulator output (V ), to the feedback divider  
RG =  
RIN =  
REG  
V
– V  
FB  
(
)
(
)
F
INT  
REG  
output (V ) is: (V /V ) (V /V ) (V /V ).  
FB  
REG  
C
FB REG  
C
FB  
ILOAD RSENSE  
Theloop’sDCgainisequaltotheproductofthemodulator  
gain (g R ), the error amplifier gain (g R ) and  
I
m
LOAD  
e
e
IOUT  
the feedback ratio (V /V ).  
REF REG  
Example:Use24ft, 18AWG wiretoregulatea3V, 10Aload,  
using an LTM4600 µModule regulator.  
The overall regulator control loop frequency response is  
determined by a combination of several poles and zeros.  
Loop compensation is provided by the R1 and C1 zero  
at the error amplifier’s output. This zero adds a positive-  
going phase near the loop’s crossover frequency and is  
R
of LTM4600 is 100k and the feedback voltage V  
FB  
INT  
= 0.6V.  
The R  
of 24ft, 18AWG is 0.15Ω.  
WIRE  
6110f  
29  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
BUCK REGULATOR MODEL  
V
IN  
+
MODULATOR  
g
IS THE  
m
MODULATOR  
TRANSCONDUCTANCE  
SLOPE COMP  
OSCILLATOR  
R
Q
S
LT6110 MODEL  
L
V
REG  
R
C
O
R
IN  
C
FA  
COMP  
I
R
WIRE  
IOUT  
R
SENSE  
V
LOAD  
R
ESR  
V
C
+
V
REF  
R
R
FB  
R
V
LOAD  
FB  
R1  
C1  
R
e
C2  
6110 F22  
G
ERROR  
LT6110  
AMPLIFIER  
g IS THE ERROR  
e
AMPLIFIER  
TRANSCONDUCTANCE  
Figure 22. A Small-Signal Model: Current Mode Buck Regulator with an LT6110  
adjusted for an optimum phase margin. Regulator loop  
compensation,transientresponseandstabilityarecovered  
in depth in AN76.  
C
zero is best adjusted during a load transient test.  
COMP  
Start with a C  
160kHz (the LT6110 pole), then increase C  
transient that settles with minimal overshoot or ringing.  
value for a zero equal to or less than  
COMP  
for a load  
COMP  
An LT6110 in the control loop introduces a pole near  
160kHz (from the Typical Performance Curves) and this  
pole reduces the loop’s optimized phase margin resulting  
in load transient overshoot and possibly ringing. Adding a  
Figure23showsanLT3980buckregulatorwithanLT6110  
circuit used for transient response testing and with the  
added zero to restore the loop’s phase margin. During  
the circuit’s load transient testing, a C  
producesaloadtransientthatsettleswithoutovershootor  
capacitor, C  
in parallel with the regulator’s feedback  
COMP  
value of 1nF  
COMP  
resistance, R introduces a zero to compensate the ef-  
FA  
fects of the LT6110 pole. The frequency of the R and  
FA  
V
V
BD  
IN  
IN  
RUN/SS BOOST  
LT3980  
0.47µF  
10µH  
100k  
V
REG  
C
PGOOD  
SW  
DA  
FB  
R
IN  
R
COMP  
FA  
47µF  
402Ω  
1nF  
97.6k  
6.49k  
NC  
+IN  
R
T
0.1µF  
LT6110  
+
R
IOUT  
V
1.5nF  
FB  
15k  
412k  
20mΩ  
IMON  
V
C
R
WIRE  
GND  
RS  
R
G
0.3Ω  
100pF  
V
LOAD  
80.6k  
GND  
–IN  
5Ω  
8Ω  
10µF  
1.6A  
2k  
1A  
180pF  
6110 F23  
Figure 23. Load Transient Response Test Circuit Using an LT3980 Buck Regulator with an LT6110  
6110f  
30  
For more information www.linear.com/LT6110  
LT6110  
applicaTions inForMaTion  
ringing (a 10% C  
tolerance is adequate). An optional  
Figure 24b shows a load transient response of the LT3980  
buck regulator with LT6110 line drop compensated load  
voltage. The load transient has an overshoot due to the  
LT6110 decreasing the phase margin.  
COMP  
connection for C  
is in parallel with R and R (from  
COMP  
FA FB  
value for the smallest  
V
to V ) to reduce the C  
REG  
FB  
COMP  
capacitor size.  
Figures 24a through 24c illustrate a typical loop opti-  
mization procedure when an LT6110 is included in the  
regulator’s loop.  
Figure 24c shows a load transient response of the LT3980  
buckregulatorwithanLT6110andwithaC  
capacitor  
COMP  
added to compensate for the LT6110 in the loop. The load  
transient settles without overshoot as the phase margin  
is restored.  
Figure 24a shows a load transient response of the LT3980  
buck regulator with an optimum phase margin without  
linedropcompensation. Theloadtransientsettleswithout  
overshoot.  
V
V
V
V
REG  
REG  
200mV/DIV  
200mV/DIV  
200mV/DIV  
200mV/DIV  
LOAD  
LOAD  
1.6A  
1A  
1.6A  
1A  
I
I
LOAD  
LOAD  
6110 F24a  
6110 F24b  
200µs/DIV  
200µs/DIV  
Figure 24a. Transient Response of Buck Regulator without  
LT6110 Line Drop Compensation  
Figure 24b. Transient Response Buck Regulator with an LT6110  
in the Loop  
V
V
REG  
200mV/DIV  
200mV/DIV  
LOAD  
1.6A  
1A  
I
LOAD  
6110 F24c  
200µs/DIV  
Figure 24c. Capacitor CCOMP Compensates for the LT6110 in the  
Regulator’s Loop  
6110f  
31  
For more information www.linear.com/LT6110  
LT6110  
Typical applicaTions  
LT6110 with External RSENSE and LT3690 Buck Regulator at 3.3V  
V
IN  
V
IN  
6.5V TO 25V  
10µF  
EN  
BST  
SW  
0.68µF  
4.7µH  
UVLO  
SS  
1000pF  
R
IN  
10.2k  
47pF  
BIAS  
PG  
340Ω  
LT3690  
GND  
1
2
8
7
V
C
NC  
+IN  
100µF  
22k  
680pF  
+
IOUT  
V
301k  
100k  
0.8V  
0.1µF  
LT6110  
R
*
FB  
RT  
SENSE  
3
4
6
5
R
WIRE  
V
CCINT  
IMON  
RS  
8.5mΩ  
0.25Ω  
0.47µF  
SYNC  
GND  
–IN  
32.4k  
600kHz  
V
3.3V  
4A  
LOAD  
LOAD  
*THE CURRENT SENSE RESISTOR  
IS THE DCR OF A LOW COST INDUCTOR.  
COILCRAFT 0908SQ-27N (27nH)  
6110 TA02  
WIRE DROP COMPENSATION: V  
= 3.3V, I  
= 4A, USING 10ft, 24AWG WIRE.  
LOAD  
LOADMAX  
MEASURED V  
REGULATION FOR 0 ≤ I  
≤ 4A AT 25°C:  
LOAD  
LOAD  
WITHOUT COMPENSATION: ∆V  
= 1000mV (250mV/A)  
LOAD  
WITH COMPENSATION: ∆V  
= 16mV (4mV/A)  
LOAD  
6110f  
32  
For more information www.linear.com/LT6110  
LT6110  
Typical applicaTions  
LT6110 with External RSENSE and LT3690 Buck Regulator at 5V  
V
IN  
V
IN  
8.5V TO 36V  
10µF  
EN  
BST  
SW  
0.68µF  
10µH  
UVLO  
SS  
1000pF  
R
IN  
20.5k  
47pF  
BIAS  
PG  
340Ω  
LT3690  
GND  
1
2
8
7
V
C
NC  
+IN  
47µF  
22k  
680pF  
+
IOUT  
V
316k  
100k  
0.8V  
0.1µF  
LT6110  
R
*
FB  
RT  
SENSE  
3
4
6
5
R
WIRE  
V
CCINT  
IMON  
RS  
8.5mΩ  
0.5Ω  
0.47µF  
SYNC  
GND  
–IN  
32.4k  
600kHz  
V
5V  
4A  
LOAD  
LOAD  
*THE CURRENT SENSE RESISTOR  
IS THE DCR OF A LOW COST INDUCTOR.  
COILCRAFT 0908SQ-27N (27nH)  
6110 TA03  
WIRE DROP COMPENSATION: V  
= 5V, I  
= 4A, USING 20ft, 24AWG WIRE.  
LOAD  
LOADMAX  
MEASURED V  
REGULATION FOR 0 ≤ I  
≤ 4A AT 25°C:  
LOAD  
LOAD  
WITHOUT COMPENSATION: ∆V  
= 2000mV (500mV/A)  
LOAD  
WITH COMPENSATION: ∆V  
= 24mV (6mV/A)  
LOAD  
6110f  
33  
For more information www.linear.com/LT6110  
LT6110  
Typical applicaTions  
LT6110 with External PCB RSENSE and LTM4600 µRegulator at 3.3V  
V
IN  
+
150µF 22µF  
22µF  
6V TO 24V  
V
REG  
V
IN  
V
REG  
22µF 22µF + 470µF  
LTM4600HV  
V
1M  
REG  
R
IN  
523Ω  
RF  
1
2
8
7
RUN/SS  
100k  
NC  
+IN  
18.7k  
0.6V  
0.1µF  
+
IOUT  
V
PCB  
R
6mΩ  
20ꢀ  
RG  
3.92k  
0.1µF  
FCB SGND PGND VOSET  
LT6110  
SENSE  
3
4
6
5
R
WIRE  
IMON  
RS  
0.075Ω  
GND  
–IN  
+
LOAD  
V
LOAD  
3V  
R
10A  
WIRE  
WIRE DROP COMPENSATION: V  
= 3.3V, I  
= 10A, USING 24ft, 18AWG WIRE WITH GROUND RETURN.  
LOAD  
LOADMAX  
0.075Ω  
MEASURED V  
REGULATION FOR 0 ≤ I  
≤ 10A AT 25°C:  
LOAD  
LOAD  
WITHOUT COMPENSATION: ∆V  
= 1500mV (150mV/A)  
LOAD  
WITH COMPENSATION: ∆V  
= 50mV (5mV/A)  
LOAD  
6110 TA04  
LT6110 with External PCB RSENSE and LTM4600 µRegulator at 1.8V  
V
IN  
+
150µF 22µF  
22µF  
1M  
5V TO 24V  
V
REG  
V
IN  
V
REG  
22µF 22µF + 470µF  
LTM4600HV  
V
REG  
R
IN  
523Ω  
RF  
1
2
8
7
RUN/SS  
100k  
NC  
+IN  
18.7k  
0.6V  
0.1µF  
+
IOUT  
V
PCB  
R
6mΩ  
20ꢀ  
RG  
7.87k  
0.1µF  
FCB SGND PGND VOSET  
LT6110  
SENSE  
3
4
6
5
R
WIRE  
IMON  
RS  
0.075Ω  
GND  
–IN  
+
LOAD  
V
1.8V  
10A  
LOAD  
R
WIRE  
WIRE DROP COMPENSATION: V  
= 1.8V, I  
= 10A, USING 24ft, 18AWG WIRE WITH GROUND RETURN.  
LOAD  
LOADMAX  
0.075Ω  
MEASURED V  
REGULATION FOR 0 ≤ I  
≤ 10A AT 25°C:  
LOAD  
LOAD  
WITHOUT COMPENSATION: ∆V  
= 1500mV (150mV/A)  
LOAD  
WITH COMPENSATION: ∆V  
= 50mV (5mV/A)  
LOAD  
6110 TA05  
6110f  
34  
For more information www.linear.com/LT6110  
LT6110  
Typical applicaTions  
LT6110 with External RSENSE and LTC3789 Buck-Boost Regulator at 12V  
INTV  
V
CC  
IN  
5V TO 36V  
+
C
270µF  
100k  
A
390pF  
0.22µF  
5.6Ω  
10Ω  
1
2
27  
PGOOD  
SW1  
V
FB  
26  
25  
24  
23  
22  
Q
A
TG1  
BOOST1  
PGND  
SS  
Si7848BDP  
0.01µF  
1nF  
3
4
D
+
A
SENSE  
SENSE  
L
DFLS160  
Q
B
4.7µH  
BG1  
0.01µF  
Si7848BDP  
14.7k  
1µF  
5
V
IN  
I
TH  
LTC3789  
10µF  
6
SGND  
D1  
21  
20  
10mΩ  
7
B240A  
INTV  
EXTV  
MODE/PLLIN  
FREQ  
CC  
121k  
8
CC  
D
B
DFLS160  
9
RUN  
400kHz  
19  
18  
10  
11  
12  
Q
C
V
BG2  
V
IN  
INSNS  
SiR496DP  
V
REG  
BOOST2  
V
REG  
V
OUTSNS  
C
B
I
V
REG  
LIM  
100pF  
0.22µF  
R
IN  
619Ω  
BZT52C6V2S  
13  
14  
17  
16  
15  
Q
D
SiR496DP  
+
5.62k  
TG2  
SW2  
TRIM  
I
OSENSE  
1
2
8
7
D2  
B240A  
NC  
+IN  
2.2µF  
I
OSENSE  
+
IOUT  
V
133k  
10k  
EXTERNAL  
LT6110  
R
SENSE  
3
4
6
5
0.1µF  
R
WIRE  
0.1Ω  
100Ω  
IMON  
RS  
25mΩ  
5ꢀ  
10mΩ  
2.2µF  
100Ω  
1k  
GND  
–IN  
+
LOAD  
+
1k  
330µF  
0.8V  
= 5A, USING 20ft, 20AWG WIRE WITH GROUND RETURN.  
12V  
5A  
R
WIRE  
0.1Ω  
WIRE DROP COMPENSATION: V  
= 12V, I  
LOADMAX  
6110 TA06  
LOAD  
MEASURED V  
REGULATION FOR 0 ≤ I  
≤ 5A AT 25°C:  
= 1000mV (250mV/A)  
LOAD  
WITHOUT COMPENSATION: ∆V  
LOAD  
LOAD  
= 25mV (5mV/A)  
WITH COMPENSATION: ∆V  
LOAD  
6110f  
35  
For more information www.linear.com/LT6110  
LT6110  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637 Rev A)  
2.90 BSC  
(NOTE 4)  
0.40  
MAX  
0.65  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
TS8 TSOT-23 0710 REV A  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
6110f  
36  
For more information www.linear.com/LT6110  
LT6110  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DC8 Package  
8-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1719 Rev A)  
0.70 ±0.05  
2.55 ±0.05  
0.64 ±0.05  
1.15 ±0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.45 BSC  
1.37 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
TYP  
5
8
R = 0.05  
TYP  
0.40 ±0.10  
PIN 1 NOTCH  
2.00 ±0.10 0.64 ±0.10  
(4 SIDES)  
(2 SIDES)  
R = 0.20 OR  
0.25 × 45°  
CHAMFER  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
(DC8) DFN 0409 REVA  
4
1
0.23 ±0.05  
0.45 BSC  
0.75 ±0.05  
0.200 REF  
1.37 ±0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
6110f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
37  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT6110  
Typical applicaTion  
LT6110 with Internal RSENSE and LT3975 Buck Regulator at 3.3V  
V
IN  
B00ST  
V
IN  
7V TO 42V  
0.47µF  
4.7µH  
100µF  
10µF  
EN  
SW  
PDS360  
100µF  
V
LT3975  
REG  
OUT  
FB  
R
IN  
1µF  
16.5k  
499Ω  
1
2
8
7
NC  
+IN  
+
SS  
RT  
78.7k  
f = 600kHz  
IOUT  
V
10pF  
1M  
10nF  
1.197V  
0.1µF  
LT6110  
3
4
6
5
R
SYNC GND  
WIRE  
IMON  
RS  
590k  
0.32Ω  
GND  
–IN  
+
LOAD  
V
3.3V  
2.5A  
LOAD  
R
WIRE  
WIRE DROP COMPENSATION: V  
= 3.3V, I  
= 2.5A, USING 6ft, 30AWG WIRE WITH GROUND RETURN.  
LOAD  
LOADMAX  
0.32Ω  
MEASURED V  
REGULATION FOR 0 ≤ I  
≤ 2.5A AT 25°C:  
LOAD  
LOAD  
WITHOUT COMPENSATION: ∆V  
= 1600mV (640mV/A)  
LOAD  
WITH COMPENSATION: ∆V  
= 25mV (10mV/A)  
LOAD  
6110 TA07  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1787  
LTC4150  
LT6100  
LTC6101  
LTC6102  
LTC6103  
LTC6104  
LT6105  
LT6106  
LT6107  
LT6700  
LT4180  
Bidirectional High Side Current Sense Amplifier  
Coulomb Counter/Battery Gas Gauge  
2.7V to 60V, 75µV Offset, 60µA Quiescent, 8V/V Gain  
Indicates Charge Quantity and Polarity  
Gain-Selectable High Side Current Sense Amplifier  
High Voltage High Side Current Sense Amplifier  
Zero Drift High Side Current Sense Amplifier  
Dual High Side Current Sense Amplifier  
4.1V to 48V, Gain Settings: 10, 12.5, 20, 25, 40, 50V/V  
Up to 100V, Resistor Set Gain, 300µV Offset, SOT-23  
Up to 100V, Resistor Set Gain, 10µV Offset, MSOP8/DFN  
4V TO 60V, Resistor Set Gain, 2 Independent Amps, MSOP8  
4V TO 60V, Separate Gain Control for Each Direction, MSOP8  
–0.3V to 44V Input Range, 300µV Offset, 1% Gain Error  
2.7V to 36V, 250µV Offset, Resistor Set Gain, SOT23  
2.7V to 36V, –55°C 150°C, Fully Tested: –55°C, 25°C, 150°C  
1.4V to 18V, 6.5µA Supply Current  
Bidirectional High Side Current Sense Amplifier  
Precision Rail-to-Rail Input Current Sense Amplifier  
Low Cost High Side Current Sense Amplifier  
High Temperature High Side Current Sense Amplifier  
Dual Comparator with 400mV Reference  
Virtual Remote Sense Controller  
Automatically Detects Line Impedance to Improve Load Regulation  
6110f  
LT 0413 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
38  
LINEAR TECHNOLOGY CORPORATION 2013  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT6110  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY