LT6210CS6#TR [Linear]

LT6210 - Single Programmable Supply Current, R-R Output, Current Feedback Amplifiers; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C;
LT6210CS6#TR
型号: LT6210CS6#TR
厂家: Linear    Linear
描述:

LT6210 - Single Programmable Supply Current, R-R Output, Current Feedback Amplifiers; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C

消费电路 商用集成电路 音频放大器 视频放大器 光电二极管
文件: 总16页 (文件大小:451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6210/LT6211  
Single/Dual Programmable  
Supply Current, R-R Output,  
Current Feedback Amplifiers  
U
FEATURES  
DESCRIPTIO  
The LT®6210/LT6211 are single/dual current feedback  
amplifiers with externally programmable supply current  
and bandwidth ranging from 10MHz at 300µA per ampli-  
fier to 200MHz at 6mA per amplifier. They feature a low  
distortion rail-to-rail output stage, 700V/µs slew rate and  
a minimum output current drive of 75mA.  
Programmable Supply Current and Bandwidth:  
10MHz at 300µA per Amplifier up to  
200MHz at 6mA per Amplifier  
Rail-to-Rail Output:  
0.05V to 2.85V on 3V Single Supply  
High Slew Rate: 700V/µs  
High Output Drive:  
TheLT6210/LT6211operateonsuppliesaslowasasingle  
3V and up to either 12V or ±6V. The ISET pin allows for the  
optimization of quiescent current for specific bandwidth,  
distortionorslewraterequirements. Regardlessofsupply  
voltage, the supply current is programmable from just  
300µA to 6mA per amplifier with an external resistor or  
current source.  
±75mA Minimum Output Current  
C-LoadTM Op Amp Drives All Capacitive Loads  
Low Distortion:  
–70dB HD2 at 1MHz 2VP-P  
–75dB HD3 at 1MHz 2VP-P  
Fast Settling:  
20ns 0.1% Settling for 2V Step  
The LT6210 is available in the low profile (1mm) 6-lead  
SOT-23 package. The LT6211 is available in the 10-lead  
MSOP and the 3mm x 3mm x 0.8mm DFN packages.  
Excellent Video Performance Into 150Load:  
Differential Gain of 0.20%, Differential Phase of 0.10°  
Wide Supply Range:  
3V to 12V Single Supply  
U
±1.5V to ±6V Dual Supplies  
APPLICATIO S  
Small Size:  
Buffers  
Low Profile (1mm) 6-Lead SOT-23 (ThinSOTTM),  
3mm x 3mm x 0.8mm DFN and 10-Lead MSOP  
Packages  
Video Amplifers  
Cable Drivers  
Mobile Communication  
Low Power/Battery Applications  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
C-Load and ThinSOT are trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Small Signal Response vs Supply Current  
9
3
Line Driver Configuration for Various Supply Currents  
I
S
= 3mA  
5V  
6
0
I
= 6mA  
S
3
4
75  
6
V
IN  
+
I
= 300µA  
CABLE  
S
75Ω  
1
3
–3  
–6  
–9  
–12  
LT6210  
V
OUT  
5
75Ω  
R
0
SET  
2
–5V  
R
V
A
= ±5V  
= 2  
S
V
A
F
–3  
–6  
T
= 25°C  
I
R
SET  
R
R
R
LOAD  
S
G
F
R
G
V
= 100mV  
OUT  
P-P  
6mA  
3mA  
300µA  
20k  
56k  
1M  
887Ω  
1.1k  
11k  
887Ω  
1.1k  
11k  
150Ω  
150Ω  
1k  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
6210 TA01  
6210 TA01b  
62101f  
1
LT6210/LT6211  
ABSOLUTE AXI U RATI GS  
W W  
U W  
(Note 1)  
Total Supply Voltage (V+ to V) ........................... 13.2V  
Input Current ................................................. ±10mA  
Output Current .............................................. ±80mA  
Output Short-Circuit Duration (Note 2)........... Indefinite  
Operating Temperature Range (Note 3) ... –40°C to 85°C  
Specified Temperature Range (Note 4).... –40°C to 85°C  
Junction Temperature (Note 5)............................ 150°C  
Junction Temperature (DD Package) ................... 125°C  
Storage Temperature Range ................. –65°C to 150°C  
Storage Temperature Range  
(DD Package) ................................... –65°C to 125°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
5
10  
9
V
TOP VIEW  
TOP VIEW  
OUT B  
–IN B  
+IN B  
+
+
OUT A  
–IN A  
+IN A  
1
2
3
4
5
10  
9
V
+
OUT 1  
6 V  
5 I  
8
OUT B  
–IN B  
+IN B  
+
+
V
2
+
8
SET  
I
A
7
SET  
+
I
A
7
6
SET  
+IN 3  
4 –IN  
V
6
I
B
SET  
V
I
B
SET  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
TJMAX = 150°C, θJA = 120°C/ W (NOTE 5)  
S6 PACKAGE  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
UNDERSIDE METAL CONNECTED TO V  
(PCB CONNECTION OPTIONAL)  
6-LEAD PLASTIC SOT-23  
TJMAX = 150°C, θJA = 230°C/ W (NOTE 5)  
T
JMAX = 125°C, θJA = 43°C/ W (NOTE 5)  
ORDER PART  
NUMBER  
S6 PART  
MARKING*  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
DD PART  
MARKING*  
MS PART  
MARKING  
LTA3  
LBCD  
LTBBN  
LTBBP  
LT6210CS6  
LT6210IS6  
LT6211CDD  
LT6211IDD  
LT6211CMS  
LT6211IMS  
*The temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
62101f  
2
LT6210/LT6211  
ELECTRICAL CHARACTERISTICS  
(I = 6mA per Amplifier) The denotes specifications which apply  
S
over the specified operating temperature range, otherwise specifications are at TA = 25°C. For V+ = 5V, V= 5V: RSET = 20k to ground,  
AV = +2, RF = RG = 887, RL = 150; For V+ = 3V, V= 0V: RSET = 0to V, AV = +2, RF = 887, RG = 887to 1.5V, RL = 150to 1.5V  
unless otherwise specified.  
+
+
V = 5V, V = –5V, I = 6mA  
V = 3V, V = 0V, I = 6mA  
S
S
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX MIN  
TYP  
MAX UNITS  
V
Input Offset Voltage  
–1  
±6  
±9  
–1  
±6.5  
±10  
mV  
mV  
OS  
I +  
IN  
Noninverting Input Current  
Inverting Input Current  
Input Noise Voltage Density  
–3.5  
–13.5  
6.5  
±7  
±9  
–3  
2.5  
6.5  
±6.5  
±8  
µA  
µA  
I –  
IN  
±39  
±55  
±25  
±40  
µA  
µA  
e
n
f = 1kHz, R = 887,  
nV/Hz  
F
R = 46.4, R = 0Ω  
G
S
+i  
–i  
Input Noise Current Density  
Input Noise Current Density  
Noninverting Input Resistance  
f = 1kHz  
4.5  
25  
4.5  
25  
1.7  
2
pA/Hz  
pA/Hz  
MΩ  
pF  
n
n
f = 1kHz  
+
R +  
IN  
V
IN  
= V – 1.2V to V + 1.2V  
0.5  
3.8  
2
0.3  
1.8  
C +  
IN  
Noninverting Input Capacitance f = 100kHz  
2
V
V
V
Input Voltage Range, High  
Input Voltage Range, Low  
Output Voltage Swing, High  
(Note 10)  
(Note 10)  
4.2  
–4.2  
2.2  
0.8  
V
INH  
–3.8  
1.2  
V
INL  
R = 1k (Note 11)  
4.8  
4.6  
2.85  
2.75  
V
V
V
OUTH  
L
R = 150(Note 11)  
4.4  
4.2  
2.65  
2.6  
L
R = 150(Note 11)  
L
V
Output Voltage Swing, Low  
R = 1k (Note 11)  
L
–4.95  
–4.8  
0.05  
0.1  
V
V
V
OUTL  
L
R = 150(Note 11)  
–4.55  
–4.4  
0.3  
R = 150(Note 11)  
0.35  
L
+
CMRR  
–I  
Common Mode Rejection Ratio  
V
IN  
V
IN  
= V – 1.2V to V + 1.2V  
46  
43  
50  
46  
dB  
dB  
+
Inverting Input Current  
Common Mode Rejection  
= V – 1.2V to V + 1.2V  
0.15  
±1.5  
±2  
0.2  
µA/V  
µA/V  
CMRR  
PSRR  
–I  
Power Supply Rejection Ratio  
V = ±1.5V to ±6V (Note 6)  
S
60  
85  
2
60  
85  
2
dB  
Inverting Input Current  
Power Supply Rejection  
V = ±1.5V to ±6V (Note 6)  
S
±7  
±8  
±7  
±8  
µA/V  
µA/V  
PSRR  
I
Supply Current per Amplifier  
6
8.5  
10  
5.8  
8.3  
9
mA  
mA  
S
62101f  
3
LT6210/LT6211  
ELECTRICAL CHARACTERISTICS (I = 6mA per Amplifier) The denotes specifications which apply  
S
over the specified operating temperature range, otherwise specifications are at TA = 25°C. For V+ = 5V, V= 5V: RSET = 20k to  
ground, AV = +2, RF = RG = 887, RL = 150; For V+ = 3V, V= 0V: RSET = 0to V, AV = +2, RF = 887, RG = 887to 1.5V,  
RL = 150to 1.5V unless otherwise specified.  
V+ = 5V, V= –5V, I = 6mA  
V+ = 3V, V= 0V, I = 6mA  
S
S
SYMBOL PARAMETER  
Maximum Output Current  
CONDITIONS  
MIN  
TYP  
MAX MIN  
TYP  
MAX UNITS  
I
R = 0Ω  
±75  
±45  
mA  
OUT  
L
(Notes 7, 11)  
+
R
Transimpedance, V /I –  
V
= V – 1.2V to V + 1.2V  
65  
115  
700  
1.5  
65  
115  
200  
2.4  
kΩ  
V/µs  
ns  
OL  
OUT IN  
OUT  
SR  
Slew Rate  
(Note 8)  
50% V to 50% V  
500  
t
Propagation Delay  
,
OUT  
pd  
IN  
100mV , Larger of t +, t –  
pd  
P-P  
pd  
BW  
–3dB Bandwidth  
Settling Time  
<1dB Peaking, A = 1  
200  
20  
120  
25  
MHz  
ns  
V
t
To 0.1% of V  
, V  
= 2V  
s
FINAL STEP  
t , t  
Small-Signal Rise and Fall Time 10% to 90%, V  
= 100mV  
P-P  
2
3.5  
ns  
f
r
OUT  
dG  
dP  
Differential Gain  
(Note 9)  
0.20  
0.10  
–70  
–75  
0.35  
0.20  
–65  
–75  
%
Differential Phase  
(Note 9)  
Deg  
dBc  
dBc  
HD2  
HD3  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
f = 1MHz, V  
f = 1MHz, V  
= 2V  
= 2V  
OUT  
OUT  
P-P  
P-P  
(I = 3mA per Amplifier) The denotes specifications which apply over the specified operating temperature range,  
S
otherwise specifications are at TA = 25°C. For V+ = 5V, V= 5V: RSET = 56k to ground, AV = +2, RF = RG = 1.1k, RL = 150;  
For V+ = 3V, V= 0V: RSET = 10k to V, AV = +2, RF = 1.27k, RG = 1.27k to 1.5V, RL = 150to 1.5V unless otherwise specified.  
V+ = 5V, V= –5V, I = 3mA  
V+ = 3V, V= 0V, I = 3mA  
S
S
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX MIN  
TYP  
MAX UNITS  
V
Input Offset Voltage  
–1  
±5.5  
±8.5  
–1.5  
±5.5  
±8.5  
mV  
mV  
OS  
I +  
IN  
Noninverting Input Current  
Inverting Input Current  
Input Noise Voltage Density  
–1.5  
–12  
7
±5  
±7  
–1.5  
–3  
7
±5  
±7  
µA  
µA  
I –  
IN  
±36  
±52  
±15  
±20  
µA  
µA  
e
f = 1kHz, R = 1.1k,  
nV/Hz  
n
F
R = 57.6, R = 0Ω  
G
S
+i  
–i  
Input Noise Current Density  
Input Noise Current Density  
Noninverting Input Resistance  
f = 1kHz  
1.5  
15  
1.5  
15  
2.5  
2
pA/Hz  
pA/Hz  
MΩ  
pF  
n
n
f = 1kHz  
+
R +  
IN  
V
= V – 1.2V to V + 1.2V  
0.5  
3.8  
3
1
IN  
C +  
IN  
Noninverting Input Capacitance f = 100kHz  
2
V
V
V
Input Voltage Range, High  
Input Voltage Range, Low  
Output Voltage Swing, High  
(Note 10)  
(Note 10)  
4.1  
–4.1  
1.8  
2.1  
0.9  
V
INH  
–3.8  
1.2  
V
INL  
R = 1k (Note 11)  
4.8  
4.6  
2.9  
2.8  
V
V
V
OUTH  
L
R = 150(Note 11)  
4.3  
4.1  
2.6  
2.55  
L
R = 150(Note 11)  
L
V
Output Voltage Swing, Low  
R = 1k (Note 11)  
L
–4.95  
–4.8  
0.05  
0.1  
V
V
V
OUTL  
L
R = 150(Note 11)  
–4.55  
–4.4  
0.3  
0.35  
R = 150(Note 11)  
L
+
CMRR  
–I  
Common Mode Rejection Ratio  
V
= V – 1.2V to V + 1.2V  
46  
43  
50  
46  
dB  
dB  
IN  
IN  
+
Inverting Input Current  
Common Mode Rejection  
V
= V – 1.2V to V + 1.2V  
0.3  
±1.5  
±2  
0.4  
µA/V  
µA/V  
CMRR  
62101f  
4
LT6210/LT6211  
ELECTRICAL CHARACTERISTICS  
(I = 3mA per Amplifier) The denotes specifications which apply  
S
over the specified operating temperature range, otherwise specifications are at TA = 25°C. For V+ = 5V, V= 5V: RSET = 56k to ground,  
AV = +2, RF = RG = 1.1k, RL = 150; For V+ = 3V, V= 0V: RSET = 10k to V, AV = +2, RF = 1.27k, RG = 1.27k to 1.5V, RL = 150to 1.5V  
unless otherwise specified.  
V+ = 5V, V= –5V, I = 3mA V+ = 3V, V= 0V, I = 3mA  
S
S
SYMBOL PARAMETER  
PSRR Power Supply Rejection Ratio  
–I  
CONDITIONS  
V = ±1.5V to ±6V (Note 6)  
MIN  
TYP  
MAX MIN  
TYP  
MAX UNITS  
60  
85  
60  
85  
dB  
S
Inverting Input Current  
Power Supply Rejection  
V = ±1.5V to ±6V (Note 6)  
S
1.5  
±7  
±8  
1.5  
±7  
±8  
µA/V  
µA/V  
PSRR  
I
I
Supply Current per Amplifier  
Maximum Output Current  
3
4.1  
4.55  
3
4.1  
4.4  
mA  
mA  
S
R = 0Ω  
±70  
±45  
mA  
OUT  
L
(Notes 7, 11)  
+
R
Transimpedance, V /I –  
V
= V –1.2V to V +1.2V  
65  
120  
600  
3.1  
65  
120  
150  
4.7  
kΩ  
V/µs  
ns  
OL  
OUT IN  
OUT  
SR  
Slew Rate  
(Note 8)  
50% V to 50% V  
450  
t
Propagation Delay  
,
OUT  
pd  
IN  
100mV  
Larger of t +, t –  
P-P,  
pd pd  
BW  
–3dB Bandwidth  
Settling Time  
<1dB Peaking, A = 1  
100  
20  
70  
25  
MHz  
ns  
V
t
To 0.1% of V  
, V  
= 2V  
s
FINAL STEP  
t , t  
Small-Signal Rise and Fall Time 10% to 90%, V  
= 100mV  
P-P  
3
5.6  
ns  
f
r
OUT  
dG  
dP  
Differential Gain  
(Note 9)  
0.35  
0.30  
–65  
–65  
0.42  
0.44  
–60  
–65  
%
Differential Phase  
(Note 9)  
Deg  
dBc  
dBc  
HD2  
HD3  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
f = 1MHz, V  
f = 1MHz, V  
= 2V  
= 2V  
OUT  
OUT  
P-P  
P-P  
(I = 300µA per Amplifier) The denotes specifications which apply over the specified operating temperature range,  
S
otherwise specifications are at TA = 25°C. For V+ = 5V, V= 5V: RSET = 1M to ground, AV = +2, RF = RG = 11k, RL = 1k; For V+ = 3V,  
V= 0V: RSET = 270k to V, AV = +2, RF = 9.31k, RG = 9.31k to 1.5V, RL = 1k to 1.5V unless otherwise specified.  
V+ = 5V, V= –5V, I = 300  
µ
A
V+ = 3V, V= 0V, I = 300  
µ
A
S
S
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX MIN  
TYP  
MAX UNITS  
V
Input Offset Voltage  
–1  
±4.5  
±8  
–1.5  
±4.5  
±8  
mV  
mV  
OS  
I +  
IN  
Noninverting Input Current  
Inverting Input Current  
Input Noise Voltage Density  
0.2  
–3  
±1  
±2  
0.2  
±1  
±1.5  
µA  
µA  
I –  
IN  
±8.5  
±11  
–0.5  
13.5  
±3  
±4.5  
µA  
µA  
e
f = 1kHz, R = 13k, R = 681,  
S
13.5  
nV/Hz  
n
F
G
R = 0Ω  
+i  
–i  
Input Noise Current Density  
Input Noise Current Density  
Noninverting Input Resistance  
f = 1kHz  
0.75  
5
0.75  
5
pA/Hz  
pA/Hz  
n
n
f = 1kHz  
+
R +  
IN  
V
= V – 1.2V to V + 1.2V  
IN  
(Note 8)  
1
25  
2
1
15  
2
MΩ  
pF  
V
C +  
IN  
Noninverting Input Capacitance f = 100kHz  
V
V
V
Input Voltage Range, High  
Input Voltage Range, Low  
Output Voltage Swing, High  
(Note 10)  
(Note 10)  
3.8  
4.1  
–4.1  
4.85  
1.8  
2.1  
0.9  
2.85  
INH  
–3.8  
1.2  
V
INL  
R = 1k (Note 11)  
L
4.75  
4.7  
2.75  
2.7  
V
V
OUTH  
V
Output Voltage Swing, Low  
R = 1k (Note 11)  
L
–4.95  
–4.85  
–4.8  
0.05  
0.15  
0.2  
V
V
OUTL  
62101f  
5
LT6210/LT6211  
ELECTRICAL CHARACTERISTICS  
(I = 300µA per Amplifier) The denotes specifications which  
S
apply over the specified operating temperature range, otherwise specifications are at TA = 25°C. For V+ = 5V, V= 5V: RSET = 1M to  
ground, AV = +2, RF = RG = 11k, RL = 1k; For V+ = 3V, V= 0V: RSET = 270k to V, AV = +2, RF = 9.31k, RG = 9.31k to 1.5V, RL = 1k to  
1.5V unless otherwise specified.  
V+ = 5V, V= –5V, I = 300  
µA  
V+ = 3V, V= 0V, I = 300  
µA  
S
S
SYMBOL PARAMETER  
CMRR Common Mode Rejection Ratio  
CONDITIONS  
MIN  
TYP  
MAX MIN  
TYP  
MAX UNITS  
+
V
= V – 1.2V to V + 1.2V  
46  
43  
50  
46  
dB  
dB  
IN  
+
–I  
Inverting Input Current  
Common Mode Rejection  
V
= V – 1.2V to V + 1.2V  
0.15  
±1.5  
±2  
0.2  
µA/V  
µA/V  
CMRR  
IN  
PSRR  
–I  
Power Supply Rejection Ratio  
V = ±1.5V to ±6V (Note 6)  
60  
85  
60  
85  
dB  
S
Inverting Input Current  
Power Supply Rejection  
V = ±1.5V to ±6V (Note 6)  
0.4  
±2.2  
±4  
0.4  
±2.2  
±4  
µA/V  
µA/V  
PSRR  
S
I
I
Supply Current per Amplifier  
0.3  
0.525  
0.6  
0.3  
0.38  
0.43  
mA  
mA  
S
Maximum Output Current  
R = 0Ω  
(Notes 7, 11)  
±30  
±10  
mA  
OUT  
L
+
R
Transimpedance, V /I –  
V
= V – 1.2V to V + 1.2V  
300  
120  
660  
170  
30  
65  
120  
20  
kΩ  
V/µs  
ns  
OL  
OUT IN  
OUT  
SR  
Slew Rate  
(Note 8)  
50% V to 50% V ,  
OUT  
t
Propagation Delay  
50  
pd  
IN  
100mV , Larger of t +, t –  
P-P  
pd  
pd  
BW  
–3dB Bandwidth  
Settling Time  
<1dB Peaking, A = 1  
10  
200  
40  
7.5  
300  
50  
MHz  
ns  
V
t
To 0.1% of V  
, V  
= 2V  
s
FINAL STEP  
t , t  
Small-Signal Rise and Fall Time 10% to 90%, V  
= 100mV  
P-P  
ns  
f
r
OUT  
HD2  
HD3  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
f = 1MHz, V  
f = 1MHz, V  
= 2V  
= 2V  
–40  
–45  
–45  
–45  
dBc  
dBc  
OUT  
OUT  
P-P  
P-P  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
T is calculated from the ambient temperature T and the power dissipa-  
J A  
tion P according to the following formula:  
D
Note 2: As long as output current and junction temperature are kept below  
the absolute maximum ratings, no damage to the part will occur.  
Depending on the supply voltage, a heat sink may be required.  
Note 3: The LT6210C/LT6211C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 4: The LT6210C/LT6211C is guaranteed to meet specified perfor-  
mance from 0°C to 70°C. The LT6210C/LT6211C is designed, character-  
ized and expected to meet specified performance from –40°C and 85°C  
but is not tested or QA sampled at these temperatures. The LT6210I/  
T = T + (P • θ )  
J A D JA  
The maximum power dissipation can be calculated by:  
2
P
= (V • I  
) + (V /2) /R  
D(MAX)  
S
S(MAX)  
S
LOAD  
Note 6: For PSRR and –I  
constant, maintaining a consistent LT6210/LT6211 quiescent bias point. A  
graph of PSRR vs Frequency is included in the Typical Performance  
Characteristics showing +PSRR and –PSRR with R connecting I to  
testing, the current into the I pin is  
PSRR  
SET  
SET  
SET  
ground.  
Note 7: While the LT6210 and LT6211 circuitry is capable of significant  
output current even beyond the levels specified, sustained short-circuit  
current exceeding the Absolute Maximum Rating of ±80mA may  
permanently damage the device.  
Note 8: This parameter is guaranteed to meet specified performance  
through design and characterization. It is not production tested.  
Note 9: Differential gain and phase are measured using a Tektronix  
TSG120YC/NTSC signal generator and a Tektronix 1780R Video Measure-  
ment Set. The resolution of this equipment is 0.1% and 0.1°. Five identical  
amplifier stages were cascaded giving an effective resolution of 0.02% and  
0.02°.  
Note 10: Input voltage range on ±5V dual supplies is guaranteed by  
CMRR. On 3V single supply it is guaranteed by design and by correlation  
to the ±5V input voltage range limits.  
LT6211I is guaranteed to meet specified performance from –40°C to 85°C.  
Note 5: The LT6210 with no metal connected to the V pin has a θ of  
JA  
230°C/W, however, thermal resistances vary depending upon the amount  
of PC board metal attached to Pin 2 of the device. With the LT6210  
2
mounted on a 2500mm 3/32" FR-4 board covered with 2oz copper on  
2
both sides and with just 20mm of copper attached to Pin 2, θ drops to  
JA  
160°C/W. Thermal performance can be improved even further by using a  
4-layer board or by attaching more metal area to Pin 2.  
2
Thermal resistance of the LT6211 in MSOP-10 is specified for a 2500mm  
3/32" FR-4 board covered with 2oz copper on both sides and with 100mm  
of copper attached to Pin 5. Its performance can also be increased with  
additional copper much like the LT6210.  
2
To achieve the specified θ of 43°C/W for the LT6211 DFN-10, the  
JA  
exposed pad must be soldered to the PCB. In this package, θ will benefit  
JA  
Note 11: This parameter is tested by forcing a 50mV differential voltage  
between the inverting and noninverting inputs.  
from increased copper area attached to the exposed pad.  
62101f  
6
LT6210/LT6211  
W U  
TYPICAL AC PERFOR A CE  
I (mA) per  
Amplifier  
SMALL-SIGNAL  
() – 3dB BW, <1dB PEAKING (MHz)  
SMALL-SIGNAL  
±0.1dB BW (MHz)  
S
V (V)  
S
R
()  
A
V
R ()  
L
R ()  
F
R
SET  
G
±5  
±5  
6
6
20k  
1
150  
150  
150  
150  
150  
150  
1k  
1200  
887  
200  
160  
140  
100  
100  
80  
30  
30  
20  
15  
15  
15  
2
20k  
20k  
56k  
56k  
56k  
1MEG  
1MEG  
1MEG  
0
2
–1  
1
887  
698  
±5  
6
698  
±5  
3
1690  
1100  
1200  
13.7k  
11k  
±5  
3
2
1100  
1200  
±5  
3
–1  
1
±5  
0.3  
0.3  
0.3  
6
10  
±5  
2
1k  
11k  
10k  
10  
2
±5  
–1  
1
1k  
10k  
10  
1.8  
20  
20  
20  
15  
15  
15  
2
3, 0  
3, 0  
3, 0  
3, 0  
3, 0  
3, 0  
3, 0  
3, 0  
3, 0  
150  
150  
150  
150  
150  
150  
1k  
1100  
887  
120  
100  
100  
70  
6
0
2
887  
806  
6
0
–1  
1
806  
3
10k  
10k  
10k  
270k  
270k  
270k  
1540  
1270  
1200  
13k  
3
2
1270  
1200  
60  
3
–1  
1
60  
0.3  
0.3  
0.3  
7.5  
7
2
1k  
9.31k  
10k  
9.31k  
10k  
1.5  
1.5  
–1  
1k  
7
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current per Amplifier vs  
Temperature  
Supply Current per Amplifier vs  
Temperature  
Supply Current per Amplifier vs  
Temperature  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
R
=  
R
= ∞  
R = ∞  
L
L
L
V
= ±5V  
S
V
= ±5V  
S
V
= ±1.5V  
R
= 1M TO GND  
S
SET  
R
= 20k TO GND  
SET  
R
= 10k TO V  
SET  
V
= ±1.5V  
SET  
S
V
= ±1.5V  
SET  
V
= ±5V  
SET  
S
S
R
= 0TO V  
R
= 270k TO V  
R
= 56k TO GND  
–25  
0
25  
50  
75  
100  
125  
–50  
50  
100 125  
–50 –25  
0
25  
75  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6210 G02  
6210 G01  
6210 G03  
62101f  
7
LT6210/LT6211  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
(Supply Current Is Measured Per Amplifier)  
Input Noise Spectral Density  
(IS = 6mA per Amplifier)  
Input Noise Spectral Density  
(IS = 3mA per Amplifier)  
Input Noise Spectral Density  
(IS = 300µA per Amplifier)  
100  
100  
10  
1
100  
10  
1
V
= ±5V  
= 150Ω  
= 25°C  
V
= ±5V  
= 150Ω  
= 25°C  
V
S
= ±5V  
= 1k  
= 25°C  
S
L
S
L
R
T
R
T
R
T
L
A
–i  
n
A
A
–i  
n
e
n
+i  
n
e
n
e
n
10  
1
–i  
n
+i  
n
+i  
n
0.1  
0.1  
0.1  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
62101GO4  
62101GO5  
62101GO6  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Common Mode Range vs  
Temperature  
Input Common Mode Range vs  
Temperature  
20  
15  
5.0  
4.5  
4.0  
1.5  
1.0  
I
= 300µA  
S
F
I
= 300µA  
S
F
R = 13.7k  
R = 13k  
R
= 1k  
L
R
= 1k  
L
10  
I
= 300µA  
S
F
R = 13.7k  
0.5  
5
R = 1k  
L
I
= 6mA  
I
= 3mA  
I
= 6mA  
I = 3mA  
S
S
F
S
F
S
F
I
= 3mA  
S
F
R = 1200Ω  
R = 1690Ω  
R = 1100Ω  
R = 1540Ω  
F
0
0
R = 1690Ω  
R
= 150Ω  
R
= 150Ω  
R
= 150Ω  
R = 150Ω  
L
L
L
L
R
= 150Ω  
L
–5  
–4.0  
–4.5  
–5.0  
–0.5  
–1.0  
–1.5  
–10  
–15  
–20  
V
A
T
= ±5V  
= 1  
V
A
= ±5V  
V
A
= ±1.5V  
S
V
A
S
V
S
V
I
= 300µA  
I
= 300µA  
I
= 6mA  
S
F
S
F
S
F
= 1  
= 1  
R = 13.7k  
R = 13k  
R = 1200Ω  
= 25°C  
CMRR > 48dB  
TYPICAL PART  
CMRR >46dB  
R
= 1k  
R
= 1k  
R
= 150Ω  
L
L
L
TYPICAL PART  
TYPICAL PART  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
–50 –25  
0
25  
50  
75  
100 125  
–50 –25  
0
25  
50  
75  
100 125  
INPUT COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
62101 G07  
62101 G08  
62101 G09  
Output Voltage Swing vs  
Temperature  
Output Voltage Swing vs  
Temperature  
Output Voltage Swing vs ILOAD  
5.0  
4.8  
4.6  
4.4  
1.5  
1.4  
1.3  
1.2  
1.1  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
OUTPUT HIGH  
OUTPUT HIGH  
I
S
I
S
= 3mA  
= 6mA  
I
= 6mA  
L
S
I
= 300µA  
L
S
I
= 300µA  
L
S
R
R
= 1k  
I
= 6mA  
L
R
= 1k  
I
= 6mA  
L
S
S
= 1k  
R
= 150Ω  
R
= 100Ω  
V
CM  
V = 50mV  
= ±5V  
S
V
V
= ±1.5V  
S
V
= 0V  
= 0V  
I
S
= 300µA  
CM  
–1.1  
–1.2  
–1.3  
–1.4  
–1.5  
OS  
V = 50mV  
OS  
–4.4  
–4.6  
–4.8  
–5.0  
I
= 6mA  
L
S
I
= 6mA  
L
S
R
= 150Ω  
R
= 100Ω  
I
= 300µA  
= 1k  
S
L
I
= 300µA  
I
= 6mA  
= 1k  
S
R
S
L
V
V
= ±5V  
R
S
= 1k  
–25  
R
L
= 0V  
CM  
V = 50mV  
OS  
OUTPUT LOW  
OUTPUT LOW  
25 50  
TEMPERATURE (°C)  
T
= 25°C  
A
–25  
0
25  
50  
75  
125  
0
75  
125  
–50  
100  
–50  
100  
20  
LOAD CURRENT (mA)  
0
10  
30  
40  
50  
60 70  
TEMPERATURE (°C)  
6210 G10  
6210 G11  
6210 G12  
62101f  
8
LT6210/LT6211  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Supply Current Is Measured Per Amplifier)  
Output Voltage Swing vs ILOAD  
Output Voltage Swing vs ILOAD  
Output Voltage Swing vs ILOAD  
–3.0  
–3.2  
–3.4  
–3.6  
–3.8  
–4.0  
–4.2  
–4.4  
–4.6  
–4.8  
–5.0  
V
V
= ±5V  
V
V
= ±1.5V  
S
S
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.1  
–0.3  
–0.5  
–0.7  
–0.9  
–1.1  
–1.3  
–1.5  
= 0V  
= 0V  
CM  
CM  
V = 50mV  
I
S
I
S
= 3mA  
= 6mA  
V = 50mV  
OS  
OS  
T
= 25°C  
T
= 25°C  
A
A
I
S
= 300µA  
I
S
= 300µA  
V
V
= ±1.5V  
S
I
S
= 300µA  
= 0V  
CM  
I
S
I
S
= 3mA  
= 6mA  
V = 50mV  
I
= 3mA  
= 6mA  
OS  
S
S
T
= 25°C  
I
A
20  
LOAD CURRENT (mA)  
0
10  
30  
40  
50  
60 70  
20  
LOAD CURRENT (mA)  
40  
50  
60 70  
0
10  
30  
20  
0
10  
30  
40  
50  
60 70  
LOAD CURRENT (mA)  
6210 G14  
6210 G13  
6210 G15  
CMRR and PSRR vs Frequency  
(IS = 6mA per Amplifier)  
CMRR and PSRR vs Frequency  
(IS = 3mA per Amplifier)  
CMRR and PSRR vs Frequency  
(IS = 300µA per Amplifier)  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
= ±5V  
= 150Ω  
= 25°C  
V
= ±5V  
= 150Ω  
= 25°C  
V
S
= ±5V  
= 1k  
= 25°C  
S
L
S
L
–PSRR  
–PSRR  
+PSRR  
R
–PSRR  
+PSRR  
R
R
L
T
T
A
T
A
A
+PSRR  
CMRR  
CMRR  
CMRR  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6210 G18  
6210 G16  
6210 G17  
Frequency Response vs Closed  
Loop Gain (IS = 300µA per  
Amplifier)  
Frequency Response vs Closed  
Loop Gain (IS = 6mA per Amplifier)  
Frequency Response vs Closed  
Loop Gain (IS = 3mA per Amplifier)  
9
6
9
6
9
6
A
V
= 2  
A
V
= 2  
A
V
= 2  
R = R = 1100Ω  
R = R = 887Ω  
R = R = 11k  
F
G
F
G
F
G
3
3
3
A
= 1  
V
F
R = 13.7k  
0
0
0
A
= 1  
V
A
= –1  
V
R = 1.2k  
F
A
G
= –1  
V
V
= ±5V  
= 150Ω  
= 25°C  
V
= ±5V  
= 150Ω  
= 25°C  
V
= ±5V  
= 150Ω  
= 25°C  
S
L
S
L
R = R = 1200Ω  
S
L
F
G
R = R = 10k  
–3  
–3  
–3  
F
R
T
R
T
R
T
A
V
= –1  
A
A
A
= 1  
A
V
R = R = 698Ω  
F
G
V
OUT  
= 100mV  
V
OUT  
= 100mV  
V
OUT  
= 100mV  
P-P  
P-P  
R = 1690Ω  
P-P  
F
–6  
–6  
–6  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6210 G19  
6210 G20  
6210 G21  
62101f  
9
LT6210/LT6211  
U W  
(Supply Current Is Measured Per Amplifier)  
TYPICAL PERFOR A CE CHARACTERISTICS  
2nd and 3rd Harmonic Distortion vs  
Frequency (IS = 6mA per Amplifier)  
2nd and 3rd Harmonic Distortion vs  
Frequency (IS = 300µA per Amplifier)  
2nd and 3rd Harmonic Distortion vs  
Frequency (IS = 3mA per Amplifier)  
0
10  
20  
30  
– 40  
50  
60  
–70  
0
10  
20  
30  
– 40  
50  
60  
–70  
0
10  
20  
30  
– 40  
50  
60  
–70  
V
= ±5V  
G
V
= ±5V  
G
V
= ±5V  
S
S
F
S
F
R
V
= R = 11k  
R
V
= R = 887Ω  
R
= R = 1.1k  
F G  
= 2V  
= 2V  
V
R
= 2V  
P-P  
OUT  
P-P  
OUT  
P-P  
OUT  
L
R
= 1k  
R
= 150Ω  
= 150Ω  
L
L
T
= 25°C  
T
A
= 25°C  
T
A
= 25°C  
A
HD2  
HD2  
HD3  
HD2  
HD3  
HD3  
80  
90  
–100  
80  
90  
–100  
80  
90  
–100  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6210 G24  
6210 G22  
6210 G23  
Maximum Undistorted Output  
Sinusoid vs Frequency  
LT6211 Channel Separation  
vs Frequency  
Output Impedance vs Frequency  
10  
9
8
7
6
5
4
3
2
1
0
120  
100  
80  
60  
40  
20  
0
1000  
100  
V
S
= ±5V  
V
A
T
= ±5V  
= 2  
= 25°C  
S
V
A
HD2, HD3 <–40dB  
A
= 2  
V
T
A
= 25°C  
I
R
R
= 300µA  
S
F
R
= ∞  
L
I
R
R
= 6mA  
= R = 11k  
S
F
G
= R = 887Ω  
= 1k  
G
L
= 150Ω  
L
10  
1
R = 150Ω  
L
I
R
R
= 6mA  
S
F
= R = 887Ω  
G
I
R
R
= 300µA  
S
F
= 150Ω  
V
I
= ±5V  
L
= R = 11k  
S
G
= 6mA  
= 1k  
S
L
R
= R = 887Ω  
F
G
T
A
= 25°C  
0.1  
0.1  
1
10  
100  
0.1  
10  
FREQUENCY (MHz)  
500  
0.1  
1
10  
FREQUENCY (MHz)  
100  
500  
1
100  
FREQUENCY (MHz)  
6210 G26  
6210 G27  
6210 G25  
Maximum Capacitive Load vs  
Feedback Resistor  
Maximum Capacitive Load vs  
Output Series Resistor  
Overshoot vs Capacitive Load  
50  
45  
40  
70  
60  
50  
40  
30  
20  
10  
0
10000  
1000  
100  
V
= ±5V  
V = ±5V  
S
S
OVERSHOOT < 10%  
= 100mV  
AC PEAKING < 3dB  
V = 100mV  
I
R
R
= 3mA  
S
F
V
S
OUT  
= 6mA  
P-P  
OUT  
I = 6mA  
S
P-P  
= R = 1100Ω  
G
I
= 150Ω  
L
R
R
T
= R = 887Ω  
R
R
T
= R  
F
F
L
A
G
G
L
35  
30  
I
R
R
= 300µA  
= ∞  
= 150Ω  
= 25°C  
S
F
= R = 11k  
= 25°C  
G
A
= 1k  
L
25  
20  
15  
10  
5
V
A
V
= ±5V  
S
V
I
R
R
= 6mA  
= 2  
S
F
= R = 887Ω  
= 100mV  
OUT  
= 25°C  
A
G
P-P  
10000  
= 150Ω  
T
L
0
10  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
10  
100  
1000  
800 1000 1200 1400 1600 1800 2000  
CAPACITIVE LOAD (pF)  
FEEDBACK RESISTANCE ()  
6210 G30  
6210 G29  
6210 G28  
62101f  
10  
LT6210/LT6211  
U W  
(Supply Current Is Measured Per Amplifier)  
TYPICAL PERFOR A CE CHARACTERISTICS  
–3dB Small-Signal Bandwidth  
vs Supply Current  
1MHz 2nd and 3rd Harmonic  
Distortion vs Supply Current  
Slew Rate vs Supply Current  
1000  
100  
10  
–30  
–40  
–50  
–60  
–70  
–80  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
A
V
A
= 2  
OUT  
= 25°C  
V
A
V
= ±5V  
V
A
V
= ±5V  
V
S
V
S
V
= 100mV  
= 2  
= 2  
P-P  
T
= 7V  
= 2V  
OUT  
P-P  
OUT  
P-P  
T
= 25°C  
T = 25°C  
A
A
V
= ±5V  
S
RISING  
EDGE RATE  
HD2  
V
= ±1.5V  
S
FALLING  
EDGE RATE  
HD3  
1
10  
0.1  
1
SUPPLY CURRENT PER AMPLIFIER (mA)  
10  
0.1  
1
0.1  
1
10  
SUPPLY CURRENT PER AMPLIFIER (mA)  
SUPPLY CURRENT PER AMPLIFIER (mA)  
62101 G32  
62101 G31  
62101 G33  
Small-Signal Transient Response  
(IS = 300µA per Amplifier)  
Small-Signal Transient Response  
(IS = 6mA per Amplifier)  
Small-Signal Transient Response  
(IS = 3mA per Amplifier)  
V
V
R
R
R
= ±5V  
V
V
R
R
R
= ±5V  
V
V
R
R
R
= ±5V  
TIME (10ns/DIV)  
TIME (10ns/DIV)  
TIME (100ns/DIV)  
S
S
S
= ±25mV  
= ±25mV  
= ±25mV  
IN  
IN  
IN  
= R = 887Ω  
= R = 1.1k  
= R = 11k  
F
G
F
G
F
G
= 20k TO GND  
= 150Ω  
= 56k TO GND  
= 150Ω  
= 1M TO GND  
= 1k  
SET  
SET  
SET  
L
L
L
62101 G34  
62101 G35  
62101 G36  
Large-Signal Transient Response  
(IS = 6mA per Amplifier)  
Large-Signal Transient Response  
(IS = 3mA per Amplifier)  
Large-Signal Transient Response  
(IS = 300µA per Amplifier)  
V
V
R
R
R
= ±5V  
V
V
R
R
R
= ±5V  
V
V
R
R
R
= ±5V  
TIME (10ns/DIV)  
TIME (10ns/DIV)  
TIME (100ns/DIV)  
S
S
S
= ±1.75V  
= ±1.75V  
= ±1.75V  
IN  
IN  
IN  
= R = 887Ω  
= R = 1.1k  
= R = 11k  
F
G
F
G
F
G
= 20k TO GND  
= 150Ω  
= 56k TO GND  
= 150Ω  
= 1M TO GND  
= 1k  
SET  
SET  
SET  
L
L
L
62101 G37  
62101 G38  
62101 G39  
62101f  
11  
LT6210/LT6211  
W U U  
U
APPLICATIO S I FOR ATIO  
Input Considerations  
Setting the Quiescent Operating Current (ISET Pin)  
The inputs of the LT6210/LT6211 are protected by back-  
to-back diodes. If the differential input voltage exceeds  
1.4V, the input current should be limited to less than the  
absolute maximum ratings of ±10mA. In normal opera-  
tion, thedifferentialvoltagebetweentheinputsissmall, so  
the ±1.4V limit is generally not an issue. ESD diodes  
protect both inputs, so although the part is not guaranteed  
to function outside the common mode range, input volt-  
ages that exceed a diode beyond either supply will also  
require current limiting to keep the input current below the  
absolute maximum of ±10mA.  
The quiescent bias point of the LT6210/LT6211 is set with  
either an external resistor from the ISET pin to a lower  
potential or by drawing a current out of the ISET pin.  
However, the ISET pin is not designed to function as a  
shutdown.TheLT6211usestwoentirelyindependentbias  
networks, so while each channel can be programmed for  
a different supply current, neither ISET pin should be left  
unconnected. A simplified schematic of the internal bias-  
ing structure can be seen in Figure 1. Figure 2 illustrates  
the results of varying RSET on 3V and ±5V supplies. Note  
that shorting the ISET pin under 3V operation results in a  
quiescent bias of approximately 6mA. Attempting to bias  
the LT6210/LT6211 at a current level higher than 6mA by  
using a smaller resistor may result in instability and  
decreasedperformance.However,internalcircuitryclamps  
the supply current of the part at a safe level of approxi-  
mately 15mA in case of accidental connection of the ISET  
pin directly to a negative potential.  
Feedback Resistor Selection  
The small-signal bandwidth of the LT6210/LT6211 is set  
bytheexternalfeedbackresistorsandtheinternaljunction  
capacitances.Asaresult,thebandwidthisafunctionofthe  
quiescent supply current, the supply voltage, the value of  
the feedback resistor, the closed-loop gain and the load  
resistor. Refer to the Typical AC Performance table for  
more information.  
+
V
6
600  
600Ω  
Layout and Passive Components  
As with all high speed amplifiers, the LT6210/LT6211  
require some attention to board layout. Low ESL/ESR  
bypass capacitors should be placed directly at the positive  
and negative supply (0.1µF ceramics are recommended).  
Forbesttransientperformance,additional4.7µFtantalums  
should be added. A ground plane is recommended and  
trace lengths should be minimized, especially on the  
inverting input lead.  
TO  
8k  
BIAS  
CONTROL  
5
I
6210 F01  
SET  
Figure 1. Internal Bias Setting Circuitry  
V
= ±5V  
S
R
TO GND  
SET  
10  
Capacitance on the Inverting Input  
Current feedback amplifiers require resistive feedback  
from the output to the inverting input for stable operation.  
Capacitanceontheinvertinginputwillcausepeakinginthe  
frequency response and overshoot in the transient re-  
sponse. Take care to minimize the stray capacitance at the  
inverting input to ground and between the output and the  
inverting input. If significant capacitance is unavoidable in  
a given application, an inverting gain configuration should  
be considered. When configured inverting, the amplifier  
inputs do not slew and the effect of parasitics is greatly  
reduced.  
V
= 3V  
SET  
S
R
TO GND  
1
T
= 25°C  
= ∞  
A
L
R
0.1  
0.01  
0.1  
1
10  
100  
1000  
R
PROGRAMMING RESISTOR (k)  
SET  
6210 F02  
Figure 2. Setting RSET to Control IS  
62101f  
12  
LT6210/LT6211  
W U U  
APPLICATIO S I FOR ATIO  
U
Capacitive Loads  
that of the output stage. For gains less than 2 in the  
noninverting mode, the overall slew rate is limited by the  
input stage. The input slew rate of the LT6210/LT6211 on  
±5V supplies with an RSET resistor of 20k (IS = 6mA) is  
approximately 600V/µs and is set by internal currents and  
capacitances. The output slew rate is additionally con-  
strained by the value of the feedback resistor and internal  
capacitance. At a gain of 2 with 887feedback and gain  
resistors,±5Vsuppliesandthesamebiasingasabove,the  
output slew rate is typically 700V/µs. Larger feedback  
resistors, lower supply voltages and lower supply current  
levels will all reduce slew rate. Input slew rates signifi-  
cantly exceeding the output slew capability can actually  
decrease slew performance in a positive gain configura-  
tion; the cleanest transient response will be obtained from  
input signals with slew rates slower than 1000V/µs.  
The LT6210/LT6211 are stable with any capacitive load.  
Although peaking and overshoot may result in the AC  
transientresponse,theamplifier’scompensationdecreases  
bandwidth with increasing output capacitive load to en-  
sure stability. To maintain a response with minimal peak-  
ing, the feedback resistor can be increased at the cost of  
bandwidth as shown in the Typical Performance Charac-  
teristics. Alternatively, asmallresistor(5to35)canbe  
put in series with the output to isolate the capacitive load  
from the amplifier output. This has the advantage that the  
amplifier bandwidth is only reduced when the capacitive  
load is present. The disadvantage of this technique is that  
the gain is a function of the load resistance.  
Power Supplies  
Output Swing and Drive  
The LT6210/LT6211 will operate on single supplies from  
3V to 12V and on split supplies from ±1.5V to ±6V. If split  
supplies of unequal absolute value are used, input offset  
voltage and inverting input current will shift from the  
values specified in the Electrical Characteristics table.  
Input offset voltage will shift 2mV and inverting input  
current will shift 0.5µA for each volt of supply mismatch.  
The output stage of the LT6210/LT6211 consists of a pair  
of class-AB biased common emitters that enable the  
outputtoswingrail-to-rail.Sincetheamplifierscanpoten-  
tially deliver output currents well beyond the specified  
minimum short-circuit current, care should be taken not  
to short the output of the device indefinitely. Attention  
must be paid to keep the junction temperature of the IC  
below the absolute maximum rating of 150°C if the output  
is used to drive low impedance loads. See Note 5 for  
details. Additionally, the output of the amplifier has re-  
verse-biased ESD diodes connected to each supply. If the  
output is forced beyond either supply, large currents will  
flowthroughthesediodes.Ifthecurrentislimitedto80mA  
or less, no damage to the part will occur.  
Slew Rate  
Unlike a traditional voltage feedback op amp, the slew rate  
of a current feedback amplifier is not independent of the  
amplifier gain configuration. In a current feedback ampli-  
fier, both the input stage and the output stage have slew  
rate limitations. In the inverting mode, and for gains of 2  
or more in the noninverting mode, the signal amplitude  
between the input pins is small and the overall slew rate is  
U
TYPICAL APPLICATIO  
3V Cable Driver with Active Termination  
Figure 3 shows the LT6210 using this “active termination”  
schemeonasingle3Vsupply. TheamplifierisAC-coupled  
and in an inverting gain configuration to maximize the  
input signal range. The gain from VIN to the receiving end  
of the cable, VOUT, is set to –1. The effective impedance  
looking into the amplifier circuit from the cable is 50Ω  
throughout the usable bandwidth.  
Driving back-terminated cables on single supplies usually  
resultsinverylimitedsignalamplitudeatthereceivingend  
of the cable. However, positive feedback can be used to  
reduce the size of the series back termination resistor,  
therebydecreasingtheattenuationbetweentheseriesand  
shunt termination resistors while still maintaining con-  
trolled output impedance from the line-driving amplifier.  
62101f  
13  
LT6210/LT6211  
U
TYPICAL APPLICATIO  
The response of the cable driver with a 1MHz sinusoid is  
shown in Figure 4. The circuit is capable of transmitting  
a 1.5VP-P undistorted sinusoid to the 50termination  
3V  
resistor and has a full signal 1VP-P bandwidth of 50MHz.  
Small signal –3dB bandwidth extends from 1kHz to  
56MHz with the selected coupling capacitors.  
2k  
1%  
1.3k  
1%  
2k  
1%  
V
IN  
1V/DIV  
3V  
R
SER  
4
3
6
15  
+
2.2µF  
V
A
1%  
1
1V/DIV  
249Ω  
1%  
LT6210  
5
V
OUT  
2.2µF  
V
R
2
A
TERM  
V
IN  
50Ω  
V
6210 F03  
154Ω  
OUT  
3300pF  
NPO  
1V/DIV  
1%  
200ns/DIV  
6210 F04  
Figure 3. 3V Cable Driver with Active Termination  
Figure 4. Response of Circuit at 1MHz  
W
W
SI PLIFIED SCHE ATIC  
+
V
6
+
V
+IN  
3
–IN  
4
OUT  
1
OUTPUT BIAS  
CONTROL  
600  
600Ω  
V
8k  
SUPPLY  
CURRENT  
CONTROL  
5
V
I
SET  
2
6210 SS  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
R = 0.115  
0.38 ± 0.10  
TYP  
6
10  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
PACKAGE  
OUTLINE  
TOP MARK  
(SEE NOTE 5)  
(DD10) DFN 0403  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.10  
(2 SIDES)  
2.38 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
62101f  
14  
LT6210/LT6211  
U
PACKAGE DESCRIPTIO  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
10 9  
8
7 6  
REF  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
0.889 ± 0.127  
(.035 ± .005)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
5.23  
(.206)  
MIN  
1
2
3
4 5  
3.20 – 3.45  
(.126 – .136)  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
SEATING  
PLANE  
RECOMMENDED SOLDER PAD LAYOUT  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
MSOP (MS) 0603  
NOTE:  
0.50  
(.0197)  
BSC  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
62101f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT6210/LT6211  
U
TYPICAL APPLICATIO S  
Line Driver with Power Saving Mode  
bandwidth of the LT6210 in this circuit increases from  
about 40MHz in low power mode to over 200MHz in full  
speedmode, asillustratedinFigure6. OtherACspecsalso  
improve significantly at the higher current setting. The  
following table shows harmonic distortion at 1MHz with a  
2VP-P sinusoid at the two selected current levels.  
In applications where low distortion or high slew rate are  
desirable but not necessary at all times, it may be possible  
to decrease the LT6210 or LT6211’s quiescent current  
when the higher power performance is not required.  
Figure 5 illustrates a method of setting quiescent current  
with a FET switch. In the 5V dual supply case pictured,  
shorting the ISET pin through an effective 20k to ground  
sets the supply current to 6mA, while the 240k resistor at  
the ISET pin with the FET turned off sets the supply current  
to approximately 1mA. The feedback resistor of 4.02k is  
selected to minimize peaking in low power mode. The  
Harmonic Distortion  
LOW POWER  
–53dBc  
–46dBc  
FULL SPEED  
–68dBc  
–77dBc  
HD2  
HD3  
HD2  
HD3  
3
2
R3  
5V  
4.02k  
FULL  
1
SPEED  
MODE  
4
0
6
I = 6mA  
S
1
–1  
–2  
–3  
–4  
–5  
–6  
V
OUT  
LT6210  
5
V
LOW POWER  
MODE  
IN  
3
R
LOAD  
2
+
150  
I
= 1mA  
S
–5V  
HS/LP  
R2  
22k  
R1  
240k  
T
= 25°C  
OUT  
A
V
= 100mV  
P-P  
2N7002  
0
1
10  
100  
1000  
6210 F05  
FREQUENCY (MHz)  
6210 F06  
Figure 5. Line Driver with Low Power Mode  
Figure 6. Frequency Response for Full  
Speed and Low Power Mode  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1252/LT1253/LT1254 100MHz Low Cost Video Amplifiers  
Single, Dual and Quad Current Feedback Amplifiers  
Single, Dual and Quad Current Feedback Amplifiers  
Dual and Triple Current Feedback Amplifiers  
Dual Current Feedback Amplifier  
LT1395/LT1396/LT1397 400MHz, 800V/µs Amplifiers  
LT1398/LT1399  
LT1795  
300MHz Amplifiers with Shutdown  
50MHz, 500mA Programmable I Amplifier  
S
LT1806/LT1807  
325MHz, 140V/µs Rail-to-Rail I/O Amplifiers  
Single and Dual Voltage Feedback Amplifiers  
Single, Dual and Quad Voltage Feedback Amplifiers  
LT1815/LT1816/LT1817 220MHz, 1500V/µs Programmable I Operational Amplifier  
S
62101f  
LT/TP 0204 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY