LT6210IS6#PBF [Linear]

LT6210 - Single Programmable Supply Current, R-R Output, Current Feedback Amplifiers; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C;
LT6210IS6#PBF
型号: LT6210IS6#PBF
厂家: Linear    Linear
描述:

LT6210 - Single Programmable Supply Current, R-R Output, Current Feedback Amplifiers; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C

放大器 光电二极管 商用集成电路
文件: 总16页 (文件大小:276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6210/LT6211  
Single/Dual Programmable  
Supply Current, R-R Output,  
Current Feedback Amplifiers  
FEATURES  
DESCRIPTION  
The LT®6210/LT6211 are single/dual current feedback  
amplifiers with externally programmable supply current  
and bandwidth ranging from 10MHz at 300μA per ampli-  
fier to 200MHz at 6mA per amplifier. They feature a low  
distortion rail-to-rail output stage, 700V/μs slew rate and  
a minimum output current drive of 7±mA.  
n
Programmable Supply Current and Bandwidth:  
10MHz at 300μA per Amplifier up to  
200MHz at 6mA per Amplifier  
n
Rail-to-Rail Output:  
0.0±V to 2.8±V on 3V Single Supply  
n
High Slew Rate: 700V/μs  
High Output Drive:  
n
The LT6210/LT6211 operate on supplies as low as a single  
3V and up to either 12V or ±6V. The I pin allows for the  
optimization of quiescent current for specific bandwidth,  
distortionorslewraterequirements. Regardlessofsupply  
voltage, the supply current is programmable from just  
300μA to 6mA per amplifier with an external resistor or  
current source.  
±7±mA Minimum Output Current  
SET  
n
C-Load™ Op Amp Drives All Capacitive Loads  
n
Low Distortion:  
–70dB HD2 at 1MHz 2V  
–7±dB HD3 at 1MHz 2V  
Fast Settling:  
P-P  
P-P  
n
n
n
20ns 0.1% Settling for 2V Step  
Excellent Video Performance Into 150Ω Load:  
Differential Gain of 0.20%, Differential Phase of 0.10°  
Wide Supply Range:  
The LT6210 is available in the low profile (1mm) 6-lead  
TSOT-23 package. The LT6211 is available in the 10-lead  
MSOP and the 3mm × 3mm × 0.8mm DFN packages.  
3V to 12V Single Supply  
±1.±V to ±6V Dual Supplies  
APPLICATIONS  
n
Small Size:  
n
Buffers  
Low Profile (1mm) 6-Lead ThinSOT ,  
n
Video Amplifers  
3mm × 3mm × 0.8mm DFN and 10-Lead MSOP Packages  
n
Cable Drivers  
Mobile Communication  
Low Power/Battery Applications  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. C-Load is a Trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
n
n
TYPICAL APPLICATION  
Small Signal Response vs Supply Current  
Line Driver Configuration for Various Supply Currents  
9
3
I
S
= 3mA  
±V  
6
0
I
= 6mA  
S
3
4
7±Ω  
6
V
IN  
+
CABLE  
7±Ω  
I
= 300μA  
S
1
3
–3  
–6  
–9  
–12  
LT6210  
V
OUT  
±
7±Ω  
R
SET  
2
0
–±V  
R
F
V
A
= ±±V  
= 2  
S
V
A
–3  
I
S
R
SET  
R
R
R
LOAD  
T
= 2±°C  
G
F
R
G
V
= 100mV  
OUT  
P-P  
6mA  
3mA  
20k  
±6k  
1M  
887Ω  
1.1k  
11k  
887Ω  
1.1k  
11k  
1±0Ω  
1±0Ω  
1k  
–6  
0.1  
1
10  
100  
1000  
300μA  
FREQUENCY (MHz)  
6210 TA01  
6210 TA01b  
62101fb  
1
LT6210/LT6211  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
+
Total Supply Voltage (V to V )..............................13.2V  
Input Current (Note 8) .....................................±10mA  
Output Current.................................................±80mA  
Output Short-Circuit Duration (Note 2) ............ Indefinite  
Operating Temperature Range (Note 3).... –40°C to 8±°C  
Specified Temperature Range (Note 4) .... –40°C to 8±°C  
Junction Temperature (Note ±) ............................. 1±0°C  
Junction Temperature (DD Package)..................... 1±0°C  
Storage Temperature Range .................. –6±°C to 1±0°C  
Storage Temperature Range  
(DD Package)..................................... –6±°C to 1±0°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
PIN CONFIGURATION  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
±
10  
9
V
TOP VIEW  
TOP VIEW  
+
OUT B  
–IN B  
+IN B  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
±
10  
9
V
+
OUT 1  
6 V  
± I  
11  
OUT B  
–IN B  
+IN B  
8
+
+
+
8
V
2
SET  
I
A
7
SET  
I
A
7
6
+
SET  
+IN 3  
4 –IN  
V
6
I
B
SET  
V
I
B
SET  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
= 1±0°C, θ = 120°C/W (NOTE ±)  
S6 PACKAGE  
DD PACKAGE  
10-LEAD (3mm s 3mm) PLASTIC DFN  
6-LEAD PLASTIC TSOT-23  
T
T
JMAX  
= 1±0°C, θ = 230°C/W (NOTE ±)  
JMAX  
JA  
JA  
T
= 1±0°C, θ = 43°C/W (NOTE ±)  
JA  
JMAX  
EXPOSED PAD (PIN 11) CONNECTED TO V  
(PCB CONNECTION OPTIONAL)  
ORDER INFORMATION  
LEAD FREE FINISH  
LT6211CDD#PBF  
LT6211IDD#PBF  
LT6211CMS#PBF  
LT6211IMS#PBF  
LT6210CS6#PBF  
LT6210IS6#PBF  
LEAD BASED FINISH  
LT6211CDD  
TAPE AND REEL  
LT6211CDD#TRPBF  
LT6210IS6#TRPBF  
LT6210CS6#TRPBF  
LT6210IS6#TRPBF  
LT6210CS6#TRPBF  
LT6210IS6#TRPBF  
TAPE AND REEL  
LT6211CDD#TR  
LT6210IS6#TR  
PART MARKING*  
LBCD  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
–40°C to 8±°C  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead Plastic MSOP  
LBCD  
–40°C to 8±°C  
LTBBN  
–40°C to 8±°C  
LTBBP  
10-Lead Plastic MSOP  
–40°C to 8±°C  
LTA3  
6-Lead Plastic TSOT-23  
–40°C to 8±°C  
LTA3  
6-Lead Plastic TSOT-23  
–40°C to 8±°C  
PART MARKING*  
LBCD  
PACKAGE DESCRIPTION  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead Plastic MSOP  
SPECIFIED TEMPERATURE RANGE  
–40°C to 8±°C  
LT6211IDD  
LBCD  
–40°C to 8±°C  
LT6211CMS  
LT6210CS6#TR  
LTBBN  
–40°C to 8±°C  
LT6211IMS  
LT6210IS6#TR  
LTBBP  
10-Lead Plastic MSOP  
–40°C to 8±°C  
LT6210CS6  
LTC4263CDE#TR  
LTC4263IDE#TR  
LTA3  
6-Lead Plastic TSOT-23  
–40°C to 8±°C  
LT6210IS6  
LTA3  
6-Lead Plastic TSOT-23  
–40°C to 8±°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
62101fb  
2
LT6210/LT6211  
ELECTRICAL CHARACTERISTICS  
(I = 6mA per Amplifier) The l denotes the specifications which  
S
apply over the specified operating temperature range, otherwise specifications are at TA = 25°C. For V+ = 5V, V= –5V: RSET = 20k to  
ground, AV = +2, RF = RG = 887Ω, RL = 150Ω; For V+ = 3V, V= 0V: RSET = 0Ω to V, AV = +2, RF = 887Ω, RG = 887Ω to 1.5V,  
RL = 150Ω to 1.5V unless otherwise specified.  
+
+
V = 5V, V = 5V, I = 6mA  
V = 3V, V = 0V, I = 6mA  
S
S
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
–1  
±6  
±9  
–1  
±6.±  
±10  
mV  
mV  
OS  
l
l
l
+
I
I
Noninverting Input Current  
Inverting Input Current  
Input Noise Voltage Density  
–3.±  
–13.±  
6.±  
±7  
±9  
–3  
2.±  
6.±  
±6.±  
±8  
μA  
μA  
IN  
±39  
±±±  
±2±  
±40  
μA  
μA  
IN  
en  
f = 1kHz, R = 887Ω,  
nV/√Hz  
F
R = 46.4Ω, R = 0Ω  
G
S
+i  
–i  
Input Noise Current Density  
Input Noise Current Density  
Noninverting Input Resistance  
f = 1kHz  
4.±  
2±  
2
4.±  
2±  
1.7  
2
pA/√Hz  
pA/√Hz  
MΩ  
pF  
n
f = 1kHz  
n
+
+
l
R
V
IN  
= V – 1.2V to V + 1.2V  
0.±  
3.8  
0.3  
1.8  
IN  
+
C
V
V
V
Noninverting Input Capacitance f = 100kHz  
2
IN  
l
l
Input Voltage Range, High  
Input Voltage Range, Low  
Output Voltage Swing, High  
(Note 10)  
(Note 10)  
4.2  
–4.2  
2.2  
0.8  
V
INH  
–3.8  
1.2  
V
INL  
R = 1k (Note 11)  
4.8  
4.6  
2.8±  
2.7±  
V
V
V
OUTH  
L
R = 1±0Ω (Note 11)  
4.4  
4.2  
2.6±  
2.6  
L
l
R = 1±0Ω (Note 11)  
L
V
Output Voltage Swing, Low  
R = 1k (Note 11)  
–4.9±  
–4.8  
0.0±  
0.1  
V
V
V
OUTL  
L
R = 1±0Ω (Note 11)  
–4.±±  
–4.4  
0.3  
L
l
l
R = 1±0Ω (Note 11)  
0.3±  
L
+
CMRR  
–I  
Common Mode Rejection Ratio  
V
V
= V – 1.2V to V + 1.2V  
46  
43  
±0  
46  
dB  
dB  
IN  
+
Inverting Input Current  
Common Mode Rejection  
= V – 1.2V to V + 1.2V  
0.1±  
±1.±  
±2  
0.2  
μA/V  
μA/V  
CMRR  
IN  
l
l
PSRR  
–I  
Power Supply Rejection Ratio  
V = ±1.±V to ±6V (Note 6)  
S
60  
8±  
2
60  
8±  
2
dB  
Inverting Input Current Power  
Supply Rejection  
V = ±1.±V to ±6V (Note 6)  
S
±7  
±8  
±7  
±8  
μA/V  
μA/V  
PSRR  
l
l
I
S
Supply Current per Amplifier  
6
8.±  
10  
±.8  
8.3  
9
mA  
mA  
62101fb  
3
LT6210/LT6211  
ELECTRICAL CHARACTERISTICS  
(I = 6mA per Amplifier) The l denotes the specifications which  
S
apply over the specified operating temperature range, otherwise specifications are at TA = 25°C. For V+ = 5V, V= –5V: RSET = 20k to  
ground, AV = +2, RF = RG = 887Ω, RL = 150Ω; For V+ = 3V, V= 0V: RSET = 0Ω to V, AV = +2, RF = 887Ω, RG = 887Ω to 1.5V,  
RL = 150Ω to 1.5V unless otherwise specified.  
+
+
V = 5V, V = 5V, I = 6mA  
V = 3V, V = 0V, I = 6mA  
S
S
SYMBOL PARAMETER  
Maximum Output Current  
CONDITIONS  
R = 0Ω (Notes 7, 11)  
MIN  
±7±  
6±  
TYP  
MAX  
MIN  
±4±  
6±  
TYP  
MAX  
UNITS  
mA  
l
I
OUT  
L
+
R
OL  
Transimpedance, ΔV /ΔI  
V = V – 1.2V to V + 1.2V  
OUT  
11±  
700  
1.±  
11±  
200  
2.4  
kΩ  
OUT IN  
SR  
Slew Rate  
(Note 8)  
±0% V to ±0% V  
±00  
V/μs  
ns  
t
pd  
Propagation Delay  
,
OUT  
IN  
+
100mV , Larger of t , t  
P-P  
pd pd  
BW  
–3dB Bandwidth  
Settling Time  
<1dB Peaking, A = 1  
200  
20  
120  
2±  
MHz  
ns  
V
t
s
To 0.1% of V  
, V = 2V  
FINAL STEP  
t , t  
Small-Signal Rise and Fall Time 10% to 90%, V  
= 100mV  
P-P  
2
3.±  
ns  
f
r
OUT  
dG  
dP  
Differential Gain  
(Note 9)  
0.20  
0.10  
–70  
–7±  
0.3±  
0.20  
–6±  
–7±  
%
Differential Phase  
(Note 9)  
Deg  
dBc  
dBc  
HD2  
HD3  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
f = 1MHz, V  
f = 1MHz, V  
= 2V  
= 2V  
OUT  
P-P  
P-P  
OUT  
(I = 3mA per Amplifier) The l denotes the specifications which apply over the specified operating temperature range,  
S
otherwise specifications are at TA = 25°C. For V+ = 5V, V= –5V: RSET = 56k to ground, AV = +2, RF = RG = 1.1k, RL = 150Ω; For V+ = 3V,  
V= 0V: RSET = 10k to V, AV = +2, RF = 1.27k, RG = 1.27k to 1.5V, RL = 150Ω to 1.5V unless otherwise specified.  
+
+
V = 5V, V = 5V, I = 3mA  
V = 3V, V = 0V, I = 3mA  
S
S
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
–1  
±±.±  
±8.±  
–1.±  
±±.±  
±8.±  
mV  
mV  
OS  
l
l
l
+
I
I
Noninverting Input Current  
Inverting Input Current  
Input Noise Voltage Density  
–1.±  
–12  
7
±±  
±7  
–1.±  
–3  
7
±±  
±7  
μA  
μA  
IN  
±36  
±±2  
±1±  
±20  
μA  
μA  
IN  
en  
f = 1kHz, R = 1.1k,  
nV/√Hz  
F
R = ±7.6Ω, R = 0Ω  
G
S
+i  
–i  
Input Noise Current Density  
Input Noise Current Density  
Noninverting Input Resistance  
f = 1kHz  
1.±  
1±  
3
1.±  
1±  
2.±  
2
pA/√Hz  
pA/√Hz  
MΩ  
pF  
n
f = 1kHz  
n
+
+
l
R
V
IN  
= V – 1.2V to V + 1.2V  
0.±  
3.8  
1
IN  
+
C
V
V
V
Noninverting Input Capacitance f = 100kHz  
2
IN  
l
l
Input Voltage Range, High  
Input Voltage Range, Low  
Output Voltage Swing, High  
(Note 10)  
(Note 10)  
4.1  
–4.1  
1.8  
2.1  
0.9  
V
INH  
–3.8  
1.2  
V
INL  
R = 1k (Note 11)  
4.8  
4.6  
2.9  
2.8  
V
V
V
OUTH  
L
R = 1±0Ω (Note 11)  
4.3  
4.1  
2.6  
2.±±  
L
l
R = 1±0Ω (Note 11)  
L
V
Output Voltage Swing, Low  
R = 1k (Note 11)  
–4.9±  
–4.8  
0.0±  
0.1  
V
V
V
OUTL  
L
R = 1±0Ω (Note 11)  
–4.±±  
–4.4  
0.3  
0.3±  
L
l
l
l
R = 1±0Ω (Note 11)  
L
+
CMRR  
–I  
Common Mode Rejection Ratio  
V
= V – 1.2V to V + 1.2V  
46  
43  
±0  
46  
dB  
dB  
IN  
IN  
+
Inverting Input Current  
Common Mode Rejection  
V
= V – 1.2V to V + 1.2V  
0.3  
±1.±  
±2  
0.4  
μA/V  
μA/V  
CMRR  
62101fb  
4
LT6210/LT6211  
ELECTRICAL CHARACTERISTICS  
(I = 3mA per Amplifier) The l denotes the specifications which  
S
apply over the specified operating temperature range, otherwise specifications are at TA = 25°C. For V+ = 5V, V= –5V: RSET = 56k to  
ground, AV = +2, RF = RG = 1.1k, RL = 150Ω; For V+ = 3V, V= 0V: RSET = 10k to V, AV = +2, RF = 1.27k, RG = 1.27k to 1.5V,  
RL = 150Ω to 1.5V unless otherwise specified.  
+
+
V = 5V, V = 5V, I = 3mA  
V = 3V, V = 0V, I = 3mA  
S
S
SYMBOL PARAMETER  
PSRR Power Supply Rejection Ratio  
–I  
CONDITIONS  
V = ±1.±V to ±6V (Note 6)  
MIN  
TYP  
8±  
MAX  
MIN  
TYP  
8±  
MAX  
UNITS  
l
l
60  
60  
dB  
S
Inverting Input Current Power  
Supply Rejection  
V = ±1.±V to ±6V (Note 6)  
S
1.±  
±7  
±8  
1.±  
±7  
±8  
μA/V  
μA/V  
PSRR  
I
I
Supply Current per Amplifier  
3
4.1  
4.±±  
3
4.1  
4.4  
mA  
mA  
S
l
l
Maximum Output Current  
R = 0Ω (Notes 7, 11)  
±70  
6±  
±4±  
6±  
mA  
kΩ  
OUT  
L
+
R
Transimpedance, ΔV /ΔI  
V = V – 1.2V to V + 1.2V  
OUT  
120  
600  
3.1  
120  
1±0  
4.7  
OL  
OUT IN  
SR  
Slew Rate  
(Note 8)  
±0% V to ±0% V  
4±0  
V/μs  
ns  
t
pd  
Propagation Delay  
,
OUT  
IN  
+
100mV , Larger of t , t  
P-P  
pd pd  
BW  
–3dB Bandwidth  
Settling Time  
<1dB Peaking, A = 1  
100  
20  
70  
2±  
MHz  
ns  
V
t
s
To 0.1% of V  
, V = 2V  
FINAL STEP  
t , t  
f
Small-Signal Rise and Fall Time 10% to 90%, V  
= 100mV  
P-P  
3
±.6  
ns  
r
OUT  
dG  
dP  
Differential Gain  
(Note 9)  
0.3±  
0.30  
–6±  
–6±  
0.42  
0.44  
–60  
–6±  
%
Differential Phase  
(Note 9)  
Deg  
dBc  
dBc  
HD2  
HD3  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
f = 1MHz, V  
f = 1MHz, V  
= 2V  
= 2V  
OUT  
P-P  
OUT  
P-P  
(I = 300μA per Amplifier) The l denotes the specifications which apply over the specified operating temperature range,  
S
otherwise specifications are at TA = 25°C. For V+ = 5V, V= –5V: RSET = 1M to ground, AV = +2, RF = RG = 11k, RL = 1k; For V+ = 3V,  
V= 0V: RSET = 270k to V, AV = +2, RF = 9.31k, RG = 9.31k to 1.5V, RL = 1k to 1.5V unless otherwise specified.  
+
+
V = 5V, V = 5V, I = 300μA V = 3V, V = 0V, I = 300μA  
S
S
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
–1  
±4.±  
±8  
–1.±  
±4.±  
±8  
mV  
mV  
OS  
l
l
l
+
I
I
Noninverting Input Current  
Inverting Input Current  
Input Noise Voltage Density  
0.2  
–3  
±1  
±2  
0.2  
±1  
±1.±  
μA  
μA  
IN  
±8.±  
±11  
–0.±  
13.±  
±3  
±4.±  
μA  
μA  
IN  
en  
f = 1kHz, R = 13k,  
13.±  
nV/√Hz  
F
R = 681Ω, R = 0Ω  
G
S
+i  
–i  
Input Noise Current Density  
Input Noise Current Density  
Noninverting Input Resistance  
f = 1kHz  
0.7±  
±
0.7±  
±
pA/√Hz  
pA/√Hz  
MΩ  
n
f = 1kHz  
n
+
+
l
R
V
= V – 1.2V to V + 1.2V  
1
2±  
1
1±  
IN  
IN  
(Note 8)  
+
C
V
V
V
Noninverting Input Capacitance f = 100kHz  
2
2
pF  
V
IN  
l
l
Input Voltage Range, High  
Input Voltage Range, Low  
Output Voltage Swing, High  
(Note 10)  
(Note 10)  
3.8  
4.1  
1.8  
2.1  
0.9  
2.8±  
INH  
–4.1  
4.8±  
–3.8  
1.2  
V
INL  
R = 1k (Note 11)  
L
4.7±  
4.7  
2.7±  
2.7  
V
V
OUTH  
l
l
V
Output Voltage Swing, Low  
R = 1k (Note 11)  
L
–4.9±  
–4.8±  
–4.8  
0.0±  
0.1±  
0.2  
V
V
OUTL  
62101fb  
5
LT6210/LT6211  
ELECTRICAL CHARACTERISTICS  
(I = 300μA per Amplifier) The l denotes the specifications which  
S
apply over the specified operating temperature range, otherwise specifications are at TA = 25°C. For V+ = 5V, V= –5V: RSET = 1M to  
ground, AV = +2, RF = RG = 11k, RL = 1k; For V+ = 3V, V= 0V: RSET = 270k to V, AV = +2, RF = 9.31k, RG = 9.31k to 1.5V, RL = 1k to  
1.5V unless otherwise specified.  
+
+
V = 5V, V = 5V, I = 300μA V = 3V, V = 0V, I = 300μA  
S
S
SYMBOL PARAMETER  
CMRR Common Mode Rejection Ratio  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
+
V
IN  
= V – 1.2V to V + 1.2V  
46  
43  
±0  
46  
dB  
dB  
l
+
–I  
Inverting Input Current  
V
= V – 1.2V to V + 1.2V  
0.1±  
±1.±  
±2  
0.2  
μA/V  
μA/V  
CMRR  
IN  
l
l
Common Mode Rejection  
PSRR  
–I  
Power Supply Rejection Ratio  
V = ±1.±V to ±6V (Note 6)  
60  
8±  
60  
8±  
dB  
S
Inverting Input Current Power  
Supply Rejection  
V = ±1.±V to ±6V (Note 6)  
0.4  
±2.2  
±4  
0.4  
±2.2  
±4  
μA/V  
μA/V  
PSRR  
S
l
I
Supply Current per Amplifier  
0.3  
0.±2±  
0.6  
0.3  
0.38  
0.43  
mA  
mA  
S
l
l
I
Maximum Output Current  
R = 0Ω (Notes 7, 11)  
±30  
300  
120  
±10  
6±  
mA  
kΩ  
OUT  
L
+
R
Transimpedance, ΔV /ΔI  
V = V – 1.2V to V + 1.2V  
OUT  
660  
170  
30  
120  
20  
OL  
OUT IN  
SR  
Slew Rate  
(Note 8)  
±0% V to ±0% V ,  
OUT  
V/μs  
ns  
t
pd  
Propagation Delay  
±0  
IN  
+
100mV , Larger of t , t  
P-P  
pd pd  
BW  
–3dB Bandwidth  
Settling Time  
<1dB Peaking, A = 1  
10  
200  
40  
7.±  
300  
±0  
MHz  
ns  
V
t
s
To 0.1% of V  
, V = 2V  
FINAL STEP  
t , t  
Small-Signal Rise and Fall Time 10% to 90%, V  
= 100mV  
P-P  
ns  
f
r
OUT  
HD2  
HD3  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
f = 1MHz, V  
f = 1MHz, V  
= 2V  
= 2V  
–40  
–4±  
––4±  
–4±  
dBc  
dBc  
OUT  
OUT  
P-P  
P-P  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: As long as output current and junction temperature are kept  
below the absolute maximum ratings, no damage to the part will occur.  
Depending on the supply voltage, a heat sink may be required.  
from increased copper area attached to the exposed pad.  
T is calculated from the ambient temperature T and the power  
J
A
dissipation PD according to the following formula:  
T = T + (P • θ  
)
JA  
J
A
D
The maximum power dissipation can be calculated by:  
2
P
= (V • I  
) + (V /2) /R  
D(MAX)  
S
S(MAX)  
S
LOAD  
Note 6: For PSRR and –IPSRR testing, the current into the I pin is  
SET  
Note 3: The LT6210C/LT6211C is guaranteed functional over the operating  
temperature range of –40°C to 8±°C.  
constant, maintaining a consistent LT6210/LT6211 quiescent bias point.  
A graph of PSRR vs Frequency is included in the Typical Performance  
Note 4: The LT6210C/LT6211C is guaranteed to meet specified  
performance from 0°C to 70°C. The LT6210C/LT6211C is designed,  
characterized and expected to meet specified performance from –40°C and  
8±°C but is not tested or QA sampled at these temperatures. The LT6210I/  
LT6211I is guaranteed to meet specified performance from –40°C to 8±°C.  
Characteristics showing +PSRR and –PSRR with R connecting I to  
SET  
SET  
ground.  
Note 7: While the LT6210 and LT6211 circuitry is capable of significant  
output current even beyond the levels specified, sustained short-  
circuit current exceeding the Absolute Maximum Rating of ±80mA may  
permanently damage the device.  
Note 8: This parameter is guaranteed to meet specified performance  
through design and characterization. It is not production tested.  
Note 9: Differential gain and phase are measured using a Tektronix  
TSG120YC/NTSC signal generator and a Tektronix 1780R Video  
Measurement Set. The resolution of this equipment is 0.1% and 0.1°. Five  
identical amplifier stages were cascaded giving an effective resolution of  
0.02% and 0.02°.  
Note 10: Input voltage range on ±±V dual supplies is guaranteed by  
CMRR. On 3V single supply it is guaranteed by design and by correlation  
to the ±±V input voltage range limits.  
Note 5: The LT6210 with no metal connected to the V pin has a θ of  
JA  
230°C/W, however, thermal resistances vary depending upon the amount  
of PC board metal attached to Pin 2 of the device. With the LT6210  
2
mounted on a 2±00mm 3/32" FR-4 board covered with 2oz copper on  
2
both sides and with just 20mm of copper attached to Pin 2, θ drops to  
JA  
160°C/W. Thermal performance can be improved even further by using a  
4-layer board or by attaching more metal area to Pin 2.  
2
Thermal resistance of the LT6211 in MSOP-10 is specified for a 2±00mm  
3/32" FR-4 board covered with 2oz copper on both sides and with 100mm  
of copper attached to Pin ±. Its performance can also be increased with  
additional copper much like the LT6210.  
2
To achieve the specified θ of 43°C/W for the LT6211 DFN-10, the  
JA  
Note 11: This parameter is tested by forcing a ±0mV differential voltage  
between the inverting and noninverting inputs.  
62101fb  
exposed pad must be soldered to the PCB. In this package, θ will benefit  
JA  
6
LT6210/LT6211  
TYPICAL AC PERFORMANCE  
I (mA) per  
SMALL-SIGNAL  
–3dB BW, <1dB PEAKING (MHz)  
SMALL-SIGNAL  
0.1dB BW (MHz)  
S
V (V)  
S
Amplifier  
R
(Ω)  
A
V
R (Ω)  
L
R (Ω)  
F
R (Ω)  
G
SET  
±±  
±±  
6
6
20k  
1
1±0  
1±0  
1±0  
1±0  
1±0  
1±0  
1k  
1200  
887  
887  
698  
200  
160  
140  
100  
100  
80  
30  
30  
20  
1±  
1±  
1±  
2
20k  
20k  
±6k  
±6k  
±6k  
1M  
1M  
1M  
0
2
–1  
1
±±  
6
698  
±±  
3
1690  
1100  
1200  
13.7k  
11k  
±±  
3
2
1100  
1200  
±±  
3
–1  
1
±±  
0.3  
0.3  
0.3  
6
10  
±±  
2
1k  
11k  
10k  
10  
2
±±  
–1  
1
1k  
10k  
10  
1.8  
20  
20  
20  
1±  
1±  
1±  
2
3, 0  
3, 0  
3, 0  
3, 0  
3, 0  
3, 0  
3, 0  
3, 0  
3, 0  
1±0  
1±0  
1±0  
1±0  
1±0  
1±0  
1k  
1100  
887  
120  
100  
100  
70  
6
0
2
887  
806  
6
0
–1  
1
806  
3
10k  
10k  
10k  
270k  
270k  
270k  
1±40  
1270  
1200  
13k  
3
2
1270  
1200  
60  
3
–1  
1
60  
0.3  
0.3  
0.3  
7.±  
7
2
1k  
9.31k  
10k  
9.31k  
10k  
1.±  
1.±  
–1  
1k  
7
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current per Amplifier vs  
Temperature  
Supply Current per Amplifier vs  
Temperature  
Supply Current per Amplifier vs  
Temperature  
7.±  
7.0  
6.±  
6.0  
±.±  
±.0  
4.±  
4.00  
3.7±  
3.±0  
3.2±  
3.00  
2.7±  
2.±0  
2.2±  
2.00  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
R
L
= ∞  
R = ∞  
L
R
L
= ∞  
V
= ±±V  
S
V
= ±±V  
S
V
= ±1.±V  
R
SET  
= 1M TO GND  
S
R
SET  
= 20k TO GND  
R
= 10k TO V  
SET  
V
= ±1.±V  
SET  
S
V
= ±1.±V  
SET  
S
V
= ±±V  
SET  
S
R
= 0Ω TO V  
R
= 270k TO V  
R
= ±6k TO GND  
±0  
TEMPERATURE (°C)  
100 12±  
–2±  
0
2±  
±0  
7±  
12±  
–±0 –2±  
0
2±  
7±  
–±0  
100  
–±0  
0
2±  
±0  
7± 100 12±  
–2±  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6210 G01  
6210 G02  
6210 G03  
62101fb  
7
LT6210/LT6211  
TYPICAL PERFORMANCE CHARACTERISTICS (Supply Current Is Measured Per Amplifier)  
Input Noise Spectral Density  
(IS = 6mA per Amplifier)  
Input Noise Spectral Density  
(IS = 3mA per Amplifier)  
Input Noise Spectral Density  
(IS = 300μA per Amplifier)  
100  
10  
1
100  
10  
1
100  
10  
1
V
S
= ±±V  
= 1k  
= 2±°C  
V
= ±±V  
= 1±0Ω  
= 2±°C  
V
= ±±V  
S
L
S
L
R
L
R
T
R
T
= 1±0ꢀ  
= 2±°C  
–i  
T
A
n
A
A
–i  
n
e
n
+i  
n
e
n
e
n
–i  
n
+i  
n
+i  
n
0.1  
0.001  
0.1  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
62101GO4  
62101GO±  
62101GO6  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Common Mode Range vs  
Temperature  
Input Common Mode Range vs  
Temperature  
20  
1±  
±.0  
4.±  
4.0  
1.±  
1.0  
I
R
R
= 300μA  
= 13.7k  
L
S
F
I
R
R
= 300μA  
= 13k  
L
S
F
= 1k  
= 1k  
10  
I
R
R
= 300μA  
= 13.7k  
L
S
F
0.±  
±
= 1k  
I
R
R
= 6mA  
I
R
R
= 3mA  
I
R
R
= 6mA  
I
R
R
= 3mA  
S
F
S
F
S
F
S
F
I
R
R
= 3mA  
S
F
= 1200Ω  
= 1690Ω  
= 1±0Ω  
= 1100Ω  
= 1±40Ω  
= 1±0Ω  
0
0
= 1690Ω  
= 1±0Ω  
= 1±0Ω  
L
L
L
L
= 1±0Ω  
L
–±  
–4.0  
–4.±  
–±.0  
–0.±  
–1.0  
–1.±  
–10  
–1±  
–20  
V
A
= ±±V  
= 1  
V
A
T
= ±±V  
= 1  
V
A
= ±1.±V  
= 1  
S
V
S
V
A
S
V
I
R
R
= 300μA  
= 13.7k  
= 1k  
I
R
R
= 300μA  
I
R
R
= 6mA  
S
F
L
S
F
S
F
= 13k  
= 1k  
= 1200Ω  
= 1±0Ω  
CMRR > 48dB  
TYPICAL PART  
= 2±°C  
CMRR >46dB  
L
L
TYPICAL PART  
TYPICAL PART  
±0  
100 12±  
±0  
100 12±  
–±0 –2±  
0
2±  
7±  
–±0 –2±  
0
2±  
7±  
–± –4 –3 –2 –1  
0
1
2
3
4
±
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
62101 G08  
62101 G09  
62101 G07  
Output Voltage Swing vs  
Temperature  
Output Voltage Swing vs  
Temperature  
Output Voltage Swing vs ILOAD  
±.0  
4.8  
4.6  
4.4  
1.±  
1.4  
1.3  
1.2  
1.1  
±.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
OUTPUT HIGH  
I
I
= 3mA  
= 6mA  
OUTPUT HIGH  
S
S
I
= 6mA  
L
S
I
= 300μA  
= 1k  
S
L
I
= 300μA  
= 1k  
S
L
R
= 1k  
I
= 6mA  
L
R
I
= 6mA  
L
S
S
R
R
= 1±0Ω  
R
= 100Ω  
V
= ±±V  
CM  
OS  
S
V
V
= ±1.±V  
S
V
= 0V  
= 0V  
I = 300μA  
S
CM  
ΔV = ±0mV  
–1.1  
–1.2  
–1.3  
–1.4  
–1.±  
ΔV = ±0mV  
OS  
–4.4  
–4.6  
–4.8  
–±.0  
I
= 6mA  
L
S
I
= 6mA  
L
S
R
= 1±0Ω  
R
= 100Ω  
I
= 300μA  
= 1k  
S
L
I
= 300μA  
I
= 6mA  
= 1k  
S
S
L
V
V
= ±±V  
S
R
R
= 1k  
–2±  
R
L
= 0V  
CM  
ΔV = ±0mV  
OS  
OUTPUT LOW  
OUTPUT LOW  
2± ±0  
TEMPERATURE (°C)  
T
= 2±°C  
A
–2±  
0
2±  
±0  
7±  
12±  
0
7±  
12±  
20  
LOAD CURRENT (mA)  
–±0  
100  
–±0  
100  
0
10  
30  
40  
±0  
60 70  
TEMPERATURE (°C)  
6210 G10  
6210 G11  
6210 G12  
62101fb  
8
LT6210/LT6211  
TYPICAL PERFORMANCE CHARACTERISTICS (Supply Current Is Measured Per Amplifier)  
Output Voltage Swing vs ILOAD  
Output Voltage Swing vs ILOAD  
Output Voltage Swing vs ILOAD  
–3.0  
–3.2  
–3.4  
–3.6  
–3.8  
–4.0  
–4.2  
–4.4  
–4.6  
–4.8  
–±.0  
V
V
= ±±V  
= 0V  
OS  
= 2±°C  
V
V
= ±1.±V  
= 0V  
CM  
S
CM  
S
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.1  
–0.3  
–0.±  
–0.7  
–0.9  
–1.1  
–1.3  
–1.±  
ΔV = ±0mV  
ΔV = ±0mV  
OS  
I
I
= 3mA  
= 6mA  
S
S
T
T = 2±°C  
A
A
I
= 300μA  
S
I
= 300μA  
S
V
V
= ±1.±V  
S
I
= 300μA  
S
= 0V  
CM  
I
I
= 3mA  
= 6mA  
S
S
I
I
= 3mA  
= 6mA  
ΔV = ±0mV  
S
S
OS  
T
= 2±°C  
A
20  
LOAD CURRENT (mA)  
20  
LOAD CURRENT (mA)  
20  
LOAD CURRENT (mA)  
0
10  
30  
40  
±0  
60 70  
0
40  
±0  
60 70  
0
40  
±0  
60 70  
10  
30  
10  
30  
6210 G13  
6210 G14  
6210 G1±  
CMRR and PSRR vs Frequency  
(IS = 6mA per Amplifier)  
CMRR and PSRR vs Frequency  
(IS = 3mA per Amplifier)  
CMRR and PSRR vs Frequency  
(IS = 300μA per Amplifier)  
70  
60  
±0  
40  
30  
20  
10  
0
70  
60  
±0  
40  
30  
20  
10  
0
70  
60  
±0  
40  
30  
20  
10  
0
V
= ±±V  
= 1±0Ω  
= 2±°C  
V
= ±±V  
= 1±0Ω  
= 2±°C  
V
S
= ±±V  
= 1k  
= 2±°C  
S
L
S
L
–PSRR  
–PSRR  
+PSRR  
R
–PSRR  
+PSRR  
R
R
L
T
T
T
A
A
A
+PSRR  
CMRR  
CMRR  
CMRR  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6210 G18  
6210 G16  
6210 G17  
Frequency Response vs Closed  
Loop Gain (IS = 300μA per  
Amplifier)  
Frequency Response vs Closed  
Loop Gain (IS = 6mA per Amplifier)  
Frequency Response vs Closed  
Loop Gain (IS = 3mA per Amplifier)  
9
6
9
6
9
6
A
= 2  
A
= 2  
A
= 2  
= R = 11k  
V
V
V
R
= R = 1100Ω  
R
= R = 887Ω  
R
F
G
F
G
F
G
3
3
3
A
= 1  
= 13.7k  
V
F
R
0
0
0
A
= 1  
V
A
= –1  
V
R
= 1.2k  
F
A
= –1  
V
V
= ±±V  
= 1±0Ω  
= 2±°C  
V
= ±±V  
= 1±0Ω  
= 2±°C  
V
= ±±V  
= 1±0Ω  
= 2±°C  
S
L
S
L
R
= R = 1200Ω  
G
S
L
F
R
= R = 10k  
G
–3  
–3  
–3  
F
R
T
R
T
R
T
A
V
= –1  
A
A
A
= 1  
A
V
R
F
= R = 698Ω  
G
V
= 100mV  
V
= 100mV  
V
= 100mV  
OUT  
P-P  
OUT  
P-P  
R
= 1690Ω  
OUT  
P-P  
1
F
–6  
–6  
–6  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
0.1  
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6210 G19  
6210 G20  
6210 G21  
62101fb  
9
LT6210/LT6211  
TYPICAL PERFORMANCE CHARACTERISTICS (Supply Current Is Measured Per Amplifier)  
2nd and 3rd Harmonic Distortion vs  
Frequency (IS = 6mA per Amplifier)  
2nd and 3rd Harmonic Distortion vs  
Frequency (IS = 3mA per Amplifier)  
2nd and 3rd Harmonic Distortion vs  
Frequency (IS = 300μA per Amplifier)  
0
–10  
–20  
–30  
–40  
–±0  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–±0  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–±0  
–60  
–70  
–80  
–90  
–100  
V
= ±±V  
G
V
= ±±V  
G
V
= ±±V  
S
F
S
F
S
R
V
= R = 11k  
R
V
= R = 887Ω  
R
V
= R = 1.1k  
F G  
= 2V  
= 2V  
= 2V  
P-P  
OUT  
P-P  
OUT  
P-P  
OUT  
R
= 1k  
R
= 1±0Ω  
R
= 1±0Ω  
L
L
L
T
= 2±°C  
T
= 2±°C  
T
= 2±°C  
A
A
A
HD2  
HD2  
HD3  
HD2  
HD3  
HD3  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6210 G24  
6210 G22  
6210 G23  
Maximum Undistorted Output  
Sinusoid vs Frequency  
LT6211 Channel Separation  
vs Frequency  
Output Impedance vs Frequency  
10  
9
8
7
6
±
4
3
2
1
0
120  
100  
80  
60  
40  
20  
0
1000  
100  
V
S
= ±±V  
V
A
T
= ±±V  
= 2  
= 2±°C  
S
V
A
HD2, HD3 <–40dB  
A
= 2  
V
T
= 2±°C  
A
I
R
R
= 300μA  
S
F
R
L
= ∞  
I
R
R
= 6mA  
S
F
= R = 11k  
G
= R = 887Ω  
G
= 1k  
L
= 1±0Ω  
R
= 1±0Ω  
L
10  
1
L
I
R
R
= 6mA  
S
F
= R = 887Ω  
I
R
R
= 300μA  
G
S
F
= 1±0Ω  
V
I
= ±±V  
= R = 11k  
L
S
G
= 6mA  
= 1k  
S
L
R
= R = 887Ω  
F
G
T
= 2±°C  
1
A
0.1  
0.1  
1
10  
100  
0.1  
10  
FREQUENCY (MHz)  
±00  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
±00  
FREQUENCY (MHz)  
6210 G27  
6210 G26  
6210 G2±  
Maximum Capacitive Load vs  
Output Series Resistor  
Maximum Capacitive Load vs  
Feedback Resistor  
Overshoot vs Capacitive Load  
70  
60  
±0  
40  
30  
20  
10  
0
±0  
4±  
40  
10000  
1000  
100  
V
= ±±V  
V
= ±±V  
S
S
AC PEAKING < 3dB  
OVERSHOOT < 10%  
I
R
R
= 3mA  
S
F
V
I
= 100mV  
V
I
= 100mV  
OUT  
P-P  
= R = 1100Ω  
OUT  
S
F
L
P-P  
G
= 6mA  
= 6mA  
S
= 1±0Ω  
L
R
R
T
= R  
R
R
T
= R = 887Ω  
G
L
F
G
3±  
30  
I
R
R
= 300μA  
= 1±0Ω  
= 2±°C  
= ∞  
S
F
= R = 11k  
= 2±°C  
G
A
A
= 1k  
L
2±  
20  
1±  
10  
±
V
A
V
= ±±V  
= 2  
OUT  
T = 2±°C  
A
S
V
I
R
R
= 6mA  
S
F
= R = 887Ω  
= 100mV  
G
P-P  
= 1±0Ω  
100  
L
0
10  
10  
1000  
10000  
10  
100  
CAPACITIVE LOAD (pF)  
1000  
800 1000 1200 1400 1600 1800 2000  
FEEDBACK RESISTANCE (Ω)  
CAPACITIVE LOAD (pF)  
6210 G30  
6210 G29  
6210 G28  
62101fb  
10  
LT6210/LT6211  
TYPICAL PERFORMANCE CHARACTERISTICS (Supply Current Is Measured Per Amplifier)  
–3dB Small-Signal Bandwidth  
vs Supply Current  
1MHz 2nd and 3rd Harmonic  
Distortion vs Supply Current  
Slew Rate vs Supply Current  
1000  
100  
10  
–30  
–40  
–±0  
–60  
–70  
–80  
1000  
900  
800  
700  
600  
±00  
400  
300  
200  
100  
0
A
V
T
= 2  
OUT  
= 2±°C  
V
A
V
T
= ±±V  
V
A
V
T
= ±±V  
= 2  
OUT  
= 2±°C  
V
S
V
S
V
= 100mV  
= 2  
= 2V  
P-P  
P-P  
= 7V  
A
OUT  
P-P  
= 2±°C  
A
A
V
= ±±V  
S
RISING  
EDGE RATE  
HD2  
V
= ±1.±V  
S
FALLING  
EDGE RATE  
HD3  
1
10  
0.1  
1
0.1  
1
10  
0.1  
1
SUPPLY CURRENT PER AMPLIFIER (mA)  
10  
SUPPLY CURRENT PER AMPLIFIER (mA)  
SUPPLY CURRENT PER AMPLIFIER (mA)  
62101 G33  
62101 G31  
62101 G32  
Small-Signal Transient Response  
(IS = 6mA per Amplifier)  
Small-Signal Transient Response  
(IS = 3mA per Amplifier)  
Small-Signal Transient Response  
(IS = 300μA per Amplifier)  
OUTPUT  
(±0mV/DIV)  
OUTPUT  
(±0mV/DIV)  
OUTPUT  
(±0mV/DIV)  
62101 G34  
62101 G36  
62101 G3±  
V
V
R
R
R
= ±±V  
TIME (10ns/DIV)  
V
V
R
R
R
= ±±V  
V
V
R
R
R
= ±±V  
S
TIME (10ns/DIV)  
TIME (100ns/DIV)  
S
S
= ±2±mV  
= ±2±mV  
= R = 1.1k  
G
= ±2±mV  
= R = 11k  
G
IN  
IN  
IN  
= R = 887Ω  
F
G
F
F
= 20k TO GND  
= 1±0Ω  
= ±6k TO GND  
= 1±0Ω  
= 1M TO GND  
= 1k  
SET  
SET  
SET  
L
L
L
Large-Signal Transient Response  
(IS = 6mA per Amplifier)  
Large-Signal Transient Response  
(IS = 3mA per Amplifier)  
Large-Signal Transient Response  
(IS = 300μA per Amplifier)  
OUTPUT  
(2V/DIV)  
OUTPUT  
(2V/DIV)  
OUTPUT  
(2mV/DIV)  
62101 G37  
62101 G38  
62101 G39  
V
V
R
R
R
= ±±V  
V
V
R
R
R
= ±±V  
V
V
R
R
R
= ±±V  
TIME (10ns/DIV)  
TIME (10ns/DIV)  
TIME (100ns/DIV)  
S
S
S
= ±1.7±V  
= ±1.7±V  
= R = 1.1k  
G
= ±1.7±V  
= R = 11k  
G
IN  
IN  
IN  
= R = 887Ω  
F
G
F
F
= 20k TO GND  
= 1±0Ω  
= ±6k TO GND  
= 1±0Ω  
= 1M TO GND  
= 1k  
SET  
SET  
SET  
L
L
L
62101fb  
11  
LT6210/LT6211  
APPLICATIONS INFORMATION  
Setting the Quiescent Operating Current (I Pin)  
Input Considerations  
SET  
The inputs of the LT6210/LT6211 are protected by back-  
to-back diodes. If the differential input voltage exceeds  
1.4V, the input current should be limited to less than the  
absolute maximum ratings of ±10mA. In normal opera-  
tion, the differential voltage between the inputs is small,  
so the ±1.4V limit is generally not an issue. ESD diodes  
protect both inputs, so although the part is not guaranteed  
to function outside the common mode range, input volt-  
ages that exceed a diode beyond either supply will also  
require current limiting to keep the input current below  
the absolute maximum of ±10mA.  
The quiescent bias point of the LT6210/LT6211 is SET  
with either an external resistor from the I  
pin to a  
SET  
lower potential or by drawing a current out of the I  
SET  
pin. However, the I pin is not designed to function as a  
SET  
shutdown. TheLT6211usestwoentirelyindependentbias  
networks, so while each channel can be programmed for  
a different supply current, neither I  
pin should be left  
SET  
unconnected. A simplified schematic of the internal bias-  
ing structure can be seen in Figure 1. Figure 2 illustrates  
the results of varying R on 3V and ±±V supplies. Note  
SET  
that shorting the I  
pin under 3V operation results in  
SET  
a quiescent bias of approximately 6mA. Attempting to  
bias the LT6210/LT6211 at a current level higher than  
6mA by using a smaller resistor may result in instability  
and decreased performance. However, internal circuitry  
clamps the supply current of the part at a safe level of  
approximately 1±mA in case of accidental connection of  
Feedback Resistor Selection  
The small-signal bandwidth of the LT6210/LT6211 is set  
by the external feedback resistors and the internal junc-  
tion capacitances. As a result, the bandwidth is a function  
of the quiescent supply current, the supply voltage, the  
valueofthefeedbackresistor, theclosed-loopgainandthe  
load resistor. Refer to the Typical AC Performance table  
for more information.  
the I pin directly to a negative potential.  
SET  
+
V
6
600Ω  
8k  
600Ω  
Layout and Passive Components  
As with all high speed amplifiers, the LT6210/LT6211  
require some attention to board layout. Low ESL/ESR  
bypass capacitors should be placed directly at the positive  
and negative supply (0.1μF ceramics are recommended).  
For best transient performance, additional 4.7μF tantal-  
ums should be added. A ground plane is recommended  
and trace lengths should be minimized, especially on the  
inverting input lead.  
TO  
BIAS  
CONTROL  
±
I
6210 F01  
SET  
Figure 1. Internal Bias Setting Circuitry  
V
R
= ±±V  
S
TO GND  
10  
SET  
Capacitance on the Inverting Input  
Current feedback amplifiers require resistive feedback  
from the output to the inverting input for stable operation.  
Capacitance on the inverting input will cause peaking in  
the frequency response and overshoot in the transient  
response. Take care to minimize the stray capacitance at  
the inverting input to ground and between the output and  
the inverting input. If significant capacitance is unavoid-  
able in a given application, an inverting gain configuration  
should be considered. When configured inverting, the  
amplifier inputs do not slew and the effect of parasitics  
V
= 3V  
SET  
S
R
TO GND  
1
T
= 2±°C  
= ∞  
A
L
R
0.1  
0.01  
0.1  
1
10  
100  
1000  
R
PROGRAMMING RESISTOR (kΩ)  
SET  
6210 F02  
Figure 2. Setting RSET to Control IS  
is greatly reduced.  
62101fb  
12  
LT6210/LT6211  
APPLICATIONS INFORMATION  
Capacitive Loads  
is that of the output stage. For gains less than 2 in the  
noninverting mode, the overall slew rate is limited by the  
input stage. The input slew rate of the LT6210/LT6211 on  
The LT6210/LT6211 are stable with any capacitive load.  
Although peaking and overshoot may result in the AC  
transientresponse,theamplifier’scompensationdecreases  
bandwidthwithincreasingoutputcapacitiveloadtoensure  
stability. Tomaintainaresponsewithminimalpeaking, the  
feedbackresistorcanbeincreasedatthecostofbandwidth  
as shown in the Typical Performance Characteristics.  
Alternatively, a small resistor (±Ω to 3±Ω) can be put in  
series with the output to isolate the capacitive load from  
theamplifieroutput.Thishastheadvantagethattheampli-  
fier bandwidth is only reduced when the capacitive load  
is present. The disadvantage of this technique is that the  
gain is a function of the load resistance.  
±±V supplies with an R  
resistor of 20k (I = 6mA) is  
SET  
S
approximately 600V/μs and is set by internal currents and  
capacitances. The output slew rate is additionally con-  
strained by the value of the feedback resistor and internal  
capacitance. At a gain of 2 with 887Ω feedback and gain  
resistors, ±±V supplies and the same biasing as above,  
the output slew rate is typically 700V/μs. Larger feedback  
resistors, lower supply voltages and lower supply current  
levelswillallreduceslewrate.Inputslewratessignificantly  
exceedingtheoutputslewcapabilitycanactuallydecrease  
slew performance in a positive gain configuration; the  
cleanest transient response will be obtained from input  
signals with slew rates slower than 1000V/μs.  
Power Supplies  
The LT6210/LT6211 will operate on single supplies from  
3V to 12V and on split supplies from ±1.±V to ±6V. If split  
supplies of unequal absolute value are used, input offset  
voltageandinvertinginputcurrentwillshiftfromthevalues  
specifiedintheElectricalCharacteristicstable.Inputoffset  
voltage will shift 2mV and inverting input current will shift  
0.±μA for each volt of supply mismatch.  
Output Swing and Drive  
The output stage of the LT6210/LT6211 consists of a pair  
ofclass-ABbiasedcommonemittersthatenabletheoutput  
to swing rail-to-rail. Since the amplifiers can potentially  
deliveroutputcurrentswellbeyondthespecifiedminimum  
short-circuit current, care should be taken not to short the  
output of the device indefinitely. Attention must be paid to  
keep the junction temperature of the IC below the absolute  
maximum rating of 1±0°C if the output is used to drive  
low impedance loads. See Note ± for details. Additionally,  
the output of the amplifier has reverse-biased ESD diodes  
connected to each supply. If the output is forced beyond  
eithersupply,largecurrentswillowthroughthesediodes.  
If the current is limited to 80mA or less, no damage to  
the part will occur.  
Slew Rate  
Unlike a traditional voltage feedback op amp, the slew rate  
of a current feedback amplifier is not independent of the  
amplifier gain configuration. In a current feedback ampli-  
fier, both the input stage and the output stage have slew  
rate limitations. In the inverting mode, and for gains of 2  
or more in the noninverting mode, the signal amplitude  
between the input pins is small and the overall slew rate  
TYPICAL APPLICATIONS  
3V Cable Driver with Active Termination  
controlledoutputimpedancefromtheline-drivingamplifier.  
Figure 3 shows the LT6210 using this “active termination”  
schemeonasingle3Vsupply. TheamplifierisAC-coupled  
andinaninvertinggainconfigurationtomaximizetheinput  
Driving back-terminated cables on single supplies usually  
results in very limited signal amplitude at the receiving  
end of the cable. However, positive feedback can be used  
to reduce the size of the series back termination resistor,  
thereby decreasing the attenuation between the series  
and shunt termination resistors while still maintaining  
signal range. The gain from V to the receiving end of the  
IN  
cable, V , is set to –1. The effective impedance looking  
OUT  
into the amplifier circuit from the cable is ±0Ω throughout  
the usable bandwidth.  
62101fb  
13  
LT6210/LT6211  
TYPICAL APPLICATIONS  
The response of the cable driver with a 1MHz sinusoid is  
resistor and has a full signal 1V bandwidth of ±0MHz.  
P-P  
shown in Figure 4. The circuit is capable of transmitting  
Smallsignal3dBbandwidthextendsfrom1kHzto±6MHz  
a 1.±V  
undistorted sinusoid to the ±0Ω termination  
with the selected coupling capacitors.  
P-P  
V
IN  
1V/DIV  
3V  
2k  
1%  
1.3k  
1%  
2k  
1%  
V
A
3V  
R
1±Ω  
1%  
1V/DIV  
SER  
4
3
6
+
2.2μF  
1
249Ω  
1%  
LT6210  
±
V
OUT  
TERM  
2.2μF  
V
V
R
OUT  
1V/DIV  
2
A
V
IN  
±0Ω  
6210 F03  
1±4Ω  
1%  
3300pF  
NPO  
200ns/DIV  
6210 F04  
Figure 4. Response of Circuit at 1MHz  
Figure 3. 3V Cable Driver with Active Termination  
SIMPLIFIED SCHEMATIC  
+
V
6
+
V
+IN  
3
–IN  
4
OUT  
1
OUTPUT BIAS  
CONTROL  
600Ω  
8k  
600Ω  
V
SUPPLY  
CURRENT  
CONTROL  
±
V
I
SET  
2
6210 SS  
PACKAGE DESCRIPTION  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 0±-08-1699)  
R = 0.11±  
TYP  
6
0.38 ± 0.10  
10  
0.67± ±0.0±  
3.±0 ±0.0±  
2.1± ±0.0± (2 SIDES)  
1.6± ±0.0±  
3.00 ±0.10  
(4 SIDES)  
1.6± ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(DD) DFN 1103  
±
1
0.2± ± 0.0±  
0.±0 BSC  
0.7± ±0.0±  
0.200 REF  
0.2± ± 0.0±  
0.±0  
BSC  
2.38 ±0.10  
(2 SIDES)  
2.38 ±0.0±  
(2 SIDES)  
0.00 – 0.0±  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.1±mm ON ANY SIDE  
±. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
62101fb  
14  
LT6210/LT6211  
PACKAGE DESCRIPTION  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 0±-08-1661 Rev E)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.03± ± .00±)  
0.497 ± 0.076  
(.0196 ± .003)  
10 9  
8
7 6  
REF  
DETAIL “A”  
0.2±4  
±.23  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
3.20 – 3.4±  
(.206)  
4.90 ± 0.1±2  
(.193 ± .006)  
(.010)  
(.126 – .136)  
MIN  
0° – 6° TYP  
GAUGE PLANE  
0.±0  
(.0197)  
BSC  
0.30± ± 0.038  
(.0120 ± .001±)  
TYP  
0.±3 ± 0.1±2  
(.021 ± .006)  
1
2
3
4 ±  
RECOMMENDED SOLDER PAD LAYOUT  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
NOTE:  
0.1016 ± 0.0±08  
(.004 ± .002)  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
0.±0  
(.0197)  
BSC  
MSOP (MS) 0307 REV E  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.1±2mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.1±2mm (.006") PER SIDE  
±. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 0±-08-1636)  
0.62  
MAX  
0.9±  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.4 MIN  
1.±0 – 1.7±  
(NOTE 4)  
2.80 BSC  
3.8± MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.4± TYP  
± PLCS (NOTE 3)  
0.9± BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.±0 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S± TSOT-23 0302 REV B  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
±. MOLD FLASH SHALL NOT EXCEED 0.2±4mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
62101fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT6210/LT6211  
TYPICAL APPLICATION  
Line Driver with Power Saving Mode  
of the LT6210 in this circuit increases from about 40MHz  
in low power mode to over 200MHz in full speed mode,  
as illustrated in Figure 6. Other AC specs also improve  
significantly at the higher current setting. The following  
In applications where low distortion or high slew rate are  
desirable but not necessary at all times, it may be possible  
todecreasetheLT6210orLT6211’squiescentcurrentwhen  
the higher power performance is not required. Figure ±  
illustrates a method of setting quiescent current with a  
FET switch. In the ±V dual supply case pictured, shorting  
table shows harmonic distortion at 1MHz with a 2V  
sinusoid at the two selected current levels.  
P-P  
Harmonic Distortion  
the I  
pin through an effective 20k to ground sets the  
LOW POWER  
–±3dBc  
–46dBc  
FULL SPEED  
–68dBc  
–77dBc  
SET  
supply current to 6mA, while the 240k resistor at the I  
HD2  
HD3  
HD2  
HD3  
SET  
pin with the FET turned off sets the supply current to ap-  
proximately1mA.Thefeedbackresistorof4.02kisselected  
to minimize peaking in low power mode. The bandwidth  
3
2
R3  
±V  
4.02k  
FULL  
1
SPEED  
MODE  
4
0
6
I
= 6mA  
S
1
–1  
–2  
–3  
–4  
–±  
–6  
V
LT6210  
±
OUT  
V
LOW POWER  
MODE  
IN  
3
R
LOAD  
2
+
1±0Ω  
I
= 1mA  
S
–±V  
HS/LP  
R2  
22k  
R1  
240k  
T
= 2±°C  
OUT  
A
V
= 100mV  
P-P  
2N7002  
0
1
10  
100  
1000  
6210 F0±  
FREQUENCY (MHz)  
6210 F06  
Figure 5. Line Driver with Low Power Mode  
Figure 6. Frequency Response for Full  
Speed and Low Power Mode  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT12±2/LT12±3/LT12±4  
LT139±/LT1396/LT1397  
LT1398/LT1399  
100MHz Low Cost Video Amplifiers  
400MHz, 800V/μs Amplifiers  
300MHz Amplifiers with Shutdown  
Single, Dual and Quad Current Feedback Amplifiers  
Single, Dual and Quad Current Feedback Amplifiers  
Dual and Triple Current Feedback Amplifiers  
Dual Current Feedback Amplifier  
LT179±  
±0MHz, ±00mA Programmable I Amplifier  
S
LT1806/LT1807  
32±MHz, 140V/μs Rail-to-Rail I/O Amplifiers  
Single and Dual Voltage Feedback Amplifiers  
Single, Dual and Quad Voltage Feedback Amplifiers  
LT181±/LT1816/LT1817  
220MHz, 1±00V/μs Programmable I Operational Amplifier  
S
62101fb  
LT 0809 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 9±03±-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0±07 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY