LT6220CS5#TRPBF [Linear]

LT6220 - Single 60MHz, 20V/µs Low Power, Rail-to-Rail Input and Output Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C;
LT6220CS5#TRPBF
型号: LT6220CS5#TRPBF
厂家: Linear    Linear
描述:

LT6220 - Single 60MHz, 20V/µs Low Power, Rail-to-Rail Input and Output Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总22页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6220/LT6221/LT6222  
Single/Dual/Quad 60MHz,  
20V/µs, Low Power, Rail-to-Rail Input  
and Output Precision Op Amps  
DescripTion  
FeaTures  
The LT®6220/LT6221/LT6222 are single/dual/quad, low  
n
Gain Bandwidth Product: 60MHz  
n
Input Common Mode Range Includes Both Rails  
Output Swings Rail-to-Rail  
power, high speed rail-to-rail input and output operational  
amplifiers with excellent DC performance. The LT6220/  
LT6221/LT6222 feature reduced supply current, lower  
input offset voltage, lower input bias current and higher  
DC gain than other devices with comparable bandwidth.  
n
n
n
n
n
n
n
n
n
n
n
n
n
Low Quiescent Current: 1mA Max  
Input Offset Voltage: 350µV Max  
Input Bias Current: 150nA Max  
Wide Supply Range: 2.2V to 12.6V  
Large Output Current: 50mA Typ  
Low Voltage Noise: 10nV√Hz Typ  
Slew Rate: 20V/µs Typ  
Common Mode Rejection: 102dB Typ  
Power Supply Rejection: 105dB Typ  
Open-Loop Gain: 100V/mV Typ  
Typically, the LT6220/LT6221/LT6222 have an input offset  
voltageoflessthan100µV,aninputbiascurrentoflessthan  
15nA and an open-loop gain of 100V/mV. The parts have  
aninputrangethatincludesbothsupplyrailsandanoutput  
that swings within 10mV of either supply rail to maximize  
the signal dynamic range in low supply applications.  
The LT6220/LT6221/LT6222 maintain performance for  
supplies from 2.2V to 12.6V and are specified at 3V, 5V  
and 5V supplies. The inputs can be driven beyond the  
supplies without damage or phase reversal of the output.  
Operating Temperature Range: –40°C to 85°C  
Single in the 8-Lead SO and 5-Lead Low Profile  
(1mm) ThinSOT™ Packages  
n
n
Dual in the 8-Lead SO and (3mm × 3mm) DFN  
Packages  
The LT6220 is housed in the 8-lead SO package with the  
standard op amp pinout as well as the 5-lead SOT-23  
package. The LT6221 is available in 8-lead SO and DFN  
(3mm× 3mmlowprofiledualfinepitchleadless)packages  
with the standard op amp pinout. The LT6222 features the  
standard quad op amp configuration and is available in  
the 16-lead SSOP package. The LT6220/LT6221/LT6222  
can be used as plug-in replacements for many op amps  
to improve input/output range and performance.  
Quad in the 16-Lead SSOP Package  
applicaTions  
n
Low Voltage, High Frequency Signal Processing  
n
Driving A/D Converters  
n
Rail-to-Rail Buffer Amplifiers  
n
Active Filters  
n
Video Amplifiers  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
n
Fast Current Sensing Amplifiers  
Typical applicaTion  
VOS Distribution, VCM = 0V  
(S8, PNP Stage)  
Stepped-Gain Photodiode Amplifier  
+
50  
V
S
V
V
= 5V, 0V  
CM  
S
45  
40  
35  
30  
25  
20  
15  
10  
5
= 0V  
10k  
30pF  
3.24k  
+
V
S
1pF  
100k  
+
V
S
I
PD  
LT1634-1.25  
33k  
V
S
PHOTODIODE  
~4pF  
LT6220  
V
OUT  
+
0
V
V
V
= 1.5V TO 5V  
= 0V TO –1.25V, TRANSIMPEDANCE = 100k  
< –1.25V, TRANSIMPEDANCE = (100k || 3.24k) = 3.14k  
622012 TA01a  
S
OUT  
OUT  
–250  
–150  
–50  
0
50  
150  
250  
V
S
INPUT OFFSET VOLTAGE (µV)  
622012 TA01b  
622012fc  
1
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
absoluTe MaxiMuM raTings  
(Note 1)  
+
Total Supply Voltage (V to V ) ..........................12.6V  
Maximum Junction Temperature .......................... 150°C  
(DD Package).................................................... 125°C  
Storage Temperature.............................. –65°C to 150°C  
(DD Package)..................................... –65°C to 125°C  
Lead Temperature (Soldering, 10 sec.)..................300°C  
S
S
Input Voltage (Note 2)............................................... V  
S
Input Current (Note 2).......................................... 10mA  
Output Short Circuit Duration (Note 3) ............ Indefinite  
Operating Temperature Range (Note 4)....–40°C to 85°C  
Specified Temperature Range (Note 5) ....–40°C to 85°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
+
NC  
1
2
3
4
NC  
8
7
6
5
V
1
2
5 V  
S
OUT  
+
+
–IN  
V
V
S
V
S
+
+IN  
OUT  
+IN 3  
4 –IN  
V
S
NC  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
= 150°C, θ = 250°C/W (NOTE 10)  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
JMAX  
JA  
T
= 150°C, θ = 190°C/W  
JA  
JMAX  
TOP VIEW  
TOP VIEW  
OUT A  
–IN A  
OUT D  
–IN D  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
TOP VIEW  
+
OUT A  
–IN A  
1
2
3
4
8
7
6
5
V
S
A
B
D
C
+
OUT A  
–IN A  
1
2
3
4
V
S
8
7
6
5
+IN A  
+
+IN D  
OUT B  
–IN B  
+IN B  
A
OUT B  
–IN B  
+IN B  
V
S
V
S
+IN A  
A
B
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
+IN A  
V
S
B
V
S
10 OUT C  
NC  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
S8 PACKAGE  
8-LEAD PLASTIC SO  
9
T
= 125°C, θ = 160°C/W (NOTE 10)  
JA  
EXPOSED PAD INTERNALLY CONNECTED TO V  
(PCB CONNECTION OPTIONAL)  
JMAX  
T
= 150°C, θ = 190°C/W  
JMAX  
JA  
GN PACKAGE  
16-LEAD NARROW PLASTIC SSOP  
= 150°C, θ = 135°C/W  
S
T
JMAX  
JA  
orDer inForMaTion  
LEAD FREE FINISH  
LT6220CS5#PBF  
LT6220IS5#PBF  
LT6220CS8#PBF  
LT6220IS8#PBF  
LT6221CDD#PBF  
LT6221IDD#PBF  
LT6221CS8#PBF  
LT6221IS8#PBF  
LT6222CGN#PBF  
LT6222IGN#PBF  
TAPE AND REEL  
PART MARKING  
LTAFP  
LTAFP  
6220  
PACKAGE DESCRIPTION  
5-Lead Plastic TSOT-23  
5-Lead Plastic TSOT-23  
8-Lead Plastic SO  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT6220CS5#TRPBF  
LT6220IS5#TRPBF  
LT6220CS8#TRPBF  
LT6220IS8#TRPBF  
LT6221CDD#TRPBF  
LT6221IDD#TRPBF  
LT6221CS8#TRPBF  
LT6221IS8#TRPBF  
LT6222CGN#TRPBF  
LT6222IGN#TRPBF  
–40°C to 85°C  
0°C to 70°C  
6220I  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LADZ  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead Plastic SO  
LADZ  
–40°C to 85°C  
0°C to 70°C  
6221  
6221I  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
6222  
16-Lead Narrow Plastic SSOP  
16-Lead Narrow Plastic SSOP  
6222I  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
622012fc  
2
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
elecTrical characTerisTics  
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
= 0V  
70  
150  
200  
0.5  
0.5  
350  
700  
850  
2.5  
3
µV  
µV  
OS  
= 0V (DD Package)  
= 0V (S5 Package)  
µV  
= V  
mV  
mV  
S
= V (S5 Package)  
S
∆V  
Input Offset Voltage Shift  
V = 5V, V = 0V to 3.5V  
30  
15  
195  
120  
µV  
µV  
OS  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Offset Voltage Match (Channel-to-Channel)  
(Note 9)  
V
CM  
V
CM  
= 0V  
100  
150  
600  
1100  
µV  
µV  
= 0V (DD Package)  
I
I
Input Bias Current  
V
V
= 1V  
15  
150  
600  
nA  
nA  
B
CM  
CM  
= V  
250  
S
Input Bias Current Match (Channel-to-Channel)  
(Note 9)  
V
CM  
V
CM  
= 1V  
15  
20  
175  
250  
nA  
nA  
= V  
S
Input Offset Current  
V
CM  
V
CM  
= 1V  
15  
15  
100  
100  
nA  
nA  
OS  
= V  
S
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
0.5  
10  
0.8  
2
µV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/√Hz  
pA/√Hz  
pF  
i
f = 10kHz  
n
C
A
IN  
Large Signal Voltage Gain  
V = 5V, V  
= 0.5V to 4.5V, R = 1k at V /2  
35  
3.5  
30  
100  
10  
90  
V/mV  
V/mV  
V/mV  
VOL  
S
OUT  
OUT  
OUT  
L
S
V = 5V, V  
= 1V to 4V, R = 100Ω at V /2  
S
L S  
V = 3V, V  
= 0.5V to 2.5V, R = 1k at V /2  
S
L
S
CMRR  
PSRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
85  
82  
102  
102  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
CMRR Match (Channel-to-Channel) (Note 9)  
V = 5V, V = 0V to 3.5V  
79  
76  
100  
100  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
Input Common Mode Range  
0
V
V
dB  
dB  
V
S
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
84  
79  
105  
105  
2.2  
S
CM  
PSRR Match (Channel-to-Channel) (Note 9)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
2.5  
V
V
No Load  
5
100  
325  
40  
200  
650  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
5
130  
475  
40  
250  
900  
mV  
mV  
mV  
OH  
I
I
= 5mA  
SOURCE  
SOURCE  
= 20mA  
I
I
V = 5V  
20  
20  
45  
35  
mA  
mA  
SC  
S
V = 3V  
S
Supply Current Per Amplifier  
Gain-Bandwidth Product  
Slew Rate  
0.9  
60  
1
mA  
MHz  
V/µs  
MHz  
dBc  
ns  
S
GBW  
SR  
V = 5V, Frequency = 1MHz  
S
35  
10  
V = 5V, A = –1, R = 1k, V  
= 4V  
20  
S
V
L
OUT  
P-P  
FPBW  
HD  
Full Power Bandwidth  
Harmonic Distortion  
Settling Time  
V = 5V, A = 1, V  
= 4V  
1.6  
S
V
OUT  
V = 5V, A = 1, R = 1k, V  
= 2V , f = 500kHz  
–77.5  
300  
0.3  
S
V
L
OUT  
P-P C  
t
0.01%, V = 5V, V  
= 2V, A = 1, R = 1k  
STEP V L  
S
S
∆G  
Differential Gain (NTSC)  
Differential Phase (NTSC)  
V = 5V, A = 2, R = 1k  
%
S
V
L
θ  
V = 5V, A = 2, R = 1k  
0.3  
Deg  
S
V
L
622012fc  
3
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
elecTrical characTerisTics The l denotes the specifications which apply over the 0°C ≤ TA ≤ 70°C  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
= 0V  
90  
180  
230  
0.5  
0.5  
500  
850  
1250  
3
µV  
µV  
OS  
= 0V (DD Package)  
= 0V (S5 Package)  
µV  
= V  
mV  
mV  
S
= V (S5 Package)  
3.5  
S
l
l
∆V  
OS  
Input Offset Voltage Shift  
V = 5V, V = 0V to 3.5V  
30  
15  
280  
190  
µV  
µV  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
l
l
Input Offset Voltage Match (Channel-to-Channel)  
(Note 9)  
V
CM  
V
CM  
= 0V  
110  
180  
850  
1400  
µV  
µV  
= 0V (DD Package)  
l
l
V
OS  
TC  
Input Offset Voltage Drift (Note 8)  
1.5  
3.5  
5
10  
µV/°C  
µV/°C  
(S5 Package)  
l
l
I
B
Input Bias Current  
V
CM  
V
CM  
= 1V  
20  
275  
175  
800  
nA  
nA  
= V – 0.2V  
S
l
l
Input Bias Current Match (Channel-to-Channel)  
(Note 9)  
V
CM  
V
CM  
= 1V  
15  
20  
200  
300  
nA  
nA  
= V – 0.2V  
S
l
l
I
OS  
Input Offset Current  
V
CM  
V
CM  
= 1V  
15  
15  
125  
125  
nA  
nA  
= V – 0.2V  
S
l
l
l
A
VOL  
Large Signal Voltage Gain  
V = 5V, V  
= 0.5V to 4.5V, R = 1k at V /2  
30  
3
25  
90  
9
80  
V/mV  
V/mV  
V/mV  
S
OUT  
OUT  
OUT  
L
S
V = 5V, V  
= 1V to 4V, R = 100Ω at V /2  
S
L S  
V = 3V, V  
= 0.5V to 2.5V, R = 1k at V /2  
S
L
S
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
82  
78  
100  
100  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
l
l
CMRR Match (Channel-to-Channel) (Note 9)  
V = 5V, V = 0V to 3.5V  
77  
73  
100  
100  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
l
l
l
l
Input Common Mode Range  
0
V
V
dB  
dB  
V
S
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
81  
76  
104  
104  
2.2  
S
CM  
PSRR Match (Channel-to-Channel) (Note 9)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
2.5  
l
l
l
V
V
No Load  
8
110  
375  
50  
220  
750  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
l
l
l
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
8
150  
600  
50  
mV  
mV  
mV  
OH  
I
I
= 5mA  
300  
SOURCE  
SOURCE  
= 20mA  
1100  
l
l
I
I
V = 5V  
20  
20  
40  
30  
mA  
mA  
SC  
S
V = 3V  
S
l
l
l
Supply Current Per Amplifier  
Gain-Bandwidth Product  
Slew Rate  
1
1.4  
mA  
MHz  
V/µs  
S
GBW  
SR  
V = 5V, Frequency = 1MHz  
S
30  
9
60  
18  
V = 5V, AV = –1, R = 1k, V  
= 4V  
P-P  
S
L
OUT  
622012fc  
4
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
elecTrical characTerisTics The l denotes the specifications which apply over the –40°C ≤ TA ≤ 85°C  
temperature range. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
= 0V  
125  
300  
350  
0.75  
1
700  
1300  
2000  
3.5  
µV  
µV  
OS  
= 0V (DD Package)  
= 0V (S5 Package)  
µV  
= V  
mV  
mV  
S
= V (S5 Package)  
4.5  
S
l
l
∆V  
Input Offset Voltage Shift  
V = 5V, V = 0V to 3.5V  
30  
30  
300  
210  
µV  
µV  
OS  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
l
l
Input Offset Voltage Match (Channel-to-Channel) V = 0V  
175  
300  
1200  
2200  
µV  
µV  
CM  
(Note 9)  
V
= 0V (DD Package)  
CM  
l
l
V
TC  
Input Offset Voltage Drift (Note 8)  
1.5  
3.5  
7.5  
15  
µV/°C  
µV/°C  
OS  
(S5 Package)  
l
l
I
Input Bias Current  
V
CM  
V
CM  
= 1V  
25  
300  
200  
900  
nA  
nA  
B
= V – 0.2V  
S
l
l
Input Bias Current Match (Channel-to-Channel)  
(Note 9)  
V
CM  
V
CM  
= 1V  
15  
20  
250  
350  
nA  
nA  
= V – 0.2V  
S
l
l
I
Input Offset Current  
V
CM  
V
CM  
= 1V  
20  
20  
150  
150  
nA  
nA  
OS  
= V – 0.2V  
S
l
l
l
A
Large Signal Voltage Gain  
V = 5V, V  
= 0.5V to 4.5V, R = 1k at V /2  
25  
2.5  
20  
70  
8
60  
V/mV  
V/mV  
V/mV  
VOL  
S
OUT  
OUT  
OUT  
L
S
V = 5V, V  
= 1.5V to 3.5V, R = 100Ω at V /2  
S
L S  
V = 3V, V  
= 0.5V to 2.5V, R = 1k at V /2  
S
L
S
l
l
CMRR  
Common Mode Rejection Ratio  
V = 5V, V = 0V to 3.5V  
81  
77  
100  
100  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
l
l
CMRR Match (Channel-to-Channel) (Note 9)  
V = 5V, V = 0V to 3.5V  
76  
72  
100  
100  
dB  
dB  
S
CM  
V = 3V, V = 0V to 1.5V  
S
CM  
l
l
l
l
Input Common Mode Range  
0
V
V
dB  
dB  
V
S
PSRR  
Power Supply Rejection Ratio  
V = 2.5V to 10V, V = 0V  
79  
74  
104  
104  
2.2  
S
CM  
PSRR Match (Channel-to-Channel) (Note 9)  
Minimum Supply Voltage (Note 6)  
Output Voltage Swing LOW (Note 7)  
2.5  
l
l
l
V
V
No Load  
10  
120  
220  
60  
240  
450  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 10mA  
SINK  
SINK  
l
l
l
Output Voltage Swing HIGH (Note 7)  
Short-Circuit Current  
No Load  
10  
160  
325  
60  
325  
650  
mV  
mV  
mV  
I
I
= 5mA  
SOURCE  
SOURCE  
= 10mA  
l
l
I
I
V = 5V  
12.5  
12.5  
30  
25  
mA  
mA  
SC  
S
V = 3V  
S
l
l
l
Supply Current Per Amplifier  
Gain-Bandwidth Product  
Slew Rate  
1.1  
50  
15  
1.5  
mA  
MHz  
V/µs  
S
GBW  
SR  
V = 5V, Frequency = 1MHz  
S
25  
8
V = 5V, A = –1, R = 1k, V = 4V  
OUT  
S
V
L
622012fc  
5
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
elecTrical characTerisTics  
TA = 25°C, VS = 5V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
= –5V  
80  
150  
200  
0.7  
0.7  
500  
750  
900  
2.5  
3
µV  
µV  
OS  
= –5V (DD Package)  
= –5V (S5 Package)  
= 5V  
µV  
mV  
mV  
= 5V (S5 Package)  
∆V  
Input Offset Voltage Shift  
V
= –5V to 3.5V  
70  
675  
µV  
OS  
CM  
Input Offset Voltage Match (Channel-to-Channel)  
(Note 9)  
V
CM  
V
CM  
= –5V  
= –5V (DD Package)  
100  
150  
850  
1300  
µV  
µV  
I
I
Input Bias Current  
V
V
= –4V  
= 5V  
20  
150  
700  
nA  
nA  
B
CM  
CM  
250  
Input Bias Current Match (Channel-to-Channel)  
Input Offset Current  
V
CM  
V
CM  
= –4V  
= 5V  
15  
20  
175  
250  
nA  
nA  
V
CM  
V
CM  
= –4V  
= 5V  
15  
15  
100  
100  
nA  
nA  
OS  
Input Noise Voltage  
0.1Hz to 10Hz  
f = 10kHz  
0.5  
10  
0.8  
2
µV  
P-P  
e
n
Input Noise Voltage Density  
Input Noise Current Density  
Input Capacitance  
nV/√Hz  
pA/√Hz  
pF  
i
n
f = 10kHz  
C
A
f = 100kHz  
IN  
Large Signal Voltage Gain  
V
V
= –4V to 4V, R = 1k  
35  
3.5  
95  
10  
V/mV  
V/mV  
VOL  
OUT  
OUT  
L
= –2V to 2V, R = 100Ω  
L
CMRR  
PSRR  
Common Mode Rejection Ratio  
CMRR Match (Channel-to-Channel)  
Input Common Mode Range  
V
= –5V to 3.5V  
82  
102  
100  
dB  
dB  
V
CM  
77  
+
V
S
V
S
+
Power Supply Rejection Ratio  
PSRR Match (Channel-to-Channel)  
Output Voltage Swing LOW (Note 7)  
V
= 2.5V to 10V, V = 0V, V = 0V  
84  
79  
105  
105  
dB  
dB  
S
S
CM  
V
No Load  
5
100  
325  
40  
200  
650  
mV  
mV  
mV  
OL  
OH  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
V
Output Voltage Swing HIGH (Note 7)  
No Load  
5
130  
475  
40  
250  
900  
mV  
mV  
mV  
I
I
= 5mA  
= 20mA  
SOURCE  
SOURCE  
I
I
Short-Circuit Current  
Supply Current Per Amplifier  
Gain-Bandwidth Product  
Slew Rate  
25  
50  
1
mA  
mA  
SC  
1.5  
S
GBW  
SR  
Frequency = 1MHz  
A = –1, R = 1k, V  
60  
20  
MHz  
V/µs  
= 4V,  
V
L
OUT  
Measure at V  
= 2V  
OUT  
FPBW  
HD  
Full Power Bandwidth  
Harmonic Distortion  
Settling Time  
V
= 8V  
0.8  
–77.5  
375  
MHz  
dBc  
ns  
OUT  
P-P  
A = 1, R = 1k, V  
= 2V , f = 500kHz  
P-P C  
V
L
OUT  
t
0.01%, V  
= 5V, A = 1, R = 1k  
STEP V L  
S
∆G  
Differential Gain (NTSC)  
Differential Phase (NTSC)  
A = 2, R = 1k  
0.15  
0.6  
%
V
L
θ  
A = 2, R = 1k  
Deg  
V
L
622012fc  
6
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
elecTrical characTerisTics The l denotes the specifications which apply over the 0°C ≤ TA ≤ 70°C  
temperature range. VS = 5V, VCM = 0V, VOUT = 0V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
V
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
= –5V  
100  
180  
230  
0.75  
0.75  
650  
900  
1300  
3
µV  
µV  
OS  
= –5V (DD Package)  
= –5V (S5 Package)  
= 5V  
µV  
mV  
mV  
= 5V (S5 Package)  
3.5  
l
∆V  
Input Offset Voltage Shift  
V
CM  
= –5V to 3.5V  
90  
850  
µV  
OS  
l
l
Input Offset Voltage Match (Channel-to-Channel) V = –5V  
90  
180  
1100  
1500  
µV  
µV  
CM  
(Note 9)  
V
= –5V (DD Package)  
CM  
l
l
V
TC  
Input Offset Voltage Drift (Note 8)  
1.5  
3.5  
5
10  
µV/°C  
µV/°C  
OS  
(S5 Package)  
l
l
I
Input Bias Current  
V
CM  
V
CM  
= –4V  
= 4.8V  
20  
275  
175  
800  
nA  
nA  
B
l
l
Input Bias Current Match (Channel-to-Channel)  
(Note 9)  
V
CM  
V
CM  
= –4V  
= 4.8V  
15  
20  
200  
300  
nA  
nA  
l
l
I
Input Offset Current  
V
CM  
V
CM  
= –4V  
= 4.8V  
15  
15  
125  
125  
nA  
nA  
OS  
l
l
A
Large Signal Voltage Gain  
V
OUT  
V
OUT  
= –4V to 4V, R = 1k  
30  
3
90  
9
V/mV  
V/mV  
VOL  
L
= –2V to 2V, R =100Ω  
L
l
l
l
l
l
CMRR  
Common Mode Rejection Ratio  
V
= –5V to 3.5V  
80  
100  
100  
dB  
dB  
V
CM  
CMRR Match (Channel-to-Channel) (Note 9)  
Input Common Mode Range  
75  
+
V
S
V
S
+
PSRR  
Power Supply Rejection Ratio  
V
= 2.5V to 10V, V = 0V, V = 0V  
81  
76  
104  
104  
dB  
dB  
S
S
CM  
PSRR Match (Channel-to-Channel) (Note 9)  
Output Voltage Swing LOW (Note 7)  
l
l
l
V
V
No Load  
8
110  
375  
50  
220  
750  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 20mA  
SINK  
SINK  
l
l
l
Output Voltage Swing HIGH (Note 7)  
No Load  
8
150  
600  
50  
mV  
mV  
mV  
OH  
I
I
= 5mA  
= 20mA  
300  
SOURCE  
SOURCE  
1100  
l
l
l
l
I
I
Short-Circuit Current  
Supply Current Per Amplifier  
Gain-Bandwidth Product  
Slew Rate  
20  
40  
1.2  
60  
18  
mA  
mA  
SC  
2
S
GBW  
SR  
Frequency = 1MHz  
A = –1, R = 1k, V  
MHz  
V/µs  
= 4V,  
V
L
OUT  
Measure at V  
= 2V  
OUT  
622012fc  
7
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
elecTrical characTerisTics The l denotes the specifications which apply over the –40°C ≤ TA ≤ 85°C  
temperature range. VS = 5V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
V
OS  
Input Offset Voltage  
V
CM  
V
CM  
V
CM  
V
CM  
V
CM  
= –5V  
150  
300  
350  
0.75  
1
800  
1300  
2000  
3.5  
µV  
µV  
= –5V (DD Package)  
= –5V (S5 Package)  
= 5V  
µV  
mV  
mV  
= 5V (S5 Package)  
4.5  
l
∆V  
OS  
Input Offset Voltage Shift  
V
CM  
= – 5V to 3.5V  
90  
950  
µV  
l
l
Input Offset Voltage Match (Channel-to-Channel)  
(Note 9)  
V
CM  
V
CM  
= –5V  
= –5V (DD Package)  
175  
300  
1350  
2200  
µV  
µV  
l
l
V
OS  
TC  
Input Offset Voltage Drift (Note 8)  
1.5  
3.5  
7.5  
15  
µV/°C  
µV/°C  
(S5 Package)  
l
l
I
B
Input Bias Current  
V
CM  
V
CM  
= –4V  
= 4.8V  
25  
300  
200  
900  
nA  
nA  
l
l
Input Bias Current Match (Channel-to-Channel)  
(Note 9)  
V
CM  
V
CM  
= –4V  
= 4.8V  
15  
20  
250  
350  
nA  
nA  
l
l
I
OS  
Input Offset Current  
V
CM  
V
CM  
= –4V  
= 4.8V  
20  
20  
150  
150  
nA  
nA  
l
l
A
VOL  
Large Signal Voltage Gain  
V
OUT  
V
OUT  
= –4V to 4V, R = 1k  
25  
2.5  
70  
8
V/mV  
V/mV  
L
= –1V to 1V, R = 100Ω  
L
l
l
l
l
l
CMRR  
Common Mode Rejection Ratio  
V
= –5V to 3.5V  
79  
74  
–5  
79  
74  
100  
100  
dB  
dB  
V
CM  
CMRR Match (Channel-to-Channel) (Note 9)  
Input Common Mode Range  
5
+
PSRR  
Power Supply Rejection Ratio  
V
= 2.5V to 10V, V = 0V, V = 0V  
104  
104  
dB  
dB  
S
S
CM  
PSRR Match (Channel-to-Channel) (Note 9)  
Output Voltage Swing LOW (Note 7)  
l
l
l
V
V
No Load  
10  
120  
220  
60  
240  
450  
mV  
mV  
mV  
OL  
I
I
= 5mA  
= 10mA  
SINK  
SINK  
l
l
l
Output Voltage Swing HIGH (Note 7)  
No Load  
10  
160  
325  
60  
325  
650  
mV  
mV  
mV  
OH  
I
I
= 5mA  
= 10mA  
SOURCE  
SOURCE  
l
l
l
l
I
I
Short-Circuit Current  
Supply Current  
12.5  
30  
1.4  
50  
15  
mA  
mA  
SC  
2.25  
S
GBW  
SR  
Gain-Bandwidth Product  
Slew Rate  
Frequency = 1MHz  
A = –1, R = 1k, V  
MHz  
V/µs  
= 4V,  
V
L
OUT  
Measure at V  
= 2V  
OUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
LT6220I/LT6221I/LT6222I are guaranteed to meet specified performance  
from –40°C to 85°C.  
Note 6: Minimum supply voltage is guaranteed by power supply rejection  
ratio test.  
Note 2: The inputs are protected by back-to-back diodes. If the differential  
input voltage exceeds 1.4V, the input current should be limited to less than  
10mA.  
Note 3: A heat sink may be required to keep the junction temperature below  
the absolute maximum rating when the output is shorted indefinitely.  
Note 4: The LT6220C/LT6221C/LT6222C and LT6220I/LT6221I/LT6222I  
are guaranteed functional over the temperature range of –40°C and 85°C.  
Note 5: The LT6220C/LT6221C/LT6222C are guaranteed to meet specified  
performance from 0°C to 70°C. The LT6220C/LT6221C/LT6222C are  
designed, characterized and expected to meet specified performance from  
–40°C to 85°C but is not tested or QA sampled at these temperatures. The  
Note 7: Output voltage swings are measured between the output and  
power supply rails.  
Note 8: This parameter is not 100% tested.  
Note 9: Matching parameters are the difference between amplifiers A and  
D and between B and C on the LT6222; between the two amplifiers on the  
LT6221.  
Note 10: Thermal resistance (θ ) varies with the amount of PC board  
JA  
metal connected to the package. The specified values are for short  
traces connected to the leads. If desired, the thermal resistance can be  
substantially reduced by connecting Pin 2 of the LT6220CS5/LT6220IS5 or  
the underside metal of DD packages to a larger metal area (V trace).  
S
622012fc  
8
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
Typical perForMance characTerisTics  
VOS Distribution, VCM = 0V  
(S8, PNP Stage)  
VOS Distribution, VCM = 0V  
(SOT5, PNP Stage)  
VOS Distribution, VCM = 5V  
(S8, NPN Stage)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
V
V
= 5V, 0V  
CM  
V
V
= 5V, 0V  
CM  
V
V
= 5V, 0V  
CM  
S
S
S
= 0V  
= 0V  
45  
40  
35  
30  
25  
20  
15  
10  
5
= 5V  
0
0
0
–250  
–150  
–50  
0
50  
150  
250  
–1000  
–600  
–200 0 200  
600  
1000  
–2000 –1200  
–400 0 400  
1200  
2000  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
622012 G01  
622012 G02  
622012 G03  
VOS Distribution, VCM = 5V  
(SOT5, NPN Stage)  
Offset Voltage  
vs Input Common Mode Voltage  
Supply Current vs Supply Voltage  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
3
2
1
0
700  
500  
V
V
= 5V, 0V  
CM  
V = 5V, 0V  
S
TYPICAL PART  
S
= 5V  
300  
T
= –55°C  
= 25°C  
A
T
= 125°C  
A
100  
T
A
T
= 25°C  
A
–100  
–300  
–500  
–700  
T
= 125°C  
A
T
= –55°C  
A
0
–3000 –1800  
–600  
0
600  
1800  
3000  
0
1
4
5
6
7
8
9
10 11 12  
2
3
0
1
2
3
4
5
TOTAL SUPPLY VOLTAGE (V)  
INPUT OFFSET VOLTAGE (µV)  
INPUT COMMON MODE VOLTAGE (V)  
622012 G04  
622012 G05  
622012 G06  
Input Bias Current  
vs Common Mode Voltage  
Input Bias Current  
vs Temperature  
Output Saturation Voltage  
vs Load Current (Output Low)  
400  
300  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
1
V
= 5V, 0V  
V
= 5V, 0V  
V
= 5V, 0V  
S
T = 25°C  
A
S
S
T
= –55°C  
A
200  
100  
NPN ACTIVE  
= 5V  
T
= 125°C  
A
V
CM  
0
T
= 125°C  
A
–100  
–200  
–300  
–400  
–500  
–600  
0.1  
PNP ACTIVE  
= 1V  
T
= 25°C  
A
V
CM  
0.01  
0.001  
T
A
= –55°C  
–0.1  
–0.2  
0
1
2
3
4
5
6
35  
5
TEMPERATURE (°C)  
–55  
–25  
65  
95  
125  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
COMMON MODE VOLTAGE (V)  
622012 G09  
622012 G08  
622012 G07  
622012fc  
9
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
Typical perForMance characTerisTics  
Output Saturation Voltage  
Output Short-Circuit Current  
vs Power Supply Voltage  
vs Load Current (Output High)  
Minimum Supply Voltage  
10  
0.6  
70  
60  
V
= 5V, 0V  
T
= 25°C  
S
A
50  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
T
= 125°C  
= –55°C  
A
0.4  
1
SINKING  
T
A
0.2  
0
T
T
= –55°C  
A
T
= 25°C  
A
T
= 125°C  
A
0.1  
= 125°C  
A
T
= 25°C  
A
–0.2  
–0.4  
–0.6  
T
= –55°C  
A
0.01  
0.001  
SOURCING  
= 125°C  
T
= –55°C  
1
A
T
A
T
= 25°C  
A
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0.01  
0.1  
10  
100  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
TOTAL SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
POWER SUPPLY VOLTAGE ( Vꢀ  
622012 G10  
622012 G11  
622012 G12  
Open-Loop Gain  
Open-Loop Gain  
Open-Loop Gain  
1000  
800  
1000  
800  
1000  
800  
V
= 5V, 0V  
TO GND  
V
=
5V  
R TO GND  
L
V
= 3V, 0V  
TO GND  
S
L
S
S
L
R
R
600  
600  
600  
400  
400  
400  
200  
200  
200  
R
L
= 1k  
R
R
= 1k  
R
L
= 1k  
L
0
0
0
= 100Ω  
–200  
–400  
–600  
–800  
–1000  
–200  
–400  
–600  
–800  
–1000  
–200  
–400  
–600  
–800  
–1000  
L
R
1
= 100Ω  
R
L
= 100Ω  
L
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
6
–5 –4 –3 –2 –1  
0
2
3
4
5
0
0.5  
1.5  
2
2.5  
3
1
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
622012 G14  
622012 G15  
622012 G13  
Offset Voltage vs Output Current  
Warm-Up Drift vs Time  
Input Noise Voltage vs Frequency  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
2.0  
1.5  
V = 5V, 0V  
S
V
=
5V  
S
6
1.0  
4
LT6222  
GN16  
S
LT6220  
SOT5  
S
0.5  
LT6221  
S8  
2ꢀ5V  
2
T
= –55°C  
T = 25°C  
A
A
V
=
2ꢀ5V  
V = 2ꢀ5V  
0
0
V
S
=
NPN ACTIVE  
V = 4.25V  
CM  
–2  
–4  
–6  
–8  
–10  
–0.5  
–1.0  
–1.5  
–2.0  
T
= 125°C  
A
PNP ACTIVE  
LT6222  
GN16  
S
LT6221  
S8  
LT6220  
SOT5  
S
V
CM  
= 2.5V  
V
= 5V  
V
S
= 5V  
V
=
5V  
10 15 20 25 30 35 40 45 50  
TIME AFTER POWER-UP (SECONDS)  
0
0
5
0.01  
0.1  
1
10  
100  
–75 –60 –45 –30 –15  
0
15 30 45 60 75  
FREQUENCY (kHz)  
OUTPUT CURRENT (mA)  
622012 G18  
622012 G17  
622012 G16  
622012fc  
10  
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
Typical perForMance characTerisTics  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Input Current Noise vs Frequency  
0.1Hz to 10Hz Output Voltage Noise  
3.0  
90  
80  
70  
60  
50  
800  
600  
T
= 25°C  
A
V
= 5V, 0V  
V
= 5V, 0V  
S
S
2.5  
2.0  
GAIN BANDWIDTH PRODUCT  
PHASE MARGIN  
400  
200  
70  
60  
50  
40  
30  
20  
0
1.5  
1.0  
PNP ACTIVE  
= 2.5V  
–200  
–400  
–600  
–800  
V
CM  
NPN ACTIVE  
0.5  
0
V
= 4.25V  
CM  
0
1
2
3
4
5
6
7
8
9
10  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
TOTAL SUPPLY VOLTAGE (V)  
TIME (SECONDS)  
622012 G19  
622012 G21  
622012 G20  
Gain Bandwidth and Phase  
Margin vs Temperature  
Gain and Phase vs Frequency  
Slew Rate vs Temperature  
80  
120  
100  
80  
30  
25  
20  
15  
90  
80  
70  
60  
50  
A
= –1  
G
= 1k  
V
F
L
70  
60  
50  
R = R = 1k  
GAIN BANDWIDTH PRODUCT  
PHASE  
R
V
=
=
2ꢀ5V  
S
V = 5V  
S
V
=
5V  
=
S
60  
V
5V  
S
40  
30  
40  
20  
V
=
2ꢀ5V  
2ꢀ5V  
S
70  
60  
50  
40  
30  
20  
V
=
GAIN  
PHASE MARGIN  
S
V
=
=
5V  
S
V
2ꢀ5V  
S
20  
10  
0
V
= 5V  
S
–20  
–40  
–60  
–80  
V
2ꢀ5V  
S
0
–10  
–20  
–55  
5
35  
65  
95  
125  
–25  
10k  
100k  
1M  
10M  
100M  
–55  
–25  
5
35  
65  
95  
125  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
622012 G23  
622012 G24  
622012 G22  
Gain vs Frequency (AV = 1)  
Gain vs Frequency (AV = 2)  
Output Impedance vs Frequency  
15  
12  
9
1000  
100  
10  
15  
12  
9
V
= 2.ꢀV  
S
A
C
= 1  
= 10pF  
= 1k  
V
L
L
R
6
6
A
= 10  
= 1  
V
3
0
3
0
V
= 2.5V  
V
= 2.5V  
S
S
1
V
= 5V  
V
= 5V  
S
S
A
= 2  
V
–3  
–6  
–3  
–6  
A
0.1  
0.01  
V
A
= 2  
V
F
F
L
R = R = 1k  
G
–9  
–9  
C = 20pF  
C
R
= 10pF  
= 1k  
–12  
–12  
L
–15  
–15  
0.001  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
622012 G26  
620012 G27  
622012 G25  
622012fc  
11  
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
Typical perForMance characTerisTics  
Common Mode Rejection Ratio  
vs Frequency  
Power Supply Rejection Ratio  
vs Frequency  
Series Output Resistor  
vs Capacitive Load  
120  
120  
100  
80  
60  
40  
20  
0
50  
45  
40  
35  
V
= 5V, 0V  
V
A
= 5V, 0V  
V
= 5V, 0V  
S
S
S
V
L
= 1  
R
= ∞, UNLESS NOTED  
100  
80  
POSITIVE  
SUPPLY  
R
= 10Ω  
OS  
30  
25  
60  
40  
R
OS  
= 20Ω  
NEGATIVE  
SUPPLY  
20  
15  
10  
5
R
= R = 50Ω  
L
OS  
20  
0
0
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
10  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
CAPACITIVE LOAD (pF)  
622012 G29  
622012 G28  
622012 G31  
Series Output Resistor  
vs Capacitive Load  
Distortion vs Frequency  
Distortion vs Frequency  
50  
45  
40  
35  
–30  
–40  
–30  
–40  
V
A
= 5V, 0V  
V
A
V
= 5V, 0V  
= 1  
V
A
V
= 5V, 0V  
= 2  
S
V
L
S
V
S
V
= 2  
R
= ∞, UNLESS NOTED  
= 2V  
= 2V  
OUT  
P-P  
OUT  
P-P  
–50  
–50  
R
L
= 150Ω,  
3RD  
R
= 150Ω,  
2ND  
L
R = 1k,  
L
2ND  
–60  
–60  
30  
25  
R
L
= 150Ω,  
3RD  
R
L
= 150Ω,  
2ND  
–70  
–70  
R
OS  
= 10Ω  
R
= 1k,  
20  
15  
10  
5
L
–80  
–80  
R = 1k,  
L
3RD  
2ND  
–90  
–90  
R
= 1k,  
L
3RD  
R
OS  
= 20Ω  
–100  
–100  
R
= R = 50Ω  
L
OS  
–110  
–110  
0
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
10  
100  
1000  
10000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
CAPACITIVE LOAD (pF)  
622012 G33  
622012 G32  
622012 G34  
Maximum Undistorted Output  
Signal vs Frequency  
5V Large-Signal Response  
5V Small-Signal Response  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
50mV/DIV  
2.5V  
A
= –1  
A = 2  
V
V
1V/DIV  
0V  
V
A
= 5V, 0V  
= 1  
= 1k  
100ns/DIV  
622012 G36  
V
A
= 5V, 0V  
= 1  
= 1k  
50ns/DIV  
622012 G37  
S
V
S
V
V
= 5V, 0V  
= 1k  
S
L
R
R
R
L
L
0
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
622012 G35  
622012fc  
12  
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
Typical perForMance characTerisTics  
5V Large-Signal Response  
5V Small-Signal Response  
Output Overdriven Recovery  
V
IN  
1V/DIV  
2V/DIV  
0V  
50mV/DIV  
0V  
0V  
V
OUT  
2V/DIV  
0V  
V
A
= ±±V  
= 1  
= 1k  
200ns/DIV  
V
A
=
5V  
50ns/DIV  
V
A
= 5V, 0V  
= 2  
= 1k  
200ns/DIV  
622012 G38  
622012 G39  
622012 G40  
S
V
L
S
V
L
S
V
L
= 1  
R
R
= 1k  
R
applicaTions inForMaTion  
Circuit Description  
tail current, I , to the current mirror, Q6/Q7, activating the  
1
NPN differential pair and the PNP pair becomes inactive  
for the rest of the input common mode range up to the  
positive supply. Also, at the input stage, devices Q17 to  
Q19 act to cancel the bias current of the PNP input pair.  
When Q1/Q2 are active, the current in Q16 is controlled  
to be the same as the current Q1/Q2. Thus, the base cur-  
rent of Q16 is nominally equal to the base current of the  
input devices. The base current of Q16 is then mirrored by  
devices Q17-Q19 to cancel the base current of the input  
devices Q1/Q2.  
The LT6220/LT6221/LT6222 have an input and output  
signal range that covers from the negative power supply  
to the positive power supply. Figure 1 depicts a simplified  
schematic of the amplifier. The input stage comprises  
two differential amplifiers, a PNP stage, Q1/Q2, and an  
NPN stage, Q3/Q4, that are active over different ranges  
of common mode input voltage. The PNP stage is active  
between the negative supply to approximately 1.2V below  
the positive supply. As the input voltage moves closer  
toward the positive supply, the transistor Q5 will steer the  
+
V
R3  
R4  
R5  
+
V
V
+
+
D1  
ESDD1  
ESDD2  
Q12  
I
I
1
Q11  
Q15  
2
Q13  
C2  
+IN  
–IN  
+
D6  
D5  
D8  
D7  
Q5  
V
BIAS  
I
3
D2  
OUT  
C
C
V
Q4 Q3  
Q1 Q2  
D3  
BUFFER  
AND  
OUTPUT BIAS  
ESDD4  
ESDD3  
Q10  
+
V
V
D4  
Q9  
R1  
Q8  
Q16  
C1  
Q17  
Q18  
Q14  
Q7  
Q6  
Q19  
R2  
V
622012 F01  
Figure 1. LT6220/LT6221/LT6222 Simplified Schematic Diagram  
622012fc  
13  
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
applicaTions inForMaTion  
ApairofcomplementarycommonemitterstagesQ14/Q15  
that enable the output to swing from rail-to-rail construct  
the output stage. The capacitors C2 and C3 form the local  
feedback loops that lower the output impedance at high  
frequency. These devices are fabricated by Linear Tech-  
nology’s proprietary high speed complementary bipolar  
process.  
Input Offset Voltage  
Theoffsetvoltagewillchangedependinguponwhichinput  
stageisactive.ThePNPinputstageisactivefromthenega-  
tive supply rail to 1.2V below the positive supply rail, then  
the NPN input stage is activated for the remaining input  
range up to the positive supply rail during which the PNP  
stage remains inactive. The offset voltage is typically less  
than 70µV in the range that the PNP input stage is active.  
Power Dissipation  
The LT6222, with four amplifiers, is housed in a small  
16-lead SSOP package and typically has a thermal resis-  
Input Bias Current  
The LT6220/LT6221/LT6222 employ a patent pending  
technique to trim the input bias current to less than 150nA  
for the input common mode voltage of 0.2V above the  
negative supply rail to 1.2V below the positive rail. The  
low input offset voltage and low input bias current of the  
LT6220/LT6221/LT6222 provide precision performance  
especially for high source impedance applications.  
tance (θ ) of 135°C/W. It is necessary to ensure that the  
JA  
die’s junction temperature does not exceed 150°C. The  
junction temperature, T , is calculated from the ambi-  
J
ent temperature, T , power dissipation, P , and thermal  
A
D
resistance, θ :  
JA  
T = T + (P θ )  
J
A
D
JA  
The power dissipation in the IC is the function of the sup-  
ply voltage, output voltage and the load resistance. For  
a given supply voltage, the worst-case power dissipation  
Output  
TheLT6220/LT6221/LT6222candeliveralargeoutputcur-  
rent, so the short-circuit current limit is set around 50mA  
to prevent damage to the device. Attention must be paid to  
keep the junction temperature of the IC below the absolute  
maximum rating of 150°C (refer to the Power Dissipation  
section) when the output is in continuous short circuit.  
The output of the amplifier has reverse-biased diodes  
connected to each supply. If the output is forced beyond  
either supply, unlimited current will flow through these  
diodes. If the current is transient and limited to several  
hundredmilliamperes, nodamagewilloccurtothedevice.  
P
occurs when the maximum supply current and  
D(MAX)  
the output voltage is at half of either supply voltage for a  
given load resistance. P  
is given by:  
D(MAX)  
2  
V
2
S   
P
= V I  
+
/RL  
(
)
D(MAX)  
S
S(MAX)  
Example: For an LT6222 in a 16-lead SSOP package  
operating on 5V supplies and driving a 100Ω load, the  
worst-case power dissipation is given by:  
2
P
/Amp = 10 1.8mA + 2.5 / 100  
(
) (  
)
D(MAX)  
Overdrive Protection  
= 0.018+ 0.0625 = 80.5mW  
When the input voltage exceeds the power supplies, two  
pair of crossing diodes, D1 to D4, will prevent the output  
from reversing polarity. If the input voltage exceeds ei-  
ther power supply by 700mV, diode D1/D2 or D3/D4 will  
turn on to keep the output at the proper polarity. For the  
phase reversal protection to perform properly, the input  
current must be limited to less than 5mA. If the amplifier  
If all four amplifiers are loaded simultaneously, then the  
total power dissipation is 322mW.  
The maximum ambient temperature at which the part is  
allowed to operate is:  
T = T – (P • 135°C/W)  
D(MAX)  
A
J
= 150°C – (0.322W • 135°C/W) = 106.5°C  
622012fc  
14  
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
applicaTions inForMaTion  
is severely overdriven, an external resistor should be used  
to limit the overdriven current.  
larger capacitive load, a resistor of 10Ω to 50Ω should be  
connected between the output and the capacitive load to  
avoid ringing or oscillation. The feedback should still be  
taken from the output so that the resistor will isolate the  
capacitive load to ensure stability. Graphs on capacitive  
loads show the transient response of the amplifier when  
driving capacitive load with specified series resistors.  
The LT6220/LT6221/LT6222’s input stages are also pro-  
tected against a large differential input voltage of 1.4V or  
higher by a pair of back-to-back diodes, D5/D8, to prevent  
the emitter-base breakdown of the input transistors. The  
current in these diodes should be limited to less than  
10mA when they are active. The worse-case differential  
inputvoltageusuallyoccurswhentheinputisdrivenwhile  
the output is shorted to ground in a unity-gain configura-  
tion. In addition, the amplifier is protected against ESD  
strikes up to 3kV on all pins by a pair of protection diodes  
on each pin that are connected to the power supplies as  
shown in Figure 1.  
Feedback Components  
Whenfeedbackresistorsareusedtosetupgain,caremust  
be taken to ensure that the pole formed by the feedback  
resistors and the total capacitance at the inverting input  
does not degrade stability. For instance, the LT6220/  
LT6221/LT6222, set up with a noninverting gain of 2, two  
5kresistorsandacapacitanceof5pF(partplusPCboard),  
will probably oscillate. The pole is formed at 12.7MHz that  
willreducephasemarginby52degreeswhenthecrossover  
frequency of the amplifier is around 10MHz. A capacitor  
of 10pF or higher connecting across the feedback resistor  
will eliminate any ringing or oscillation.  
Capacitive Load  
The LT6220/LT6221/LT6222 are optimized for high  
bandwidth, low power and precision applications. They  
can drive a capacitive load up to 100pF in a unity-gain  
configuration and more for higher gain. When driving a  
Typical applicaTions  
Stepped-Gain Photodiode Amplifier  
so Q1 is reverse biased and no current flows through R2.  
So for small signals, the only feedback path is R1 (and  
C1) and the circuit is a simple transimpedance amplifier  
with 100kΩ gain.  
The circuit of Figure 2 is a stepped gain transimpedance  
photodiode amplifier. At low signal levels, the circuit has  
a high 100kΩ gain, but at high signal levels the circuit  
automatically and smoothly changes to a low 3.2kΩ gain.  
Thebenefit of astepped gainapproach isthatitmaximizes  
dynamic range, which is very useful on limited supplies.  
Put another way, in order to get 100kΩ sensitivity and still  
handle a 1mA signal level without resorting to gain reduc-  
tion,thecircuitwouldneeda100Vnegativevoltagesupply.  
+
V
S
R4  
10k  
R2  
3.24k  
PHILIPS  
BCV62  
C2  
30pF  
3
4
+
V
S
R1  
100k  
C1  
1pF  
Q1  
V
Q2  
+
V
S
Theoperationofthecircuitisquitesimple. Atlowphotodi-  
ode currents (below 10µA) the output and inverting input  
of the op amp will be no more than 1V below ground. The  
LT1634 in parallel with R3 and Q2 keep a constant current  
though Q2 of about 20µA. R4 maintains quiescent current  
through the LT1634 and pulls Q2’s emitter above ground,  
I
PD  
2
1
R3  
33k  
LT1634-1.25  
S
PHOTODIODE  
~4pF  
LT6220  
V
OUT  
+
V
= 1.5V TO 5V  
S
622012 F02  
V
S
Figure 2. Stepped-Gain Photodiode Amplifier  
622012fc  
15  
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
Typical applicaTions  
20  
0
As the signal level increases though, the output of the op  
amp goes more negative. At 12.5µA of photodiode cur-  
rent, the 100kΩ gain dictates that the LT6220 output will  
be about 1.25V below ground. However, at that point the  
emitter of Q2 will be at ground, and the base of Q1 will  
be 1V below ground. Thus, Q1 turns on and photodiode  
currentstartstoflowthroughR2.Thetransimpedancegain  
is therefore now reduced to R1||R2, or about 3.1kΩ. The  
circuit response is shown in Figure 3. Note the smooth  
transition between the two operating gains, as well as  
the linearity.  
–20  
–40  
–60  
–80  
–100  
–120  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
622012 F05  
Figure 5. Frequency Response of Filter  
PHOTO  
CURRENT  
100µA/DIV  
Differential-In/Differential-Out Amplifier  
The circuit of Figure 6 shows the LT6222 applied as a  
buffereddifferential-indifferential-outamplifierwithagain  
of 2. Op amps A and B are configured as simple unity-gain  
buffers, offering high input impedance to upstream cir-  
cuitry.ResistorsR1andR2performanaveragingfunction  
on the common mode input voltage and R3 attenuates it  
by a factor of 2/3 and references it to the voltage source  
V
OUT  
0.5V/DIV  
622012 F03  
5µs/DIV  
Figure 3. Stepped-Gain Photodiode Amplifier Response  
V
. The resultant voltage, V  
= 2/3 • V , is placed  
OCM  
MID ICM  
at the noninverting inputs of op amps C and D. The other  
four resistors set gains of +3 from the noninverting input  
and –2 through the inverting path. Thus the output voltage  
of the upper path is:  
Single 3V Supply, 1MHz, 4th Order Butterworth Filter  
The circuit shown in Figure 4 makes use of the low voltage  
operation and the wide bandwidth of the LT6221 to create  
aDCaccurate1MHz4thorderlowpassfilterpoweredfrom  
a 3V supply. The amplifiers are configured in the inverting  
mode for the lowest distortion and the output can swing  
rail-to-rail for maximum dynamic range. Figure 5 displays  
the frequency response of the filter. Stopband attenuation  
is greater than 100dB at 50MHz.  
–OUT = 3 • (2/3 • V  
+ 1/3 • V ) – 2  
OCM  
ICM  
• (VICM + V /2)  
DIFF  
= 2VICM + V  
– 2VICM – V  
DIFF  
OCM  
DIFF  
= V  
– V  
OCM  
909Ω  
2.67k  
220pF  
47pF  
1.1k  
2.21k  
470pF  
22pF  
909Ω  
3V  
V
IN  
1.1k  
1/2 LT6221  
+
1/2 LT6221  
V
OUT  
+
V /2  
S
622012 F04  
Figure 4. 3V, 1MHz, 4th Order Butterworth Filter  
622012fc  
16  
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
Typical applicaTions  
and the output of the lower path is:  
giving rise to the effective differential gain of 2. Calcula-  
tions show that using 1% resistors gives worst-case input  
common mode feedthrough better than –31dB, whether  
looking at the output common mode or difference mode.  
Considering the 6dB of gain, worst-case common mode  
rejection ratio is 37dB. (Remember this is assuming 1%  
resistors. Of course, this can be improved with more pre-  
cise resistors.) Results achieved on the bench with typical  
1% resistors showed 67dB of CMRR at low frequency and  
40dB CMRR at 1MHz. Gains other than 2 can be achieved  
by setting R3 = α • (R1||R2), R5 = α R4 and R7 = α R6  
where gain = α.  
+OUT = 3 • (2/3 • V  
+ 1/3 • V  
) – 2  
ICM  
OCM  
• (VICM – V /2)  
DIFF  
= 2VICM + V  
– 2VICM + V  
DIFF  
OCM  
DIFF  
= V  
+ V  
OCM  
Notethattheinputcommonmodevoltagedoesnotappear  
in the output as either a common mode or a difference  
mode term. However the voltage V  
does appear in  
OCM  
the output terms, and with the same polarity, so it sets  
up the output DC level. Also, the differential input voltage  
V
DIFF  
appears fully at both outputs with opposite polarity,  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
R = 0.125  
0.40 ±0.10  
TYP  
5
8
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD8) DFN 0509 REV C  
4
1
0.25 ±0.05  
0.75 ±0.05  
0.200 REF  
0.25 ±0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.10  
2.38 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
622012fc  
17  
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
622012fc  
18  
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
SO8 REV G 0212  
622012fc  
19  
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641 Rev B)  
.189 – .196*  
.045 .005  
(4.801 – 4.978)  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 .004  
(0.38 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 REV B 0212  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
622012fc  
20  
For more information www.linear.com/LT6220/LT6221/LT6222  
LT6220/LT6221/LT6222  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
05/14 Added V  
information to Typical Application.  
1
2
2
OUT  
Updated the Order Information table.  
C
05/15 Updated Order Information table to reflect Specified Temperature Range  
622012fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LT6220/LT6221/LT6222  
Typical applicaTion  
R5  
2k  
5ꢀ6pF  
V
ICM  
+ V /2  
DIFF  
+IN  
+
V
R4  
1k  
S
+
A
1/4 LT6222  
D
–ꢁUT  
1/4 LT6222  
R1  
2k  
+
R.  
2k  
V
MID  
V
ꢁCM  
R2  
2k  
R6  
1k  
+
V
– V /2  
DIFF  
–IN  
ICM  
C
+ꢁUT  
+
1/4 LT6222  
B
1/4 LT6222  
R7  
2k  
V
S
5ꢀ6pF  
622012 F06  
V
=
1ꢀ.V Tꢁ 6V  
S
BW 11MHz  
Figure 6. Buffered Gain of 2 Differential-In/Differential-Out Amplifier  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
Dual/Quad 10MHz, 6V/µs Rail-to-Rail Input/  
Output C Op Amps  
COMMENTS  
LT1498/LT1499  
High DC Accuracy, 475µV V  
Wide Supply Range, 2.2V to 30V  
Max Supply Current 2.2mA/Amp,  
, Max Supply Current 2mA/Amp  
OS(MAX)  
LOAD  
LT1800/LT1801/LT1802 Single/Dual/Quad 80MHz, 25V/µs,  
Low Power Rail-to-Rail Input/Output Precision Op Amps  
350µV V  
, 250nA I  
OS(MAX) BIAS(MAX)  
LT1803/LT1804/LT1805 Single/Dual/Quad 85MHz, 100V/µs  
Rail-to-Rail Input/Output Op Amps  
2mV V  
, Max Supply Current 3mA/Amp  
OS(MAX)  
LT1806/LT1807  
Single/Dual 325MHz, 140V/µs Rail-to-Rail Input/  
Output Op Amps  
High DC Accuracy, 550µV V  
Max Low Noise 3.5nV/√Hz  
OS(MAX)  
Low Distortion –80dBc at 5MHz, Power Down (LT1806)  
LT1809/LT1810  
Single/Dual 180MHz, Rail-to-Rail Input/Output Op Amps 350V/µs Slew Rate, Low Distortion –90dBc at 5MHz,  
Power Down (LT1809)  
622012fc  
LT 0515 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
LINEAR TECHNOLOGY CORPORATION 2003  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT6220  

相关型号:

LT6220CS8

Single/Dual/Quad 60MHz, 20V/us, Low Power, Rail-to-Rail Input and Output Precision Op Amps
Linear

LT6220CS8#PBF

LT6220 - Single 60MHz, 20V/&#181;s Low Power, Rail-to-Rail Input and Output Precision Op Amps; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT6220CS8#TR

LT6220 - Single 60MHz, 20V/&#181;s Low Power, Rail-to-Rail Input and Output Precision Op Amps; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT6220CS8#TRPBF

Single 60MHz, 20V/&#181;s Low Power, Rail-to-Rail Input and Output Precision Op Amps
ADI

LT6220IS5

Single/Dual/Quad 60MHz, 20V/us, Low Power, Rail-to-Rail Input and Output Precision Op Amps
Linear

LT6220IS5#TR

LT6220 - Single 60MHz, 20V/&#181;s Low Power, Rail-to-Rail Input and Output Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6220IS5#TRM

LT6220 - Single 60MHz, 20V/&#181;s Low Power, Rail-to-Rail Input and Output Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
ADI

LT6220IS5#TRPBF

LT6220 - Single 60MHz, 20V/&#181;s Low Power, Rail-to-Rail Input and Output Precision Op Amps; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6220IS8

Single/Dual/Quad 60MHz, 20V/us, Low Power, Rail-to-Rail Input and Output Precision Op Amps
Linear

LT6220IS8#PBF

暂无描述
Linear

LT6220IS8#TR

LT6220 - Single 60MHz, 20V/&#181;s Low Power, Rail-to-Rail Input and Output Precision Op Amps; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6220_15

Single/Dual/Quad 60MHz, 20V/s, Low Power, Rail-to-Rail Input
Linear