LT6360 [Linear]

16-Bit, 2Msps, Pseudo-Differential Unipolar SAR; 16位, 2MSPS ,伪差分SAR单极
LT6360
型号: LT6360
厂家: Linear    Linear
描述:

16-Bit, 2Msps, Pseudo-Differential Unipolar SAR
16位, 2MSPS ,伪差分SAR单极

文件: 总24页 (文件大小:528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2370-16  
16-Bit, 2Msps, Pseudo-  
Differential Unipolar SAR  
ADC with 94dB SNR  
FEATURES  
DESCRIPTION  
The LTC®2370-16 is a low noise, low power, high speed  
16-bit successive approximation register (SAR) ADC.  
Operating from a 2.5V supply, the LTC2370-16 has a 0V  
n
2Msps Throughput Rate  
n
±±0.85Sꢀ IN5 ꢁMaꢂx  
n
Guaranteed 16-ꢀit No Missing Codes  
n
5ow Power: 19mW at 2Msps, 19µW at 2ksps  
to V pseudo-differential unipolar input range with V  
REF  
REF  
n
94dꢀ SNR ꢁTypx at f = 2kHz  
ranging from 2.5V to 5.1V. The LTC2370-16 consumes  
only 19mW and achieves 0.ꢀ5LSꢁ ꢂIL maximum, no  
missing codes at 16 bits with 94dꢁ SIR.  
IN  
n
112dꢀ THD ꢁTypx at f = 2kHz  
IN  
n
Guaranteed Operation to 125°C  
n
2.5V Supply  
The LTC2370-16 has a high speed SPꢂ-compatible serial  
interface that supports 1.ꢀV, 2.5V, 3.3V and 5V logic while  
alsofeaturingadaisy-chainmode.Thefast2Mspsthrough-  
put with no cycle latency makes the LTC2370-16 ideally  
suited for a wide variety of high speed applications. An  
internaloscillatorsetstheconversiontime,easingexternal  
timingconsiderations.TheLTC2370-16automaticallypow-  
ers down between conversions, leading to reduced power  
dissipation that scales with the sampling rate.  
n
Pseudo-Differential Unipolar ꢂnput Range: 0V to V  
REF  
n
V
ꢂnput Range from 2.5V to 5.1V  
REF  
n
n
n
n
n
Io Pipeline Delay, Io Cycle Latency  
1.ꢀV to 5V ꢂ/O Voltages  
SPꢂ-Compatible Serial ꢂ/O with Daisy-Chain Mode  
ꢂnternal Conversion Clock  
16-Lead MSOP and 4mm × 3mm DFI Packages  
APPLICATIONS  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents, including 7705765.  
n
Medical ꢂmaging  
n
High Speed Data Acquisition  
n
Portable or Compact ꢂnstrumentation  
ꢂndustrial Process Control  
Low Power ꢁattery-Operated ꢂnstrumentation  
ATE  
n
n
n
TYPICAL APPLICATION  
32k Point FFT fS = 2Msps, fIN = 2kHz  
0
2.5V 1.8V TO 5V  
10µF  
SNR = 94dB  
–20  
–40  
THD = –112dB  
SINAD = 93.9dB  
SFDR = 117dB  
0.1µF  
V
REF  
–60  
+
V
OV  
DD  
DD  
5.1Ω  
CHAIN  
RDL/SDI  
SDO  
SCK  
BUSY  
CNV  
0V  
–80  
+
LT®6202  
IN  
–100  
–120  
–140  
–160  
–180  
10nF  
LTC2370-16  
IN  
SAMPLE CLOCK  
REF  
GND  
237016 TA01a  
2.5V TO 5.1V  
47µF  
(X5R, 0805 SIZE)  
0
100 200 300 400 500 600 700 800 9001000  
FREQUENCY (kHz)  
237016 TA01b  
237016fa  
1
LTC2370-16  
ABSOLUTE MAXIMUM RATINGS ꢁNotes 1, 2x  
Supply Voltage (V )...............................................2.ꢀV  
Power Dissipation.............................................. 500mW  
DD  
Supply Voltage (OV )................................................6V  
Operating Temperature Range  
DD  
Reference ꢂnput (REF).................................................6V  
LTC2370C ................................................ 0°C to 70°C  
LTC2370ꢂ .............................................–40°C to ꢀ5°C  
LTC2370H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Analog ꢂnput Voltage (Iote 3)  
+
ꢂI , ꢂI .........................(GID – 0.3V) to (REF + 0.3V)  
Digital ꢂnput Voltage  
(Iote 3).......................... (GID – 0.3V) to (OV + 0.3V)  
DD  
Digital Output Voltage  
(Iote 3).......................... (GID – 0.3V) to (OV + 0.3V)  
DD  
PIN CONFIGURATION  
TOP VIEW  
CHAIN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
OV  
TOP VIEW  
V
DD  
DD  
CHAIN 1  
16 GND  
GND  
SDO  
V
2
15 OV  
DD  
DD  
+
GND 3  
14 SDO  
13 SCK  
17  
GND  
IN  
SCK  
+
IN  
IN  
4
5
IN  
RDL/SDI  
BUSY  
GND  
12 RDL/SDI  
11 BUSY  
10 GND  
GND  
REF  
REF  
GND 6  
REF 7  
REF 8  
9
CNV  
CNV  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
DE PACKAGE  
T
= 150°C, θ = 110°C/W  
16-LEAD (4mm × 3mm) PLASTIC DFN  
JMAX  
JA  
T
= 150°C, θ = 40°C/W  
JA  
JMAX  
EXPOSED PAD (PꢂI 17) ꢂS GID, MUST ꢁE SOLDERED TO PCꢁ  
ORDER INFORMATION  
5EAD FREE FINISH  
LTC2370CMS-16#PꢁF  
LTC2370ꢂMS-16#PꢁF  
LTC2370HMS-16#PꢁF  
LTC2370CDE-16#PꢁF  
LTC2370ꢂDE-16#PꢁF  
TAPE AND REE5  
PART MARKING*  
PACKAGE DESCRIPTION  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2370CMS-16#TRPꢁF 237016  
LTC2370ꢂMS-16#TRPꢁF 237016  
LTC2370HMS-16#TRPꢁF 237016  
LTC2370CDE-16#TRPꢁF 23706  
–40°C to ꢀ5°C  
–40°C to 125°C  
0°C to 70°C  
16-Lead (4mm × 3mm) Plastic DFI  
16-Lead (4mm × 3mm) Plastic DFI  
LTC2370ꢂDE-16#TRPꢁF  
23706  
–40°C to ꢀ5°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
237016fa  
2
LTC2370-16  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 28°C0 ꢁNote 4x  
SYMꢀO5  
V +  
PARAMETER  
CONDITIONS  
(Iote 5)  
MIN  
–0.1  
–0.1  
0
TYP  
MAX  
+ 0.1  
REF  
UNITS  
+
l
l
l
l
Absolute ꢂnput Range (ꢂI )  
V
V
V
ꢂI  
V –  
ꢂI  
Absolute ꢂnput Range (ꢂI )  
(Iote 5)  
0.1  
V + – V – ꢂnput Differential Voltage Range  
V
ꢂI  
= V + – V –  
V
REF  
V
ꢂI  
ꢂI  
ꢂI  
ꢂI  
ꢂI  
Analog ꢂnput Leakage Current  
Analog ꢂnput Capacitance  
1
µA  
C
Sample Mode  
Hold Mode  
45  
5
pF  
pF  
ꢂI  
CMRR  
ꢂnput Common Mode Rejection Ratio  
f
ꢂI  
= 1MHz  
77  
dꢁ  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 28°C0 ꢁNote 4x  
SYMꢀO5 PARAMETER  
CONDITIONS  
MIN  
16  
TYP  
MAX  
UNITS  
ꢁits  
l
l
Resolution  
Io Missing Codes  
16  
ꢁits  
Transition Ioise  
0.5  
0.25  
0.1  
0
LSꢁ  
RMS  
l
l
l
ꢂIL  
ꢂntegral Linearity Error  
Differential Linearity Error  
Zero-Scale Error  
(Iote 6)  
(Iote 7)  
(Iote 7)  
–0.ꢀ5  
–0.5  
–4  
0.ꢀ5  
0.5  
4
LSꢁ  
DIL  
ZSE  
LSꢁ  
LSꢁ  
Zero-Scale Error Drift  
Full-Scale Error  
0.02  
4
LSꢁ/°C  
LSꢁ  
l
FSE  
–20  
20  
Full-Scale Error Drift  
1
ppm/°C  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 28°C and AIN = –1dꢀFS0 ꢁNotes 4, .x  
SYMꢀO5 PARAMETER  
CONDITIONS  
MIN  
90.6  
ꢀ9.6  
TYP  
93.9  
93.9  
MAX  
UNITS  
dꢁ  
l
l
SꢂIAD  
SIR  
Signal-to-(Ioise + Distortion) Ratio  
f
ꢂI  
f
ꢂI  
= 2kHz, V = 5V  
REF  
= 2kHz, V = 5V, (H-Grade)  
dꢁ  
REF  
l
l
Signal-to-Ioise Ratio  
f
ꢂI  
f
ꢂI  
= 2kHz, V = 5V  
91.1  
ꢀ6  
94  
ꢀ9.5  
dꢁ  
dꢁ  
REF  
= 2kHz, V = 2.5V  
REF  
l
l
f
ꢂI  
f
ꢂI  
= 2kHz, V = 5V, (H-Grade)  
90  
ꢀ5  
94  
ꢀ9.5  
dꢁ  
dꢁ  
REF  
= 2kHz, V = 2.5V, (H-Grade)  
REF  
l
l
THD  
Total Harmonic Distortion  
f
ꢂI  
f
ꢂI  
= 2kHz, V = 5V  
–112  
–112  
–100  
–96  
dꢁ  
dꢁ  
REF  
= 2kHz, V = 2.5V  
REF  
l
SFDR  
Spurious Free Dynamic Range  
–3dꢁ ꢂnput ꢁandwidth  
Aperture Delay  
f
= 2kHz, V = 5V  
100  
113  
34  
dꢁ  
MHz  
ps  
ꢂI  
REF  
500  
4
Aperture Jitter  
ps  
Transient Response  
Full-Scale Step  
165  
ns  
237016fa  
3
LTC2370-16  
REFERENCE INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 28°C0 ꢁNote 4x  
SYMꢀO5  
PARAMETER  
CONDITIONS  
(Iote 5)  
MIN  
TYP  
MAX  
5.1  
UNITS  
V
l
l
V
Reference Voltage  
Reference ꢂnput Current  
2.5  
REF  
REF  
(Iote 9)  
1.1  
1.3  
mA  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 28°C0 ꢁNote 4x  
SYMꢀO5 PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
V
V
High Level ꢂnput Voltage  
Low Level ꢂnput Voltage  
Digital ꢂnput Current  
0.8 • OV  
ꢂH  
ꢂL  
DD  
0.2 • OV  
V
DD  
V
= 0V to OV  
DD  
–10  
10  
µA  
pF  
ꢂI  
ꢂI  
C
V
V
Digital ꢂnput Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
ꢂI  
l
l
l
ꢂ = –500µA  
O
OV – 0.2  
DD  
V
OH  
OL  
ꢂ = 500µA  
O
0.2  
10  
V
V
V
V
= 0V to OV  
DD  
–10  
µA  
mA  
mA  
OZ  
OUT  
OUT  
OUT  
= 0V  
= OV  
–10  
10  
SOURCE  
SꢂIK  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 28°C0 ꢁNote 4x  
SYMꢀO5  
PARAMETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
MIN  
2.375  
1.71  
TYP  
MAX  
2.625  
5.25  
ꢀ.ꢀ  
UNITS  
l
l
l
V
2.5  
V
V
DD  
OV  
DD  
Supply Current  
Supply Current  
Power Down Mode  
Power Down Mode  
2Msps Sample Rate  
7.5  
0.9  
0.9  
0.9  
mA  
mA  
µA  
VDD  
OVDD  
PD  
2Msps Sample Rate (C = 20pF)  
L
l
l
Conversion Done (ꢂ  
Conversion Done (ꢂ  
+ ꢂ  
+ ꢂ  
+ ꢂ , V > 2V)  
REF REF  
90  
140  
VDD  
VDD  
OVDD  
OVDD  
REF REF  
+ ꢂ , V > 2V, H-Grade)  
µA  
PD  
P
Power Dissipation  
Power Down Mode  
Power Down Mode  
2Msps Sample Rate  
19  
2.25  
2.25  
22  
225  
315  
mW  
µW  
µW  
D
Conversion Done (ꢂ  
Conversion Done (ꢂ  
+ ꢂ  
OVDD  
+ ꢂ  
OVDD  
+ ꢂ , V > 2V)  
REF REF  
VDD  
VDD  
REF REF  
+ ꢂ , V > 2V, H-Grade)  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 28°C0 ꢁNote 4x  
SYMꢀO5  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2
UNITS  
Msps  
ns  
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
COIV  
ACQ  
27ꢀ  
165  
500  
20  
322  
Acquisition Time  
t
= t  
– t  
– t (Iote 10)  
ꢁUSYLH  
ns  
ACQ  
CYC  
COIV  
Time ꢁetween Conversions  
CIV High Time  
ns  
CYC  
ns  
CIVH  
ꢁUSYLH  
CIVL  
QUꢂET  
SCK  
C = 20pF  
L
13  
ns  
CIVto ꢁUSY Delay  
Minimum Low Time for CIV  
SCK Quiet Time from CIV↑  
SCK Period  
(Iote 11)  
(Iote 10)  
20  
10  
10  
4
ns  
ns  
(Iotes 11, 12)  
ns  
SCK High Time  
ns  
SCKH  
237016fa  
4
LTC2370-16  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 28°C0 ꢁNote 4x  
SYMꢀO5  
PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
SCK Low Time  
SCKL  
(Iote 11)  
(Iote 11)  
4
ns  
SDꢂ Setup Time From SCK↑  
SDꢂ Hold Time From SCK↑  
SCK Period in Chain Mode  
SDO Data Valid Delay from SCK↑  
SDO Data Remains Valid Delay from SCK↑  
SDO Data Valid Delay from ꢁUSY↓  
ꢁus Enable Time After RDL↓  
ꢁus Relinquish Time After RDL↑  
SSDꢂSCK  
HSDꢂSCK  
SCKCH  
DSDO  
1
ns  
t
= t  
+ t (Iote 11)  
DSDO  
13.5  
ns  
SCKCH  
SSDꢂSCK  
C = 20pF (Iote 11)  
L
9.5  
ns  
C = 20pF (Iote 10)  
L
1
ns  
HSDO  
C = 20pF (Iote 10)  
L
5
ns  
DSDOꢁUSYL  
EI  
(Iote 11)  
(Iote 11)  
16  
13  
ns  
ns  
DꢂS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may effect device  
reliability and lifetime.  
Note 7: Zero-scale error is the offset voltage measured from 0.5LSꢁ  
when the output code flickers between 0000 0000 0000 0000 and  
0000 0000 0000 0001. Full-scale error is the deviation of the last code  
transition from ideal and includes the effect of offset error.  
Note 2: All voltage values are with respect to ground.  
Note 3: When these pin voltages are taken below ground or above REFor  
Note .: All specifications in dꢁ are referred to a full-scale 5V input with a  
5V reference voltage.  
OV , they will be clamped by internal diodes. This product can handle  
DD  
Note 9: f  
= 2MHz, ꢂ varies proportionately with sample rate.  
SMPL REF  
input currents up to 100mA below ground or above REFor OV without  
latch-up.  
DD  
Note 1±: Guaranteed by design, not subject to test.  
Note 11: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
DD  
DD  
Note 4: V = 2.5V, OV = 2.5V, REF = 5V, f = 2MHz.  
SMPL  
DD  
DD  
and OV = 5.25V.  
DD  
Note 8: Recommended operating conditions.  
Note 12: t  
of 10ns maximum allows a shift clock frequency up to  
SCK  
Note 6: ꢂntegral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
100MHz for rising capture.  
0.8*OV  
DD  
t
WIDTH  
0.2*OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
237016 F01  
0.8*OV  
0.2*OV  
0.8*OV  
0.2*OV  
DD  
DD  
DD  
DD  
Figure 10 Voltage 5evels for Timing Specifications  
237016fa  
5
LTC2370-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 28°C, VDD = 208V, OVDD = 208V, REF = 8V,  
fSMP5 = 2Msps, unless otherwise noted0  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
1.0  
0.8  
0.5  
0.4  
100000  
90000  
σ = 0.5  
0.6  
0.3  
80000  
70000  
60000  
0.4  
0.2  
0.2  
0.1  
0.0  
0.0  
50000  
40000  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
30000  
20000  
10000  
0
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
32676 32677 32678 32679 32680  
CODE  
OUTPUT CODE  
OUTPUT CODE  
237016 G01  
237016 G02  
237016 G03  
THD, Harmonics  
32k Point FFT fS = 2Msps,  
fIN = 2kHz  
vs Input Frequency  
SNR, SINAD vs Input Frequency  
–60  
–70  
0
–20  
100  
95  
90  
85  
80  
75  
70  
SNR = 94dB  
THD = –112dB  
SINAD = 93.9dB  
SFDR = 117dB  
SNR  
–80  
–40  
–90  
–60  
THD  
2ND  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
SINAD  
–80  
–100  
–120  
–140  
–160  
–180  
3RD  
125 150  
0
25 50 75 100  
175 200  
0
100 200 300 400 500 600 700 800 9001000  
0
175  
200  
25 50 75 100 125 150  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
237016 G04  
237016 G05  
237016 G06  
SNR, SINAD vs Input level,  
fIN = 2kHz  
SNR, SINAD vs Reference  
Voltage, fIN = 2kHz  
THD, Harmonics vs Reference  
Voltage, fIN = 2kHz  
95.0  
94.5  
94.0  
93.5  
93.0  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
95  
94  
93  
92  
91  
90  
89  
THD  
2ND  
SNR  
SINAD  
SNR  
SINAD  
3RD  
–40  
–30  
–20  
–10  
0
3
3.5  
4
5
2.5  
3
3.5  
4
4.5  
5
2.5  
4.5  
INPUT LEVEL (dB)  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
237016 G07  
237016 G09  
237016 G08  
237016fa  
6
LTC2370-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 28°C, VDD = 208V, OVDD = 208V, REF = 8V,  
fSMP5 = 2Msps, unless otherwise noted0  
SNR, SINAD vs Temperature,  
fIN = 2kHz  
THD, Harmonics vs Temperature,  
fIN = 2kHz  
IN5/DN5 vs Temperature  
95.0  
94.5  
94.0  
93.5  
93.0  
92.5  
92.0  
1.0  
0.5  
0
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
THD  
2ND  
SNR  
MAX INL  
MAX DNL  
SINAD  
MIN DNL  
MIN INL  
3RD  
–0.5  
–1.0  
25 45  
TEMPERATURE (°C)  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
65 85 105 125  
–55  
5
85  
125  
105  
–35 –15  
25 45 65  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237016 G10  
237016 G12  
237016 G11  
Full-Scale Error vs Temperature  
Offset Error vs Temperature  
Supply Current vs Temperature  
15  
10  
5
4
3
8
7
6
5
4
3
2
1
0
I
VDD  
2
1
0
0
–1  
–2  
–3  
–4  
–5  
–10  
–15  
I
REF  
I
OVDD  
25 45  
TEMPERATURE (°C)  
–55 –35 –15  
5
65 85 105 125  
–55 –35 –15  
5
25 45 65  
85 105  
125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237016 G15  
237016 G13  
237016 G14  
Reference Current  
vs Reference Voltage  
Shutdown Current vs Temperature  
CMRR vs Input Frequency  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
+ I  
+ I  
VDD OVDD REF  
0
0
200  
400  
600  
800  
1000  
–55 –35 –15  
5
25 45 65 85 105 125  
2.5  
4.5  
5
3
3.5  
4
FREQUENCY (kHz)  
TEMPERATURE (°C)  
REFERENCE VOLTAGE (V)  
237016 G16  
237016 G17  
237016 G18  
237016fa  
7
LTC2370-16  
PIN FUNCTIONS  
CHAIN ꢁPin 1x: Chain Mode Selector Pin. When low, the  
LTC2370-16 operates in normal mode and the RDL/SDꢂ  
input pin functions to enable or disable SDO. When high,  
the LTC2370-16 operates in chain mode and the RDL/SDꢂ  
pin functions as SDꢂ, the daisy-chain serial data input.  
ꢀUSY ꢁPin 11x: ꢁUSY ꢂndicator. Goes high at the start of  
a new conversion and returns low when the conversion  
has finished. Logic levels are determined by OV .  
DD  
RD5/SDI ꢁPin 12x: When CHAꢂI is low, the part is in nor-  
mal mode and the pin is treated as a bus enabling input.  
When CHAꢂI is high, the part is in chain mode and the  
pin is treated as a serial data input pin where data from  
another ADC in the daisy chain is input. Logic levels are  
Logic levels are determined by OV .  
DD  
V
ꢁPin 2x: 2.5V Power Supply. The range of V is  
DD  
DD  
2.375Vto2.625V. ypassV toGIDwitha1Fceramic  
DD  
capacitor.  
determined by OV .  
DD  
GND ꢁPins 3, 6, 1± and 16x: Ground.  
SCKPin13x:SerialDataClocknput.WhenSDOisenabled,  
the conversion result or daisy-chain data from another  
ADC is shifted out on the rising edges of this clock MSꢁ  
+
+
IN ꢁPin 4x: Analog ꢂnput. ꢂI operates differential with  
+
respect to ꢂI with an ꢂI -ꢂI range of 0V to V  
.
REF  
first. Logic levels are determined by OV .  
DD  
IN ꢁPin 8x: Analog Ground Sense. ꢂI has an input range  
of 100mV with respect to GID and must be tied to the  
ground plane or a remote ground sense.  
SDO ꢁPin 14x: Serial Data Output. The conversion result  
or daisy-chain data is output on this pin on each rising  
edgeofSCKMSfirst. Theoutputdataisinstraightbinary  
REFPins7,.x:Referencenputs.TherangeofREFis2.5V  
to 5.1V. This pin is referred to the GID pin and should be  
decoupledcloselytothepinwitha4Fceramiccapacitor  
(X5R, 0ꢀ05 size).  
format. Logic levels are determined by OV .  
DD  
OV ꢁPin 18x: ꢂ/O ꢂnterface Digital Power. The range of  
DD  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
the same supply as the host interface (1.ꢀV, 2.5V, 3.3V,  
CNV ꢁPin 9x: Convert ꢂnput. A rising edge on this input  
or 5V). ꢁypass OV to GID with a 0.1µF capacitor.  
DD  
powers up the part and initiates a new conversion. Logic  
GND ꢁEꢂposed Pad Pin 17, DFN Package Onlyx: Ground.  
Exposedpadmustbesoldereddirectlytothegroundplane.  
levels are determined by OV .  
DD  
237016fa  
8
LTC2370-16  
FUNCTIONAL BLOCK DIAGRAM  
V
= 2.5V  
DD  
OV = 1.8V to 5V  
DD  
REF = 5V  
CHAIN  
SDO  
RDL/SDI  
SCK  
+
IN  
+
SPI  
PORT  
16-BIT SAMPLING ADC  
IN  
CNV  
CONTROL LOGIC  
BUSY  
GND  
237016 BD  
TIMING DIAGRAM  
Conversion Timing Using the Serial Interface  
CHAIN, RDL/SDI = 0  
CNV  
CONVERT  
POWER-DOWN AND ACQUIRE  
BUSY  
SCK  
SDO  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
237016 TD01  
237016fa  
9
LTC2370-16  
APPLICATIONS INFORMATION  
OVERVIEW  
1LSB = FS/65536  
111...111  
111...110  
111...101  
111...100  
TheLTC2370-16isalownoise,lowpower,highspeed16-bit  
successive approximation register (SAR) ADC. Operating  
from a single 2.5V supply, the LTC2370-16 supports a  
0V to V  
REF  
pseudo-differential unipolar input range with  
REF  
V
ranging from 2.5V to 5.1V, making it ideal for high  
UNIPOLAR  
ZERO  
performance applications which require a wide dynamic  
range. The LTC2370-16 achieves 0.ꢀ5LSꢁ ꢂIL max, no  
missing codes at 16 bits and 94dꢁ SIR.  
000...011  
000...010  
000...001  
000...000  
0V  
1
FS – 1LSB  
Fast 2Msps throughput with no cycle latency makes the  
LTC2370-16 ideally suited for a wide variety of high speed  
applications.Aninternaloscillatorsetstheconversiontime,  
easing external timing considerations. The LTC2370-16  
dissipatesonly19mWat2Msps,whileanautopower-down  
feature is provided to further reduce power dissipation  
during inactive periods.  
LSB  
INPUT VOLTAGE (V)  
237016 F02  
Figure 20 5TC237±-16 Transfer Function  
ANA5OG INPUT  
TheanaloginputsoftheLTC2370-16arepseudo-differential  
in order to reduce any unwanted signal that is common  
to both inputs. The analog inputs can be modeled by the  
equivalentcircuitshowninFigure3.Thediodesattheinput  
provide ESD protection. ꢂn the acquisition phase, each  
CONVERTER OPERATION  
The LTC2370-16 operates in two phases. During the ac-  
quisition phase, the charge redistribution capacitor D/A  
input sees approximately 45pF (C ) from the sampling  
ꢂI  
CDAC in series with 40Ω (R ) from the on-resistance  
OI  
+
+
converter (CDAC) is connected to the ꢂI and ꢂI pins to  
sample the pseudo-differential analog input voltage. A ris-  
ing edge on the CIV pin initiates a conversion. During the  
conversionphase,the16-bitCDACissequencedthrougha  
successiveapproximationalgorithm,effectivelycomparing  
the sampled input with binary-weighted fractions of the  
of the sampling switch. The ꢂI input draws a current  
spike while charging the C capacitor during acquisition.  
ꢂI  
During conversion, the analog inputs draw only a small  
leakage current.  
REF  
C
IN  
R
40Ω  
ON  
45pF  
referencevoltage(e.g.V /2,V /4…V /65536)using  
REF  
REF  
REF  
+
IN  
IN  
the differential comparator. At the end of conversion, the  
CDAC output approximates the sampled analog input. The  
ADC control logic then prepares the 16-bit digital output  
code for serial transfer.  
BIAS  
VOLTAGE  
REF  
C
IN  
R
40Ω  
ON  
45pF  
237016 F03  
TRANSFER FUNCTION  
The LTC2370-16 digitizes the full-scale voltage of REF  
16  
into 2 levels, resulting in an LSꢁ size of 76µV with  
Figure 30 The Equivalent Circuit for the  
Differential Analog Input of the 5TC237±-16  
REF = 5V. The ideal transfer function is shown in Figure 2.  
The output data is in straight binary format.  
237016fa  
10  
LTC2370-16  
APPLICATIONS INFORMATION  
INPUT DRIVE CIRCUITS  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.IPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
A low impedance source can directly drive the high im-  
pedance input of the LTC2370-16 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
is important even for DC inputs, because the ADC input  
draws a current spike when entering acquisition.  
Pseudo-Differential Unipolar Inputs  
For best performance, a buffer amplifier should be used  
to drive the analog input of the LTC2370-16. The ampli-  
fier provides low output impedance, which produces fast  
settling of the analog signal during the acquisition phase.  
ꢂt also provides isolation between the signal source and  
the current spike the ADC input draws.  
For most applications, we recommend the low power  
LT6202 ADC driver to drive the LTC2370-16. With a low  
noise density of 1.9nV/√Hz and a low supply current of  
3mA, the LT6202 is flexible and may be configured to  
convertsignals of variousamplitudes to the 0V to5V input  
range of the LTC2370-16.  
To achieve the full distortion performance of the  
LTC2370-16, a low distortion single-ended signal source  
driven through the LT6202 configured as a unity-gain buf-  
fer as shown in Figure 4 can be used to get the full data  
sheet THD specification of –112dꢁ.  
Input Filtering  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Ioisy input signals should be filtered prior  
to the buffer amplifier input with an appropriate filter to  
minimizenoise.Thesimple1-poleRClowpassfilter(LPF1)  
shown in Figure 4 is sufficient for many applications.  
The LT6202 can also be used to buffer and convert large  
true bipolar signals which swing below ground to the 0V  
to 5V input range of the LTC2370-16. Figure 5a shows the  
LT6202 being used to convert a 10V true bipolar signal  
for use by the LTC2370-16. ꢂn this case, the LT6202 is  
configured as an inverting amplifier stage, which acts to  
attenuateandlevelshifttheinputsignaltothe0Vto5Vinput  
rangeoftheLTC2370-16.ntheinvertingconfiguration,the  
single-ended input signal source no longer directly drives  
a high impedance input. The input impedance is instead  
LPF1  
50Ω  
LPF2  
V
REF  
+
5.1Ω  
10nF  
0V  
+
66nF  
BW = 48kHz  
IN  
LT6202  
LTC2370-16  
IN  
237016 F04  
BW = 3.2MHz  
Figure 40 Input Signal Chain  
set by resistor R . R must be chosen carefully based on  
ꢂI ꢂI  
the source impedance of the signal source. Higher values  
Another filter network consisting of LPF2 should be used  
between the buffer and ADC input to both minimize the  
noisecontributionofthebufferandtohelpminimizedistur-  
bances reflected into the buffer from sampling transients.  
Long RC time constants at the analog inputs will slow  
down the settling of the analog inputs. Therefore, LPF2  
requires a wider bandwidth than LPF1. A buffer amplifier  
with a low noise density must be selected to minimize  
degradation of the SIR.  
of R tend to degrade both the noise and distortion of  
ꢂI  
the LT6202 and LTC2370-16 as a system. Table 1 shows  
the resulting SIR and THD for several values of R , R1,  
ꢂI  
R2, R3 and R4 in this configuration. Figure 5b shows the  
resultingFFTwhenusingtheLT6202asshowninFigure5a.  
237016fa  
11  
LTC2370-16  
APPLICATIONS INFORMATION  
V
= V /2  
REF  
200pF  
CM  
ADC REFERENCE  
The LTC2370-16 requires an external reference to define  
its input range. A low noise, low temperature drift refer-  
enceiscriticaltoachievingthefulldatasheetperformance  
of the ADC. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
many applications. With its small size, low power and  
highaccuracy, theLTC6655-5isparticularlywellsuitedfor  
use with the LTC2370-16. The LTC6655-5 offers 0.025%  
(max) initial accuracy and 2ppm/°C (max) temperature  
coefficient for high precision applications. The LTC6655-5  
is fully specified over the H-grade temperature range and  
complements the extended temperature operation of the  
LTC2370-16 up to 125°C. We recommend bypassing the  
LTC6655-5witha4Fceramiccapacitor(X5R,0ꢀ05size)  
close to the REF pin.  
R2  
R4  
499Ω  
402Ω  
3
4
+
5V  
0V  
R3  
2k  
10µF  
LT6202  
R1  
1
R
IN  
2k  
10V  
0V  
–10V  
499Ω  
200pF  
237016 F05a  
Figure 8a0 5T62±2 Converting a ±1±V ꢀipolar Signal  
to a ±V to 8V Input Signal  
0
SNR = 93.9dB  
–20  
THD = –97.8dB  
SINAD = 91.4dB  
–40  
SFDR = 99.6dB  
–60  
–80  
TheREFpinoftheLTC2370-16drawscharge(Q  
)from  
COIV  
–100  
–120  
–140  
–160  
the 47µF bypass capacitor during each conversion cycle.  
The reference replenishes this charge with a DC current,  
= Q  
/t . The DC current draw of the REF pin,  
, depends on the sampling rate and output code. ꢂf  
the LTC2370-16 is used to continuously sample a signal  
at a constant rate, the LTC6655-5 will keep the deviation  
of the reference voltage over the entire code span to less  
than 0.5LSꢁs.  
REF  
REF  
COIV CYC  
–180  
400 500  
0
100 200 300  
600 700 800 9001000  
FREQUENCY (kHz)  
237016 F05b  
Figure 8b0 32k Point FFT Plot with fIN = 2kHz  
for Circuit Shown in Figure 8a  
When idling, the REF pin on the LTC2370-16 draws only  
a small leakage current (< 1µA). ꢂn applications where a  
burst of samples is taken after idling for long periods as  
Table 10 SNR, THD vs RIN for ±1±V Input Signal  
R
R1  
ꢁΩx  
R2  
ꢁΩx  
R3  
ꢁΩx  
R4  
ꢁΩx  
SNR  
ꢁdꢀx  
THD  
ꢁdꢀx  
IN  
shown in Figure 6, ꢂ quickly goes from approximately  
REF  
ꢁΩx  
0µA to a maximum of 1.3mA at 2Msps. This step in DC  
current draw triggers a transient response in the reference  
that must be considered since any deviation in the refer-  
ence output voltage will affect the accuracy of the output  
2k  
499  
499  
2k  
402  
2k  
93.9  
94  
–97.ꢀ  
–92.9  
–93.2  
10k  
100k  
2.49k  
24.9k  
2.49k  
24.9k  
10k  
100k  
20k  
92.2  
CNV  
237016 F06  
IDLE  
PERIOD  
IDLE  
PERIOD  
Figure 60 CNV Waveform Showing ꢀurst Sampling  
237016fa  
12  
LTC2370-16  
APPLICATIONS INFORMATION  
code. ꢂn applications where the transient response of the  
reference is important, the fast settling LTC6655-5 refer-  
ence is also recommended.  
0
–20  
SNR = 94dB  
THD = –112dB  
SINAD = 93.9dB  
SFDR = 117dB  
–40  
–60  
ꢂn applications where power management is critical and  
the external reference may be powered down, it is rec-  
ommended that REF is kept greater than 2V in order to  
guaranteeamaximumshutdowncurrentof140µA.nsuch  
applications, a Schottky diode can be placed between REF  
–80  
–100  
–120  
–140  
–160  
–180  
and V , as shown in Figure 7.  
DD  
0
100 200 300 400 500 600 700 800 9001000  
FREQUENCY (kHz)  
237016 F08  
REF  
V
DD  
Figure .0 32k Point FFT with fIN = 2kHz of the 5TC237±-16  
LTC2370-16  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure ꢀ shows  
that the LTC2370-16 achieves a typical SIR of 94dꢁ at a  
2MHz sampling rate with a 2kHz input.  
237016 F07  
Figure 70 A Schottky Diode ꢀetween REF and VDD Maintains  
REF > 2V for Applications Where the Reference May ꢀe  
Powered Down  
Total Harmonic Distortion ꢁTHDx  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
DYNAMIC PERFORMANCE  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢁy applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2370-16 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
V22 + V32 + V42 +…+ VI2  
THD= 20log  
V1  
where V1 is the RMS amplitude of the fundamental fre-  
quencyandV2throughV aretheamplitudesofthesecond  
I
Signal-to-Noise and Distortion Ratio ꢁSINADx  
through Ith harmonics.  
The signal-to-noise and distortion ratio (SꢂIAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure ꢀ shows that the LTC2370-16 achieves  
a typical SꢂIAD of 93.9dꢁ at a 2MHz sampling rate with  
a 2kHz input.  
POWER CONSIDERATIONS  
The LTC2370-16 provides two power supply pins: the  
2.5V power supply (V ), and the digital input/output  
DD  
interface power supply (OV ). The flexible OV supply  
DD  
DD  
allows the LTC2370-16 to communicate with any digital  
logic operating between 1.ꢀV and 5V, including 2.5V and  
3.3V systems.  
Signal-to-Noise Ratio ꢁSNRx  
The signal-to-noise ratio (SIR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
237016fa  
13  
LTC2370-16  
APPLICATIONS INFORMATION  
Power Supply Sequencing  
power down, disable SDO and turn off SCK. The auto  
power-down feature will reduce the power dissipation of  
the LTC2370-16 as the sampling frequency is reduced.  
Since power is consumed only during a conversion, the  
LTC2370-16remainspowereddownforalargerfractionof  
The LTC2370-16 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2370-16  
has a power-on-reset (POR) circuit that will reset the  
LTC2370-16 at initial power-up or whenever the power  
supply voltage drops below 1V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
reinitialize the ADC. Io conversions should be initiated  
until 20µs after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
the conversion cycle (t ) at lower sample rates, thereby  
CYC  
reducing the average power dissipation which scales with  
the sampling rate as shown in Figure 9.  
DIGITA5 INTERFACE  
The LTC2370-16 has a serial digital interface. The flexible  
OV supply allows the LTC2370-16 to communicate with  
DD  
any digital logic operating between 1.ꢀV and 5V, including  
2.5V and 3.3V systems.  
TIMING AND CONTRO5  
CNV Timing  
The serial output data is clocked out on the SDO pin when  
anexternalclockisappliedtotheSCKpinifSDOisenabled.  
Clocking out the data after the conversion will yield the  
best performance. With a shift clock frequency of at least  
100MHz, a 2Msps throughput is still achieved. The serial  
output data changes state on the rising edge of SCK and  
can be captured on the falling edge or next rising edge of  
SCK. D15 remains valid till the first rising edge of SCK.  
The LTC2370-16 conversion is controlled by CIV. A ris-  
ing edge on CIV will start a conversion and power up the  
LTC2370-16.Onceaconversionhasbeeninitiated,itcannot  
berestarteduntiltheconversioniscomplete.Foroptimum  
performance, CIV should be driven by a clean low jitter  
signal. Converter status is indicated by the ꢁUSY output  
which remains high while the conversion is in progress.  
To ensure that no errors occur in the digitized results, any  
additional transitions on CIV should occur within 40ns  
from the start of the conversion or after the conversion  
has been completed. Once the conversion has completed,  
the LTC2370-16 powers down and begins acquiring the  
input signal.  
The serial interface on the LTC2370-16 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operation of the LTC2370-16. Several modes are provided  
depending on whether a single or multiple ADCs share the  
SPꢂ bus or are daisy chained.  
8
7
6
5
Internal Conversion Clock  
The LTC2370-16 has an internal clock that is trimmed to  
achieveamaximumconversiontimeof322ns.Withamin-  
imum acquisition time of 165ns, throughput performance  
of 2Msps is guaranteed without any external adjustments.  
I
VDD  
4
3
2
1
0
I
I
REF  
Auto Power-Down  
OVDD  
800  
SAMPLING RATE (kHz)  
0
400  
1200  
1600  
2000  
The LTC2370-16 automatically powers down after a  
conversion has been completed and powers up once a  
new conversion is initiated on the rising edge of CIV.  
During power down, data from the last conversion can  
be clocked out. To minimize power dissipation during  
237016 F09  
Figure 90 Power Supply Current of the 5TC237±-16  
Versus Sampling Rate  
237016fa  
14  
LTC2370-16  
TIMING DIAGRAMS  
Normal Mode, Single Device  
Figure 10 shows a single LTC2370-16 operated in normal  
mode with CHAꢂI and RDL/SDꢂ tied to ground. With  
RDL/SDꢂ grounded, SDO is enabled and the MSꢁ(D15) of  
the new conversion data is available at the falling edge of  
ꢁUSY. ThisisthesimplestwaytooperatetheLTC2370-16.  
When CHAꢂI = 0, the LTC2370-16 operates in normal  
mode. ꢂn normal mode, RDL/SDꢂ enables or disables the  
serial data output pin SDO. ꢂf RDL/SDꢂ is high, SDO is in  
high impedance. ꢂf RDL/SDꢂ is low, SDO is driven.  
CONVERT  
DIGITAL HOST  
IRQ  
CNV  
CHAIN  
BUSY  
LTC2370-16  
RDL/SDI  
SDO  
DATA IN  
CLK  
SCK  
POWER-DOWN  
AND ACQUIRE  
CONVERT  
POWER-DOWN AND ACQUIRE  
CONVERT  
CHAIN = 0  
RDL/SDI = 0  
t
CYC  
t
CNVH  
t
CNVL  
CNV  
t
= t  
– t  
– t  
ACQ CYC CONV BUSYLH  
t
t
CONV  
ACQ  
BUSY  
t
SCK  
t
BUSYLH  
t
t
QUIET  
SCKH  
1
2
3
14  
15  
16  
SCK  
SDO  
t
t
SCKL  
HSDO  
t
t
DSDO  
DSDOBUSYL  
D15  
D14  
D13  
D1  
D0  
237016 F10  
Figure 1±0 Using a Single 5TC237±-16 in Normal Mode  
237016fa  
15  
LTC2370-16  
TIMING DIAGRAMS  
Normal Mode, Multiple Devices  
be used to allow only one LTC2370-16 to drive SDO at a  
timeinordertoavoidbusconflicts. AsshowninFigure11,  
the RDL/SDꢂ inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDꢂ is brought low, the MSꢁ of the selected  
device is output onto SDO.  
Figure 11 shows multiple LTC2370-16 devices operating  
in normal mode (CHAꢂI = 0) sharing CIV, SCK and SDO.  
ꢁy sharing CIV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
Since SDO is shared, the RDL/SDꢂ input of each ADC must  
RDL  
RDL  
B
A
CONVERT  
CNV  
CNV  
CHAIN  
BUSY  
SDO  
IRQ  
CHAIN  
LTC2370-16  
B
LTC2370-16  
A
DIGITAL HOST  
SDO  
RDL/SDI  
RDL/SDI  
SCK  
SCK  
DATA IN  
CLK  
POWER-DOWN  
AND ACQUIRE  
CONVERT  
CONVERT  
POWER-DOWN AND ACQUIRE  
CHAIN = 0  
t
CNVL  
CNV  
t
CONV  
BUSY  
t
BUSYLH  
RDL/SDI  
A
B
RDL/SDI  
t
SCK  
t
t
QUIET  
SCKH  
17  
SCK  
SDO  
1
2
3
14  
15  
16  
18  
19  
30  
31  
32  
t
t
HSDO  
SCKL  
t
t
DSDO  
DIS  
t
EN  
Hi-Z  
Hi-Z  
Hi-Z  
D15  
D14  
D13  
D1  
D0  
A
D15  
D14  
D13  
D1  
D0  
B
A
A
A
A
B
B
B
B
237016 F11  
Figure 110 Normal Mode With Multiple Devices Sharing CNV, SCK and SDO  
237016fa  
16  
LTC2370-16  
TIMING DIAGRAMS  
Chain Mode, Multiple Devices  
number of converters. Figure 12 shows an example with  
two daisy-chained devices. The MSꢁ of converter A will  
appear at SDO of converter ꢁ after 16 SCK cycles. The  
MSꢁ of converter A is clocked in at the SDꢂ/RDL pin of  
converter ꢁ on the rising edge of the first SCK.  
When CHAꢂI = OV , the LTC2370-16 operates in  
DD  
chain mode. ꢂn chain mode, SDO is always enabled and  
RDL/SDꢂ serves as the serial data input pin (SDꢂ) where  
daisy-chain data output from another ADC can be input.  
This is useful for applications where hardware constraints  
maylimitthenumberoflines neededtointerface to a large  
CONVERT  
OV  
DD  
OV  
DD  
CNV  
CNV  
DIGITAL HOST  
CHAIN  
CHAIN  
LTC2370-16  
LTC2370-16  
RDL/SDI  
SDO  
RDL/SDI  
BUSY  
SDO  
IRQ  
A
B
DATA IN  
SCK  
SCK  
CLK  
POWER-DOWN  
AND ACQUIRE  
CONVERT  
POWER-DOWN AND ACQUIRE  
CONVERT  
CHAIN = OV  
DD  
RDL/SDI = 0  
A
t
CYC  
t
CNVL  
CNV  
BUSY  
t
CONV  
t
BUSYLH  
t
SCKCH  
t
t
SCKH  
QUIET  
SCK  
1
2
3
14  
15  
16  
17  
18  
30  
31  
32  
t
SCKL  
t
t
SSDISCK  
HSDO  
t
t
DSDO  
HSDISCK  
SDO = RDL/SDI  
A
B
D15  
D15  
D14  
D14  
D13  
D1  
D0  
A
A
A
A
A
t
DSDOBUSYL  
D13  
D1  
B
D0  
D15  
D14  
D1  
D0  
A
SDO  
B
B
B
B
A
A
A
B
237016 F12  
Figure 120 Chain Mode Timing Diagram  
237016fa  
17  
LTC2370-16  
BOARD LAYOUT  
To obtain the best performance from the LTC2370-16  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCꢁ) should ensure the digital and  
analog signal lines are separated as much as possible. ꢂn  
particular,careshouldbetakennottorunanydigitalclocks  
orsignalsalongsideanalogsignalsorunderneaththeADC.  
Recommended 5ayout  
ThefollowingisanexampleofarecommendedPClayout.  
A single solid ground plane is used. ꢁypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC1ꢀ13A, the  
evaluation kit for the LTC2370-16.  
Partial Top Silkscreen  
237016fa  
18  
LTC2370-16  
BOARD LAYOUT  
Partial 5ayer 1 Component Side  
Partial 5ayer 2 Ground Plane  
237016fa  
19  
LTC2370-16  
BOARD LAYOUT  
Partial 5ayer 3 PWR Plane  
Partial 5ayer 4 ꢀottom 5ayer  
237016fa  
20  
LTC2370-16  
BOARD LAYOUT  
Partial Schematic of Demoboard  
R E F  
8
R E F  
1
G N D  
7
1 5  
2
D D  
D D  
G N D 1 6  
O V  
G N D  
1 0  
V
G N D  
6
3
3
2
1
3
2
1
237016fa  
21  
LTC2370-16  
PACKAGE DESCRIPTION  
Please refer to http://www0linear0com/designtools/packaging/ for the most recent package drawings0  
DE Package  
16-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-ꢀ732 Rev Ø)  
R = 0.ꢀꢀ5  
TYP  
0.40 0.ꢀ0  
4.00 0.ꢀ0  
(2 SIDES)  
9
ꢀ6  
R = 0.05  
0.70 0.05  
TYP  
3.30 0.ꢀ0  
3.30 0.05  
ꢀ.70 0.05  
3.60 0.05  
2.20 0.05  
3.00 0.ꢀ0  
(2 SIDES)  
PACKAGE  
OUTLINE  
ꢀ.70 0.ꢀ0  
PIN ꢀ NOTCH  
R = 0.20 OR  
PIN ꢀ  
TOP MARK  
0.35 × 45°  
CHAMFER  
(DEꢀ6) DFN 0806 REV Ø  
(SEE NOTE 6)  
8
0.23 0.05  
0.45 BSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.45 BSC  
3.ꢀ5 REF  
3.ꢀ5 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
ꢀ. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGED-3) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
MS Package  
16-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev Ø)  
4.039 ± 0.102  
(.159 ± .004)  
(NOTE 3)  
0.280 ± 0.076  
(.011 ± .003)  
REF  
16151413121110  
9
0.889 ± 0.127  
(.035 ± .005)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
DETAIL “A”  
0° – 6° TYP  
4.90 ± 0.152  
(.193 ± .006)  
0.254  
(.010)  
GAUGE PLANE  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
0.53 ± 0.152  
(.021 ± .006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
SEATING  
PLANE  
TYP  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ± 0.0508  
(.004 ± .002)  
MSOP (MS16) 1107 REV Ø  
RECOMMENDED SOLDER PAD LAYOUT  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
237016fa  
22  
LTC2370-16  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMꢀER  
A
03/12 Updated conditions for ꢂ and P in Power Requirements section  
4
PD  
D
Added Figure 7 and associated text  
Updated Related Parts  
13  
24  
237016fa  
ꢂnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2370-16  
TYPICAL APPLICATION  
5T62±2 Converting a ±1±V ꢀipolar Signal to a ±V to 8V Input Signal Into the 5TC237±-16  
LTC6655-5  
V
V
V
8V  
IN  
OUT_F  
OUT_S  
5V  
200pF  
47µF  
R2  
3k  
5
R4  
402Ω  
LT6202  
+
2.5V  
V
5V  
0V  
3
4
+
REF  
V
DD  
5.1Ω  
R3  
2k  
+
10µF  
1
IN  
IN  
10nF  
LTC2370-16  
V
2
237016 TA02  
R
R1  
IN  
–3V  
10V  
2k  
499Ω  
0V  
–10V  
220pF  
RELATED PARTS  
PART NUMꢀER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC2379-1ꢀ/LTC237ꢀ-1ꢀ 1ꢀ-ꢁit, 1.6Msps/1Msps/500ksps/250ksps Serial, Low 2.5V Supply, Differential ꢂnput, 101.2dꢁ SIR, 5V ꢂnput Range, DGC,  
LTC2377-1ꢀ/LTC2376-1ꢀ Power ADC  
Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFI-16 Packages  
LTC23ꢀ0-16/LTC237ꢀ-16 16-ꢁit, 2Msps/1Msps/500ksps/250ksps Serial, Low  
LTC2377-16/LTC2376-16 Power ADC  
2.5V Supply, Differential ꢂnput, 96.2dꢁ SIR, 5V ꢂnput Range, DGC,  
Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFI-16 Packages  
LTC23ꢀ3-16/LTC23ꢀ2-16/ 16-ꢁit, 1Msps/500ksps/250ksps Serial, Low  
2.5V Supply, Differential ꢂnput, 92dꢁ SIR, 2.5V ꢂnput Range, Pin-  
Compatible Family in MSOP-16 and 4mm × 3mm DFI-16 Packages  
LTC23ꢀ1-16  
Power ADC  
LTC2393-16/LTC2392-16/ 16-ꢁit, 1Msps/500ksps/250ksps Parallel/Serial ADC  
LTC2391-16  
5V Supply, Differential ꢂnput, 94dꢁ SIR, 4.096V ꢂnput Range, Pin-  
Compatible Family in 7mm × 7mm LQFP-4ꢀ and QFI-4ꢀ Packages  
LTC2355-14/LTC2356-14 14-ꢁit, 3.5Msps Serial ADC  
3.3V Supply, 1-Channel, Unipolar/ꢁipolar, 1ꢀmW, MSOP-10 Package  
DACS  
LTC2641  
16-ꢁit/14-ꢁit/12-ꢁit Single Serial V  
DACs  
1LSꢁ ꢂIL/DIL, MSOP-ꢀ Package, 0V to 5V Output  
OUT  
LTC2630  
12-ꢁit/10-ꢁit/ꢀ-ꢁit Single V  
DACs  
SC70 6-Pin Package, ꢂnternal Reference, 1LSꢁ ꢂIL (12 ꢁits)  
OUT  
References  
LTC6655  
Precision Low Drift Low Ioise ꢁuffered Reference  
Precision Low Drift Low Ioise ꢁuffered Reference  
5V/2.5V, 5ppm/°C, 0.25ppm Peak-to-Peak Ioise, MSOP-ꢀ Package  
5V/2.5V, 5ppm/°C, 2.1ppm Peak-to-Peak Ioise, MSOP-ꢀ Package  
LTC6652  
Amplifiers  
LT6202/LT6203  
Single/Dual 100MHz Rail-to-Rail ꢂnput/Output Ioise 1.9nV√Hz, 3mA Maximum, 100MHz Gain ꢁandwidth  
Low Power Amplifiers  
LT6200/LT6200-5/  
LT6200-10  
165MHz/ꢀ00MHz/1.6GHz Op Amp with  
Unity Gain/AV = 5/AV = 10  
Low Ioise Voltage: 0.95nV/√Hz (100kHz), Low Distortion: –ꢀ0dꢁ at  
1MHz, TSOT23-6 Package  
LT6360  
Low Ioise SAR ADC Driver with True Zero Output  
Low Ioise ꢂntegrated Charge Pump  
237016fa  
LT 0312 REV A • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy ꢁlvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2011  
(40ꢀ) 432-1900 FAX: (40ꢀ) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY