LT6402IUD-12 [Linear]

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB); 300MHz的低失真,低噪声差分功率放大器ER / ADC驱动器( AV = 12分贝)
LT6402IUD-12
型号: LT6402IUD-12
厂家: Linear    Linear
描述:

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
300MHz的低失真,低噪声差分功率放大器ER / ADC驱动器( AV = 12分贝)

驱动器 运算放大器 放大器电路 功率放大器
文件: 总16页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6402-12  
300MHz Low Distortion, Low  
Noise Differential Amplifier/  
ADC Driver (A = 12dB)  
DESCRIPTION  
V
FEATURES  
n
300 MHz –3dB Bandwidth  
The LT®6402-12 is a low distortion, low noise differential  
amplifier/ADC driver for use in applications from DC to  
300MHz. The LT6402-12 has been designed for ease of  
use,withminimalsupportcircuitryrequired.Exceptionally  
low input-referred noise and low distortion (with either  
single-ended or differential inputs) make the LT6402-12  
an excellent solution for driving high speed 12-bit and  
14-bit ADCs. In addition to the normal unfiltered outputs  
(+OUT and –OUT), the LT6402-12 has a built-in 75MHz  
differential low pass filter and an additional pair of filtered  
outputs (+OUTFILTERED, –OUTFILTERED) to reduce  
external filtering components when driving high speed  
ADCs. The output common mode voltage is easily set via  
n
Fixed Gain of 12dB  
n
Low Distortion:  
43dBm OIP3, –82dBc HD3 (20MHz, 2V  
)
P-P  
n
Low Noise:  
15dB NF, e = 2.6nV/√Hz (20MHz)  
n
n
n
n
n
n
n
Differential Inputs and Outputs  
Additional Filtered Outputs  
Adjustable Output Common Mode Voltage  
DC- or AC-Coupled Operation  
Minimal Support Circuitry Required  
Small 0.75mm Profile 16-Lead 3mm × 3mm QFN  
Package  
the V  
pin, eliminating an output transformer or AC-  
OCM  
coupling capacitors in many applications.  
APPLICATIONS  
n
TheLT6402-12isdesignedtomeetthedemandingrequire-  
ments of communications transceiver applications. It can  
be used as a differential ADC driver, a general-purpose  
differential gain block, or in other applications requiring  
differential drive. The LT6402-12 can be used in data  
acquisition systems required to function at frequencies  
down to DC.  
Differential ADC Driver for:  
Imaging  
Communications  
n
Differential Driver/Receiver  
n
Single Ended to Differential Conversion  
n
Differential to Single Ended Conversion  
n
Level Shifting  
IF Sampling Receivers  
SAW Filter Interfacing/Buffering  
n
TheLT6402-12operatesona5Vsupplyandconsumes30mA.  
It comes in a compact 16-lead 3mm × 3mm QFN package  
and operates over a –40°C to 85°C temperature range.  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Distortion vs Frequency, Differential Input, No RLOAD  
–40  
FILTERED OUTPUTS  
V
= 2V  
OUT  
P-P  
5V  
–50  
–60  
0.1μF  
0.1μF  
–INB  
V
–70  
CC  
V
CM  
–INA  
V
10Ω  
10Ω  
OCM  
+OUT  
+
AIN  
0.1μF  
–80  
LT6402-12  
–OUT  
LTC®2249  
HD3  
HD2  
AIN  
0.1μF  
–90  
+INB  
+INA  
IF IN  
V
EE  
64026 TA01a  
–100  
1
10  
FREQUENCY (MHz)  
100  
640212 TA01b  
640212fa  
1
LT6402-12  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Total Supply Voltage (V /V /V  
EEA EEB EEC  
Input Current (+INA, –INA, +INB, –INB,  
to  
CCA CCB CCC  
/V /V ) ...................................................5.5V  
V
16 15 14 13  
V
1
2
3
4
12  
V
EEC  
CCC  
V
, ENABLE)................................................ 10mA  
OCM  
V
11 ENABLE  
OCM  
17  
Output Current (Continuous)  
V
V
V
10  
9
CCA  
CCB  
EEB  
+OUT, OUT ................................................... 100mA  
+OUTFILTERED, –OUTFILTERED...................... 30mA  
Output Short-Circuit Duration (Note 2) ............ Indefinite  
Operating Temperature Range (Note 3).... –40°C to 85°C  
Specified Temperature Range (Note 4) .... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
Junction Temperature ........................................... 125°C  
V
EEA  
5
6
7
8
UD PACKAGE  
16-LEAD (3mm × 3mm) PLASTIC QFN  
T
JMAX  
= 125°C, θ = 68°C/W, θ = 4.2°C/W  
JA JC  
EXPOSED PAD IS V (PIN 17)  
EE  
MUST BE SOLDERED TO THE PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT6402CUD-12#PBF  
LT6402IUD-12#PBF  
LEAD BASED FINISH  
LT6402CUD-12  
TAPE AND REEL  
PART MARKING*  
LCBB  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
LT6402CUD-12#TRPBF  
LT6402IUD-12#TRPBF  
TAPE AND REEL  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
PACKAGE DESCRIPTION  
LCBB  
–40°C to 85°C  
PART MARKING*  
LCBB  
TEMPERATURE RANGE  
–40°C to 85°C  
LT6402CUD-12#TR  
LT6402IUD-12#TR  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
LT6402IUD-12  
LCBB  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full operating  
DC ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCCA = VCCB = VCCC = 5V, VEEA = VEEB = VEEC = 0V, ENABLE = 0.8V, +INA  
shorted to +INB (+IN), –INA shorted to –INB (–IN), VOCM = 2.2V, Input common mode voltage = 2.2V, no RLOAD unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Characteristics (+INA, +INB, –INA, –INB, +OUT, OUT, +OUTFILTERED, –OUTFILTERED)  
l
l
l
GDIFF  
Gain  
Differential (+OUT, OUT), V  
=
400mV Differential  
11.6  
12  
12.4  
dB  
IN  
V
V
V
Single-Ended +OUT, OUT, +OUTFILTERED,  
0.25  
0.35  
0.5  
V
V
SWINGMIN  
SWINGMAX  
SWINGDIFF  
OUT  
–OUTFILTERED, V 1.2V Differential  
=
IN  
Single-Ended +OUT, OUT, +OUTFILTERED,  
–OUTFILTERED, V 1.2V Differential  
3.4  
3.3  
3.6  
7
V
V
=
IN  
Output Voltage Swing  
Differential (+OUT, OUT), V 1.2V Differential  
=
6.1  
5.6  
V
V
IN  
P-P  
P-P  
l
l
I
Output Current Drive  
Input Offset Voltage  
30  
35  
1
mA  
V
OS  
–6.5  
–10  
6.5  
10  
mV  
mV  
l
l
TCV  
Input Offset Voltage Drift  
T
MIN  
to T  
MAX  
2.5  
μV/°C  
OS  
640212fa  
2
LT6402-12  
DC ELECTRICAL CHARACTERISTICS  
shorted to +INB (+IN), –INA shorted to –INB (–IN), VOCM = 2.2V, Input common mode voltage = 2.2V, no RLOAD unless otherwise noted.  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCCA = VCCB = VCCC = 5V, VEEA = VEEB = VEEC = 0V, ENABLE = 0.8V, +INA  
SYMBOL  
PARAMETER  
CONDITIONS  
Single-Ended  
Single-Ended  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
I
I
Input Voltage Range, MIN  
Input Voltage Range, MAX  
Input Resistance  
0.5  
VRMIN  
VRMAX  
4.3  
77  
V
Ω
R
100  
1
122  
INDIFF  
C
Input Capacitance  
pF  
dB  
Ω
INDIFF  
l
CMRR  
Common Mode Rejection Ratio Input Common Mode 0.5V to 4.3V  
42  
65  
R
Output Resistance  
Output Capacitance  
0.3  
0.8  
OUTDIFF  
OUTDIFF  
C
pF  
Common Mode Voltage Control (V  
Pin)  
OCM  
GCM  
Common Mode Gain  
Differential (+OUT, OUT), V  
Differential (+OUT, OUT), V  
= 1.2V to 3.6V  
= 1.4V to 3.4V  
0.9  
0.9  
1
1.1  
1.1  
V/V  
V/V  
OCM  
OCM  
l
l
l
V
V
V
Output Common Mode Voltage  
Adjustment Range, MIN  
1.2  
1.4  
V
V
OCMMIN  
OCMMAX  
OSCM  
Output Common Mode Voltage Single-Ended  
Adjustment Range, MAX  
3.6  
3.4  
V
V
Output Common Mode Offset  
Voltage  
Measured from V  
to Average of +OUT and –OUT  
–30  
4
30  
15  
mV  
OCM  
l
l
I
V
V
V
Input Bias Current  
Input Resistance  
Input Capacitance  
5
3
1
μA  
MΩ  
pF  
BIASCM  
OCM  
OCM  
OCM  
R
0.8  
INCM  
C
INCM  
ENABLE Pin  
l
l
l
l
V
ENABLE Input Low Voltage  
ENABLE Input High Voltage  
ENABLE Input Low Current  
ENABLE Input High Current  
0.8  
V
V
IL  
V
2
IH  
I
I
ENABLE = 0.8V  
ENABLE = 2V  
0.5  
3
μA  
μA  
IL  
IH  
1
Power Supply  
l
l
l
l
V
Operating Range  
4
5
5.5  
37  
V
mA  
μA  
S
I
I
Supply Current  
ENABLE = 0.8V  
ENABLE = 2V  
4V to 5.5V  
24  
30  
S
Supply Current (Disabled)  
Power Supply Rejection Ratio  
250  
90  
500  
SDISABLED  
PSRR  
55  
dB  
640212fa  
3
LT6402-12  
AC ELECTRICAL CHARACTERISSTICST = 25°C, V  
CCA = VCCB = VCCC = 5V, VEEA = VEEB = VEEC = 0V,  
A
ENABLE = 0.8V, +INA shorted to +INB (+IN), –INA shorted to –INB (–IN), VOCM = 2.2V, Input common mode voltage = 2.2V, no RLOAD  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Characteristics  
–3dBBW  
0.1dBBW  
0.5dBBW  
SR  
–3dB Bandwidth  
50mV Differential (+OUT, OUT)  
200  
300  
30  
MHz  
MHz  
MHz  
V/μs  
ns  
P-P  
Bandwidth for 0.1dB Flatness  
Bandwidth for 0.5dB Flatness  
Slew Rate  
50mV Differential (+OUT, OUT)  
P-P  
50mV Differential (+OUT, OUT)  
80  
P-P  
3.2V Differential (+OUT, OUT)  
400  
10  
P-P  
t
1% Settling  
1% Settling for a 1V Differential Step  
s1%  
P-P  
(+OUT, OUT)  
t
t
Turn-On Time  
Turn-Off Time  
200  
1.5  
ns  
μs  
ON  
OFF  
Common Mode Voltage Control (V  
Pin)  
OCM  
–3dBBW  
Common Mode Small-Signal –3dB  
Bandwidth  
0.1V at V , Measured Single-Ended at +OUT  
OCM  
200  
250  
MHz  
V/μs  
CM  
P-P  
and –OUT  
SR  
Common Mode Slew Rate  
1.3V to 3.4V Step at V  
OCM  
CM  
Noise/Harmonic Performance Input/Output Characteristics  
10MHz Signal  
Second/Third Harmonic Distortion  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–85  
–83  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
Third-Order IMD  
2V Differential Composite (+OUTFILTERED,  
–91.5  
P-P  
–OUTFILTERED), f1 = 9.5MHz, f2 = 10.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 9.5MHz, f2 = 10.5MHz (Note 5)  
47.5  
dBm  
10M  
Noise Figure  
Measured Using DC954A Demo Board  
15.4  
2.7  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n10M  
R = 100Ω (Note 5)  
L
20.5  
20MHz Signal  
Second/Third Harmonic Distortion  
Third-Order IMD  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–82  
–79  
–87  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 19.5MHz, f2 = 20.5MHz  
2V Differential Composite (+OUT, OUT),  
L
–80  
43  
dBc  
P-P  
R = 400Ω, f1 = 19.5MHz, f2 = 20.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 19.5MHz, f2 = 20.5MHz (Note 5)  
dBm  
20M  
Noise Figure  
Measured Using DC954A Demo Board  
15  
2.6  
17  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n20M  
R = 100Ω (Note 5)  
L
640212fa  
4
LT6402-12  
AC ELECTRICAL CHARACTERISTICS  
TA = 25°C, VCCA = VCCB = VCCC = 5V,VEEA = VEEB = VEEC = 0V,  
ENABLE = 0.8V, +INA shorted to +INB (+IN), –INA shorted to –INB (–IN), VOCM = 2.2V, Input common mode voltage = 2.2V, no RLOAD  
unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
25MHz Signal  
Second/Third Harmonic Distortion  
Third-Order IMD  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–82  
–73  
–83  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 24.5MHz, f2 = 25.5MHz  
2V Differential Composite (+OUT, OUT),  
L
–74  
40  
dBc  
P-P  
R = 400Ω, f1 = 24.5MHz, f2 = 25.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 24.5MHz, f2 = 25.5MHz (Note 5)  
dBm  
25M  
Noise Figure  
Measured Using DC954A Demo Board  
15.1  
2.6  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n25M  
R = 100Ω (Note 5)  
L
13.5  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: The LT6402C is guaranteed to meet specified performance from  
0°C to 70°C. It is designed, characterized and expected to meet specified  
performance from –40°C and 85°C but is not tested or QA sampled  
at these temperatures. The LT6402I is guaranteed to meet specified  
performance from –40°C to 85°C.  
Note 2: As long as output current and junction temperature are kept below  
the Absolute Maximum Ratings, no damage to the part will occur.  
Note 3: The LT6402 is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 5: Since the LT6402-12 is a feedback amplifier with low output  
impedance, a resistive load is not required when driving an ADC.  
Therefore, typical output power is very small. In order to compare the  
LT6402-12 with typical g amplifiers that require 50Ω output loading, the  
m
LT6402-12 output voltage swing driving an ADC is converted to OIP3 and  
P1dB as if it were driving a 50Ω load.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Frequency Response,  
RLOAD = 400Ω  
Frequency Response vs CLOAD  
,
Frequency Response,  
RLOAD = 100Ω  
RLOAD = 400Ω  
18  
15  
12  
9
18  
15  
12  
9
24  
21  
18  
15  
V
= 50V  
P-P  
IN  
UNFILTERED OUTPUTS  
UNFILTERED OUTPUTS  
FILTERED OUTPUTS  
UNFILTERED OUTPUTS  
FILTERED OUTPUTS  
6
6
12  
9
3
3
0
0
–3  
–6  
–9  
–12  
–15  
–18  
6
3
–3  
–6  
–9  
–12  
–15  
V
= 50mV  
P-P  
IN  
UNFILTERED: R  
FILTERED: R  
= 400Ω  
V
= 50mV  
P-P  
LOAD  
0pF  
IN  
0
= 300Ω  
UNFILTERED: R  
FILTERED: R  
= 100Ω  
LOAD  
1.6pF  
5pF  
LOAD  
(EXTERNAL) + 100Ω  
(INTERNAL, FILTERED OUTPUTS)  
= 100Ω  
LOAD  
–3  
–6  
(INTERNAL, FILTERED OUTPUTS)  
10 100  
FREQUENCY (MHz)  
10pF  
1
10 100  
FREQUENCY (MHz)  
1000  
1
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
640212 G01  
640212 G03  
640212 G02  
640212fa  
5
LT6402-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
Third Order Intermodulation  
Third Order Intermodulation  
Output Third Order Intercept vs  
Frequency, Differential Input,  
No RLOAD  
Distortion vs Frequency,  
Differential Input, No RLOAD  
Distortion vs Frequency,  
Differential Input, RLOAD = 400Ω  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–65  
51  
49  
47  
45  
2 TONES  
P-P  
2 TONES  
P-P  
1MHz TONE SPACING  
2V COMPOSITE  
2V COMPOSITE  
–70 1MHz TONE SPACING  
UNFILTERED OUTPUTS  
–75  
UNFILTERED  
OUTPUTS  
UNFILTERED  
OUTPUTS  
–80  
43  
41  
FILTERED OUTPUTS  
2 TONES  
–85  
–90  
–95  
FILTERED  
OUTPUTS  
39  
37  
35  
FILTERED  
OUTPUTS  
2V COMPOSITE  
P-P  
1MHz TONE SPACING  
5
15  
20  
25  
30  
35  
5
10  
15  
20  
25  
30  
35  
5
10  
20  
FREQUENCY (MHz)  
10  
25  
30  
35  
15  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64026 G04  
640212 G05  
640212 G06  
Output Third Order Intercept vs  
Frequency, Differential Input,  
RLOAD = 400Ω  
Distortion vs Frequency,  
Distortion vs Frequency,  
Differential Input, No RLOAD  
Differential Input, No RLOAD  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
51  
49  
47  
45  
–45  
–55  
–65  
–75  
–85  
–95  
FILTERED OUTPUTS  
UNFILTERED OUTPUTS  
V
= 2V  
V
= 2V  
OUT  
P-P  
OUT  
P-P  
FILTERED OUTPUTS  
43  
41  
UNFILTERED OUTPUTS  
2 TONES  
HD3  
HD2  
HD3  
HD2  
39  
37  
35  
2V COMPOSITE  
P-P  
1MHz TONE SPACING  
5
10  
20  
FREQUENCY (MHz)  
25  
30  
35  
15  
1
10  
FREQUENCY (MHz)  
100  
100  
1
10  
FREQUENCY (MHz)  
640212 G08  
640212 G09  
640212 G07  
Distortion vs Output Amplitude,  
20MHz Differential Input, No RLOAD  
Distortion vs Output Amplitude,  
20MHz Differential Input, No RLOAD  
Output 1dB Compression  
vs Frequency  
–70  
–75  
–80  
–85  
–90  
25  
20  
15  
10  
5
–70  
–75  
–80  
UNFILTERED OUTPUTS  
FILTERED OUTPUTS  
UNFILTERED OUTPUTS  
HD2  
HD3  
100Ω LOAD  
400Ω LOAD  
HD2  
HD3  
–85  
–90  
–95  
0
–5  
–10  
–15  
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1000  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT AMPLITUDE (dBm)  
FREQUENCY (MHz)  
OUTPUT AMPLITUDE (dBm)  
640212 G12  
640212 G11  
640212 G10  
640212fa  
6
LT6402-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Referred Noise Voltage  
Noise Figure vs Frequency  
vs Frequency  
Reverse Isolation vs Frequency  
30  
25  
20  
15  
10  
5
12  
10  
8
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
MEASURED USING  
DC954 DEMO BOARD  
UNFILTERED OUTPUTS  
6
4
2
0
0
10  
100  
FREQUENCY (MHz)  
1000  
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640212 G13  
640212 G14  
640212 G15  
Differential Input Impedance  
vs Frequency  
Differential Output Impedance  
vs Frequency  
Input Reflection Coefficient  
vs Frequency  
300  
250  
200  
150  
100  
50  
100  
10  
1
0
–5  
MEASURED USING  
DC954 DEMO BOARD  
UNFILTERED OUTPUTS  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
IMPEDANCE  
MAGNITUDE  
IMPEDANCE  
PHASE  
0
–50  
–100  
1
10  
100  
1000  
1
10  
100  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640212 G16  
640212 G18  
64206 G17  
Output Reflection Coefficient  
vs Frequency  
PSRR, CMRR vs Frequency  
Small-Signal Transient Response  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–5  
2.280  
2.260  
2.240  
2.220  
2.200  
2.180  
2.160  
2.140  
2.120  
UNFILTERED OUTPUTS  
MEASURED USING  
DC954 DEMO BOARD  
PSRR  
CMRR  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
1
10  
100  
1000  
1
10  
100  
1000  
TIME (5ns/DIV)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640212 G20  
640212 G19  
640212 G21  
640212fa  
7
LT6402-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
Distortion vs Output Common  
Mode Voltage, LT6402-12 Driving  
an LTC2249 14-Bit ADC  
Large-Signal Transient Response  
Overdrive Recovery Time  
–70  
–75  
–80  
–85  
3.7  
3.2  
2.7  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
FILTERED OUTPUTS  
NO R  
LOAD  
= 20MHz 2V  
V
OUT  
P-P  
HD3  
2.2  
1.7  
1.2  
HD2  
–90  
–95  
–100  
1.8  
2.2  
2.4  
1
1.2  
1.4 1.6  
2.0  
TIME (25ns/DIV)  
TIME (10ns/DIV)  
OUTPUT COMMON MODE VOLTAGE (V)  
640212 G24  
640212 G23  
640212 G22  
10MHz 8192 Point FFT, LT6402-12  
Driving an LTC2249 14-Bit ADC  
Turn-On Time  
Turn-Off Time  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–90  
–100  
–110  
–120  
–130  
–140  
0
2
4
6
8
10 12 14 16 18 20  
TIME (125ns/DIV)  
TIME (250ns/DIV)  
FREQUENCY (MHz)  
640212 G27  
640212 G25  
640212 G26  
20MHz 2-Tone 32768 Point FFT,  
LT6402-12 Driving an LTC2249  
14-Bit ADC  
20MHz 8192 Point FFT, LT6402-12  
Driving an LTC2249 14-Bit ADC  
25MHz 8192 Point FFT, LT6402-12  
Driving an LTC2249 14-Bit ADC  
0
–10  
–20  
–30  
–40  
0
–10  
–20  
–30  
–40  
0
–10  
–20  
–30  
–40  
–50  
–50  
–50  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–100  
–110  
–120  
–130  
–140  
–100  
–110  
–120  
–130  
–140  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5  
FREQUENCY (MHz)  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640212 G30  
640212 G28  
640212 G29  
640212fa  
8
LT6402-12  
PIN FUNCTIONS  
V
(Pin 2): This pin sets the output common mode  
+OUTFILTERED, –OUTFILTERED (Pins 6, 7): Filtered  
Outputs. These pins add a series 50Ω resistor from the  
unfiltered outputs and three 14pF capacitors. Each output  
OCM  
voltage. Without additional biasing, both inputs bias to  
this voltage as well. This input is high impedance.  
has 14pF to V , plus an additional 14pF between each pin  
EE  
V
, V , V  
CCA CCB CCC  
(Pins 3, 10, 1): Positive Power Supply  
(See the Block Diagram). This filter has a –3dB bandwidth  
of 75MHz.  
(Normally Tied to 5V). All three pins must be tied to the  
same voltage. Bypass each pin with 1000pF and 0.1μF  
capacitors as close to the package as possible. Split  
ENABLE (Pin 11): This pin is a TTL logic input referenced  
supplies are possible as long as the voltage between V  
and V is 5V.  
to the V pin. If low, the LT6402-12 is enabled and draws  
CC  
EEC  
typically 30mA of supply current. If high, the LT6402-12  
EE  
is disabled and draws typically 250μA.  
V
, V , V (Pins 4, 9, 12): Negative Power Supply  
EEA EEB EEC  
(Normally Tied to Ground). All three pins must be tied to  
+INA, +INB (Pins 15, 16): Positive Inputs. These pins are  
normally tied together. These inputs may be DC- or AC-  
coupled. If the inputs are AC-coupled, they will self-bias  
the same voltage. Split supplies are possible as long as  
the voltage between V and V is 5V. If these pins are  
CC  
EE  
nottiedtoground, bypasseachpinwith1000pFand0.1μF  
to the voltage applied to the V  
pin.  
OCM  
capacitors as close to the package as possible.  
–INA, –INB (Pins 14, 13): Negative Inputs. These pins are  
normally tied together. These inputs may be DC- or AC-  
coupled. If the inputs are AC-coupled, they will self-bias  
+OUT, OUT (Pins 5, 8): Outputs (Unfiltered). These pins  
are high bandwidth, low-impedance outputs. The DC  
output voltage at these pins is set to the voltage applied  
to the voltage applied to the V  
pin.  
OCM  
at V  
.
OCM  
Exposed Pad (Pin 17): Tie the pad to V (Pin 12). If split  
EEC  
supplies are used, DO NOT tie the pad to ground.  
640212fa  
9
LT6402-12  
BLOCK DIAGRAM  
200Ω  
V
EEA  
V
CCA  
–INA  
14  
14pF  
100Ω  
100Ω  
+
+OUT  
5
6
A
–INB  
13  
+OUTFILTERED  
50Ω  
V
EEA  
V
CCC  
200Ω  
V
OCM  
2
+
C
14pF  
50Ω  
14pF  
V
EEC  
200Ω  
100Ω  
–OUTFILTERED  
–OUT  
V
CCB  
+INA  
16  
7
8
+
B
+INB  
15  
100Ω  
V
EEB  
V
EEB  
200Ω  
BIAS  
11  
64026 BD  
3
10  
1
4
9
12  
V
V
V
ENABLE  
V
V
V
EEC  
CCA  
CCB  
CCC  
EEA  
EEB  
APPLICATIONS INFORMATION  
Circuit Description  
Referring to the block diagram, the LT6402-12 uses a  
closed-loop topology which incorporates 3 internal am-  
plifiers. Two of the amplifiers (A and B) are identical and  
drive the differential outputs. The third amplifier is used  
to set the output common mode voltage. Gain and input  
impedance are set by the 200Ω resistors in the internal  
feedback network. Output impedance is low, determined  
by the inherent output impedance of amplifiers A and B,  
and further reduced by internal feedback.  
The LT6402-12 is a low noise, low distortion differential  
amplifier/ADC driver with:  
• –3dB bandwidth  
DC to 300MHz  
• Fixed gain independent of R  
4V/V (12dB)  
LOAD  
• Differential input impedance  
The LT6402-12 also includes built-in single-pole output  
filtering. The user has the choice of using the unfiltered  
outputs, the filtered outputs (75MHz –3dB lowpass), or  
modifying the filtered outputs to alter frequency response  
by adding additional components. Many lowpass and  
bandpass filters are easily implemented with just one or  
100Ω  
• Low output impedance  
• Built-in, user adjustable output filtering  
• Requires minimal support circuitry  
two additional components.  
640212fa  
10  
LT6402-12  
APPLICATIONS INFORMATION  
The LT6402-12 has been designed to minimize the need  
for external support components such as transformers or  
AC-coupling capacitors. As an ADC driver, the LT6402-12  
requires no external components except for power-supply  
bypass capacitors. This allows DC-coupled operation for  
applications that have frequency ranges including DC. At  
impedance ratio transformer can also be used to better  
match impedances.  
Single-Ended to Differential Operation  
The LT6402-12’s performance with single-ended inputs  
is comparable to its performance with differential inputs.  
This excellent single-ended performance is largely due  
to the internal topology of the LT6402-12. Referring to  
the block diagram, if the +INA and +INB pins are driven  
with a single-ended signal (while –INA and –INB are tied  
to AC ground), then the +OUT and –OUT pins are driven  
differentially without any voltage swing needed from  
amplifier C. Single-ended to differential conversion using  
more conventional topologies suffers from performance  
limitations due to the common mode amplifier.  
the outputs, the common mode voltage is set via the V  
OCM  
pin, allowing the LT6402-12 to drive ADCs directly. No  
outputAC-couplingcapacitorsortransformersareneeded.  
At the inputs, signals can be differential or single-ended  
with virtually no difference in performance. Furthermore,  
DC levels at the inputs can be set independently of the  
outputcommonmodevoltage.Theseinputcharacteristics  
often eliminate the need for an input transformer and/or  
AC-coupling capacitors.  
Input Impedance and Matching Networks  
Driving ADCs  
Calculation of the input impedance of the LT6402-12 is  
notstraightforwardfromexaminationoftheblockdiagram  
because of the internal feedback network. In addition, the  
inputimpedancewhendrivendifferentiallyisdifferentthan  
when driven single-ended.  
The LT6402-12 has been specifically designed to interface  
directly with high speed Analog to Digital Converters  
(ADCs).Ingeneral,theseADCshavedifferentialinputs,with  
an input impedance of 1kΩ or higher. In addition, there is  
generally some form of lowpass or bandpass filtering just  
DIFFERENTIAL  
SINGLE-ENDED  
LT6402-12  
100Ω  
75Ω  
13  
–INB  
IF IN  
8
5
14  
For single-ended 50Ω applications, a 150Ω shunt match-  
ing resistor to ground will result in the proper input  
termination (Figure 1). For differential inputs there are  
several termination options. If the input source is 50Ω  
differential, then the input matching can be accomplished  
byeithera67Ωshuntresistoracrosstheinputs(Figure 3),  
or equivalent 33Ω shunt resistors on each of the inputs  
to ground (Figure 2). If additional AC gain is desired, an  
–OUT  
LT6402-12  
+OUT  
–INA  
49.9Ω  
49.9Ω  
Z
= 50Ω  
DIFFERENTIAL  
IN  
15  
16  
+INB  
+INA  
+
640212 F02  
IF IN  
Figure 2. Input Termination for Differential 50Ω Input Impedance  
13  
13  
–INB  
–INB  
–INA  
8
5
IF IN  
8
5
–OUT  
LT6402-12  
+OUT  
14  
14  
–OUT  
LT6402-12  
+OUT  
–INA  
0.1μF  
Z
= 50Ω  
DIFFERENTIAL  
IN  
100Ω  
15  
16  
IF IN  
+INB  
+INA  
15  
16  
+INB  
+INA  
640212 F01  
+
640212 F03  
IF IN  
150Ω  
Z
= 50Ω  
IN  
SINGLE-ENDED  
Figure 3. Alternate Input Termination for Differential  
50Ω Input Impedance  
Figure 1. Input Termination for Single-Ended  
50Ω Input Impedance  
640212fa  
11  
LT6402-12  
APPLICATIONS INFORMATION  
between the two filtered outputs. This resistor/capaci-  
tor combination creates filtered outputs that look like a  
series 50Ω resistor with a 42pF capacitor shunting each  
filtered output to AC ground, giving a –3dB bandwidth of  
75MHz.  
prior to the ADC to limit input noise at the ADC, thereby  
improving system signal to noise ratio. Both the unfiltered  
and filtered outputs of the LT6402-12 can easily drive the  
high impedance inputs of these differential ADCs. If the  
filtered outputs are used, then cutoff frequency and the  
type of filter can be tailored for the specific application if  
needed.  
The filter cutoff frequency is easily modified with just a  
fewexternalcomponents.Toincreasethecutofffrequency,  
simplyadd2equalvalueresistors, onebetween+OUTand  
+OUTFILTEREDandtheotherbetweenOUTandOUTFIL-  
TERED (Figure 6). These resistors are in parallel with the  
internal 50Ω resistor, lowering the overall resistance and  
increasinglterbandwidth. Todoublethelterbandwidth,  
for example, add two external 50Ω resistors to lower the  
seriesresistanceto25Ω.The42pFofcapacitanceremains  
unchanged, so filter bandwidth doubles.  
Wideband Applications  
(Using the +OUT and –OUT Pins)  
In applications where the full bandwidth of the LT6402-12  
is desired, the unfiltered output pins (+OUT and –OUT)  
should be used. They have a low output impedance;  
therefore, gain is unaffected by output load. Capacitance  
in excess of 5pF placed directly on the unfiltered outputs  
results in additional peaking and reduced performance.  
When driving an ADC directly, a small series resistance  
is recommended between the LT6402-12’s outputs and  
the ADC inputs (Figure 4). This resistance helps eliminate  
any resonances associated with bond wire inductances of  
either the ADC inputs or the LT6402-12’s outputs. A value  
between 10Ω and 25Ω gives excellent results.  
To decrease filter bandwidth, add two external capacitors,  
one from +OUTFILTERED to ground, and the other from  
–OUTFILTERED to ground. A single differential capacitor  
connected between +OUTFILTERED and –OUTFILTERED  
LT6402-12  
8
–OUT  
V
EE  
14pF  
14pF  
14pF  
50Ω  
50Ω  
7
6
–OUTFILTERED  
+OUTFILTERED  
10Ω TO 25Ω  
8
FILTERED OUTPUT  
(75MHz)  
–OUT  
LT6402-12  
+OUT  
ADC  
10Ω TO 25Ω  
V
EE  
5
640212 F04  
5
+OUT  
640212 F05  
Figure 5. LT6402-12 Internal Filter Topology –3dB BW ≈75MHz  
Figure 4. Adding Small Series R at LT6402-12 Output  
LT6402-12  
8
–OUT  
50Ω  
Filtered Applications  
V
EE  
(Using the +OUTFILTERED and –OUTFILTERED Pins)  
14pF  
14pF  
14pF  
50Ω  
50Ω  
Filtering at the output of the LT6402-12 is often desired  
to provide either anti-aliasing or improved signal to noise  
ratio. To simplify this filtering, the LT6402-12 includes an  
additional pair of differential outputs (+OUTFILTERED and  
–OUTFILTERED) which incorporate an internal lowpass  
filter network with a –3dB bandwidth of 75MHz (Figure 5).  
These pins each have an output impedance of 50Ω. Inter-  
7
6
–OUTFILTERED  
FILTERED OUTPUT  
(150MHz)  
+OUTFILTERED  
50Ω  
V
EE  
5
+OUT  
640212 F06  
nal capacitances are 14pF to V on each filtered output,  
Figure 6. LT6402-12 Internal Filter Topology Modified  
for 2x Filter Bandwidth (2 External Resistors)  
EE  
plus an additional 14pF capacitor connected differentially  
640212fa  
12  
LT6402-12  
APPLICATIONS INFORMATION  
can also be used, but since it is being driven differentially  
it will appear at each filtered output as a single-ended  
capacitance of twice the value. To halve the filter band-  
width, for example, two 42pF capacitors could be added  
(one from each filtered output to ground). Alternatively  
one 21pF capacitor could be added between the filtered  
outputs, again halving the filter bandwidth. Combinations  
of capacitors could be used as well; a three capacitor  
solution of 14pF from each filtered output to ground plus  
a 14pF capacitor between the filtered outputs would also  
halve the filter bandwidth (Figure 7).  
Output Common Mode Adjustment  
TheLT6402-12’soutputcommonmodevoltageissetbythe  
pin. It is a high-impedance input, capable of setting  
V
OCM  
the output common mode voltage anywhere in a range  
from 1.1V to 3.6V. Bandwidth of the V pin is typically  
OCM  
200MHz, so for applications where the V  
pin is tied to  
OCM  
a DC bias voltage, a 0.1μF capacitor at this pin is recom-  
mended. For best distortion performance, the voltage at  
the V  
pin should be between 1.2V and 2.6V.  
OCM  
When interfacing with most ADCs, there is generally a  
output pin that is at about half of the supply voltage  
V
OCM  
Bandpass filtering is also easily implemented with just a  
few external components. An additional 560pF and 62nH,  
each added differentially between +OUTFILTERED and  
–OUTFILTERED creates a bandpass filter with a 26MHz  
center frequency, –3dB points of 23MHz and 30MHz, and  
1.6dB of insertion loss (Figure 8).  
of the ADC. For 5V ADCs such as the LTC17XX family, this  
output pin should be connected directly (with the  
V
OCM  
addition of a 0.1μF capacitor) to the input V  
pin of the  
OCM  
LT6402-12. For 3V ADCs such as the LTC22XX families,  
the LT6402-12 will function properly using the 1.65V from  
the ADC’s V reference pin, but improved Spurious Free  
CM  
Dynamic Range (SFDR) and distortion performance can  
LT6402-12  
8
–OUT  
be achieved by level-shifting the LTC22XX’s V reference  
CM  
V
EE  
voltage up to at least 1.8V. This can be accomplished as  
14pF  
14pF  
14pF  
50Ω  
50Ω  
shown in Figure 9 by using a resistor divider between the  
14pF  
14pF  
7
–OUTFILTERED  
LTC22XX’s V output pin and V and then bypassing  
CM  
CC  
FILTERED OUTPUT  
(37.5MHz)  
14pF  
the LT6402-12’s V  
pin with a 0.1μF capacitor. For a  
OCM  
commonmodevoltageabove1.9V,ACcouplingcapacitors  
are recommended between the LT6402-12 and LTC22XX  
ADCs because of the input voltage range constraints of  
the ADC.  
+OUTFILTERED  
6
5
V
EE  
+OUT  
640212 F07  
3V  
Figure 7. LT6402-12 Internal Filter Topology Modified  
for 1/2x Filter Bandwidth (3 External Capacitors)  
11k  
1.9V  
0.1μF  
4.02k  
LT6402-12  
8
7
2
–OUT  
13  
31 1.5V  
–INB  
–INA  
V
EE  
14  
V
OCM  
V
CM  
10Ω  
10Ω  
14pF  
14pF  
14pF  
6
7
1
2
+
50Ω  
50Ω  
+OUTFILTERED  
LT6402-12  
AIN  
AIN  
0.1μF  
–OUTFILTERED  
LTC22xx  
–OUTFILTERED  
15  
16  
+INB  
+INA  
FILTERED OUTPUT  
IF IN  
640212 F09  
150Ω  
+OUTFILTERED  
+OUT  
6
5
V
EE  
Figure 9. Level Shifting 3V ADC VCM Voltage for  
Improved SFDR  
640212 F08  
Figure 8. LT6402-12 Output Filter Modified for Bandpass  
Filtering (1 External Inductor, 1 External Capacitor)  
640212fa  
13  
LT6402-12  
APPLICATIONS INFORMATION  
Large Output Voltage Swings  
an additional input bias current totaling 2mA will flow into  
the –INA and –INB inputs.  
The LT6402-12 has been designed to provide the 3.2V  
P-  
output swing needed by the LTC1748 family of 14-bit  
P
Application (Demo) Boards  
low-noise ADCs. This additional output swing improves  
system SNR by up to 4dB.  
TheDC954ADemoBoardhasbeencreatedforstand-alone  
evaluation of the LT6402-12 with either single-ended or  
differential input and output signals. As shown, it accepts  
a single-ended input and produces a single-ended output  
so that the LT6402-12 can be evaluated using standard  
laboratory test equipment. For more information on this  
Demo Board, please refer to the layout and schematic  
diagrams found later in this data sheet.  
Input Bias Voltage and Bias Current  
The input pins of the LT6402-12 are internally biased to  
the voltage applied to the V  
pin. No external biasing  
OCM  
resistors are needed, even for AC-coupled operation. The  
input bias current is determined by the voltage difference  
between the input common mode voltage and the V  
OCM  
pin (which sets the output common mode voltage). For  
There are also additional demo boards available that  
combine the LT6402-12 with a variety of different Linear  
Technology ADCs. Please contact the factory for more  
information on these demo boards.  
example, if the inputs are tied to 2.5V with the V pin  
OCM  
at 2.2V, then a total input bias current of 2mA will flow  
into the LT6402-12’s +INA and +INB pins. Furthermore,  
TYPICAL APPLICATION  
Top Silkscreen  
640212fa  
14  
LT6402-12  
PACKAGE DESCRIPTION  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
0.70 ±0.05  
3.50 ± 0.05  
2.10 ± 0.05  
1.45 ± 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 × 45° CHAMFER  
R = 0.115  
TYP  
0.75 ± 0.05  
3.00 ± 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 ± 0.10  
1
2
1.45 ± 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.200 REF  
0.25 ± 0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
640212fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT6402-12  
TYPICAL APPLICATION  
Demo Circuit DC954A Schematic (AC Test Circuit)  
R18  
0Ω  
R17  
0Ω  
V
CC  
V
CC  
GND  
V
CC  
2
1
2
1
1
SW1  
3
TP1  
ENABLE  
C17  
1000pF  
C18  
0.01μF  
R16  
0Ω  
2
1
1
2
R2  
R4  
R14  
C11  
[1]  
12  
11  
10  
9
C2  
0.1μF  
C4  
0Ω  
49.9Ω  
0Ω  
R6  
R10  
R12  
0.1μF  
V
ENABLE  
V
V
EEC  
CCB EEB  
–OUT  
0Ω  
24.9Ω  
75Ω  
13  
8
–INB  
1
2
1
2
J1  
–IN  
R8  
[1]  
J4  
–OUT  
T1  
T2  
C21  
0.1μF  
14  
15  
16  
7
6
5
1:1 Z-RATIO  
4:1 Z-RATIO  
5
4
1
3
–INA  
+INB  
+INA  
–OUTFILTERED  
+OUTFILTERED  
+OUT  
3
1
4
5
2
1
2
2
L1  
[1]  
C8  
[1]  
R15  
[1]  
R7  
[1]  
0dB  
LT6402-12  
+10.8dB  
+6dB  
1
2
MINI-  
M/A-COM  
ETC1-1T  
0dB  
0dB  
J2  
+IN  
J5  
+OUT  
C1  
0.1μF  
C3  
0.1μF  
CIRCUITS  
TCM 4-19  
R9  
24.9Ω  
R11  
75Ω  
R5  
0Ω  
1
2
1
2
V
V
V
V
CCC  
OCM  
CCA  
EEA  
1
2
2
R1  
[1]  
R3  
49.9Ω  
R13  
[1]  
C16  
[1]  
C22  
0.1μF  
1
2
3
4
V
V
CC  
CC  
1
2
1
2
1
2
1
2
1
C10  
0.01μF  
C9  
1000pF  
C12  
1000pF  
C13  
0.01μF  
V
CC  
R19  
14k  
J3  
V
OCM  
2
1
C7  
0.01μF  
R20  
11k  
C5  
0.1μF  
J6  
TEST IN  
T3  
T4  
J7  
1:4  
4:1  
TEST OUT  
4
5
5
1
3
3
2
1
2
R22  
C19, 0.1μF  
C20, 0.1μF  
2
R21  
[1]  
C6  
[1]  
0.1μF  
1
2
1
2
MINI-  
CIRCUITS  
TCM 4-19  
MINI-  
CIRCUITS  
TCM 4-19  
4
1
1
2
640212 TA02  
TP2  
CC  
V
CC  
V
NOTES: UNLESS OTHERWISE SPECIFIED,  
[1] DO NOT STUFF.  
1
1
2
2
1
C14  
4.7μF  
C15  
1μF  
1
TP3  
GND  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
A = 2V/V, NF = 12.3dB, OIP3 = 38dBm at 70MHz  
LT1993-2  
LT1993-4  
LT1993-10  
LT5514  
800MHz Differential Amplifier/ADC Driver  
900MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
Ultralow Distortion IF Amplifier/ADC Driver  
300MHz Differential Amplifier/ADC Driver  
300MHz Differential Amplifier/ADC Driver  
V
A = 4V/V, NF = 14.5dB, OIP3 = 40dBm at 70MHz  
V
A = 10V/V, NF = 12.7dB, OIP3 = 40dBm at 70MHz  
V
Digitally Controlled Gain Output IP3 47dBm at 100MHz  
A = 6dB, e = 3.8nV/√Hz at 20MHz, 150mW  
LT6402-6  
LT6402-20  
LT6411  
V
n
A = 20dB, e = 1.9nV/√Hz at 20MHz, 150mW  
V
n
650MHz Differential ADC Driver/Dual Selectable Gain Amplifier  
3300V/μs Slew Rate, 16mA Current Consumption, Selectable Gain:  
A = –1, +1, +2  
V
LT6600-5  
LT6600-10  
LT6600-20  
Very Low Noise Differential Amplifier and 5MHz Lowpass Filter  
Very Low Noise Differential Amplifier and 10MHz Lowpass Filter  
Very Low Noise Differential Amplifier and 20MHz Lowpass Filter  
82dB S/N with 3V Supply, SO-8 Package  
82dB S/N with 3V Supply, SO-8 Package  
76dB S/N with 3V Supply, SO-8 Package  
640212fa  
LT 1007 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT6402IUD-12#TR

暂无描述
Linear

LT6402IUD-12#TRPBF

LT6402-12 - 300MHz Low Distortion, Low Noise Differential Amplifier/ADC Driver (AV = 12dB); Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT6402IUD-12-PBF

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
Linear

LT6402IUD-12-TR

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
Linear

LT6402IUD-12-TRPBF

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
Linear

LT6402IUD-20

300MHz Low Distortion, Low Noise Differential Amplifier/ ADC Driver (AV = 20dB)
Linear

LT6402IUD-6

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 6dB)
Linear

LT6402IUD-6#PBF

暂无描述
Linear

LT6402IUD-6-PBF

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 6dB)
Linear

LT6402IUD-6-TR

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 6dB)
Linear

LT6402IUD-6-TRPBF

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 6dB)
Linear

LT640Z

GREEN OVAL LAMP LED
SEOUL