LT6555IUF#TR [Linear]

LT6555 - 650MHz Gain of 2 Triple 2:1Video Multiplexer; Package: QFN; Pins: 24; Temperature Range: -40°C to 85°C;
LT6555IUF#TR
型号: LT6555IUF#TR
厂家: Linear    Linear
描述:

LT6555 - 650MHz Gain of 2 Triple 2:1Video Multiplexer; Package: QFN; Pins: 24; Temperature Range: -40°C to 85°C

文件: 总16页 (文件大小:357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6555  
650MHz Gain of 2 Triple  
2:1Video Multiplexer  
U
DESCRIPTIO  
FEATURES  
The LT®6555 is a high speed triple 2:1 video multiplexer  
with an internally fixed gain of 2. The individual amplifiers  
are optimized for performance with a double terminated  
75video load and feature a –3dB 2VP-P bandwidth of  
450MHz, making them ideal for driving very high resolu-  
tion video signals. Separate power supply pins for each  
amplifier boost channel separation to 72dB, allowing the  
LT6555 to excel in many high speed applications.  
650MHz –3dB Small Signal Bandwidth  
450MHz –3dB 2VP-P Large-Signal Bandwidth  
120MHz ±0.1dB Bandwidth  
High Slew Rate: 2200V/µs  
Fixed Gain of 2; No External Resistors Required  
72dB Channel Separation at 10MHz  
50dB Channel Separation at 100MHz  
–80dBc 2nd Harmonic Distortion at 10MHz, 2VP-P  
–70dBc 3rd Harmonic Distortion at 10MHz, 2VP-P  
While the performance of the LT6555 is optimized for dual  
supply operation, it can also be operated with a single  
supply as low as 4.5V. Using dual 5V supplies, each  
amplifier draws only 9mA. When disabled, the amplifiers  
draw less than 500µA and the outputs become high  
impedance.  
Low Supply Current: 9mA per Amplifier  
6.5ns 0.1% Settling Time for 2V Step  
ISS 500µA per Amplifier when Disabled  
Differential Gain of 0.033%, Differential  
Phase of 0.022°  
Wide Supply Range: ±2.25V (4.5V) to ±6V (12V)  
The LT6555 is manufactured on Linear Technology’s  
proprietary low voltage complementary bipolar process  
and is available in 24-lead SSOP and ultra-compact  
24-lead QFN packages.  
Available in 24-Lead SSOP and 24-Lead QFN  
Packages  
U
APPLICATIO S  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
RGB Amplifiers  
UXGA Video Multiplexing  
LCD Projectors  
U
TYPICAL APPLICATIO  
RGB Multiplexer and Line Driver  
+
V
R
G
B
LT6555  
INA  
INA  
INA  
75  
75Ω  
×2  
Video Amplitude Transient Response  
R
G
OUT  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
75Ω  
75Ω  
75Ω  
75Ω  
AGND  
75Ω  
75Ω  
×2  
OUT  
R
G
B
INB  
INB  
INB  
75Ω  
V
V
= 0V TO 700mV  
= ±5V  
IN  
S
L
0
–0.2  
–0.4  
75Ω  
R
= 150  
×2  
B
OUT  
75Ω  
T
A
= 25°C  
0
2
4
6
8
10 12 14 16 18 20  
SELECT A/B  
TIME (ns)  
75Ω  
ENABLE  
DGND  
6555 G21  
6555 TA01a  
V
6555f  
1
LT6555  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Total Supply Voltage (V+ to V) ............................ 12.6V  
Input Current (Note 2) ........................................ ±10mA  
Output Current (Continuous) ............................. ±70mA  
EN to DGND Voltage (Note 2) ................................. 5.5V  
SEL to DGND Voltage (Note 2) .................................. 8V  
Output Short-Circuit Duration (Note 3)............ Indefinite  
Operating Temperature Range (Note 4) ... –40°C to 85°C  
Specified Temperature Range (Note 5).... –40°C to 85°C  
Junction Temperature  
SSOP ................................................................ 150°C  
QFN .................................................................. 125°C  
Storage Temperature Range  
SSOP ................................................. –65°C to 150°C  
QFN ................................................... –65°C to 125°C  
Lead Temperature (Soldering, 10 sec)  
SSOP ................................................................ 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
+
NUMBER  
1
2
V
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
IN1A  
DGND  
IN2A  
EN  
24 23 22 21 20 19  
LT6555CGN  
LT6555IGN  
LT6555CUF  
LT6555IUF  
3
SEL A/B  
+
V
1
2
3
4
5
6
18  
17  
16  
V
REF  
+
4
V
V
REF  
IN3A  
OUT1  
G=+2  
G=+2  
G=+2  
5
OUT1  
IN3A  
AGND1  
IN1B  
AGND1  
V
25  
6
V
V
15 OUT2  
+
7
OUT2  
IN1B  
14  
V
+
8
V
AGND2  
IN2B  
AGND2  
13 OUT3  
UF PART*  
MARKING  
9
OUT3  
7
8
9 10 11 12  
10  
11  
12  
V
AGND3  
IN3B  
+
6555  
V
+
V
UF PACKAGE  
24-LEAD (4mm × 4mm) PLASTIC QFN  
V
GN PACKAGE  
TJMAX = 125°C, θJA = 37°C/W, θJC = 2.6°C/W  
24-LEAD PLASTIC SSOP  
EXPOSED PAD (PIN 25) IS V–  
MUST BE SOLDERED TO PCB  
TJMAX = 150°C, θJA = 90°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±5V, RL = 150, CL = 1.5pF, VEN = 0.4V, VAGND, VDGND, VVREF = 0V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Referred Offset Voltage  
V
= 0V, V = V /2  
5
±16  
±24  
mV  
mV  
OS  
IN  
OS  
OUT  
I
Input Current  
–17  
400  
1
±45  
µA  
k  
pF  
IN  
R
Input Resistance  
V
= ±1V  
100  
56  
IN  
IN  
IN  
C
Input Capacitance  
f = 100kHz  
V = ±2.25V to ±6V (Note 6)  
PSRR  
Power Supply Rejection Ratio  
Input Current Power Supply Rejection  
Gain Error  
62  
1
dB  
S
I
V = ±2.25V to ±6V (Note 6)  
±4  
µA/V  
%
PSRR  
S
A ERR  
V
= ±2V, Nominal Gain 2V/V  
OUT  
±2.5  
V
A MATCH  
Gain Matching  
Any One Channel to Another  
(Note 7)  
±0.33  
±3.4  
%
V
V
Output Voltage Swing  
±3.15  
±3.0  
V
V
OUT  
6555f  
2
LT6555  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±5V, RL = 150, CL = 1.5pF, VEN = 0.4V, VAGND, VDGND, VVREF = 0V.  
SYMBOL  
PARAMETER  
CONDITIONS  
R = ∞  
MIN  
TYP  
MAX  
UNITS  
I
Supply Current, Per Amplifier  
9
12  
14  
mA  
mA  
S
L
Supply Current, Disabled, Per Amplifier  
Enable Pin Current  
V
V
= 4V, R = ∞  
47  
42  
500  
500  
µA  
µA  
EN  
EN  
L
= Open, R = ∞  
L
I
I
I
V
V
= 0.4V  
= 4V  
–200  
–75  
–95  
–21  
µA  
µA  
EN  
EN  
EN  
Select Pin Current  
V
V
= 0.4V  
= 4V  
–50  
–50  
–5  
–1  
µA  
µA  
SEL  
SC  
SEL  
SEL  
Output Short-Circuit Current  
Slew Rate  
R = 0, V = ±1V  
±50  
±105  
2200  
650  
mA  
V/µs  
MHz  
MHz  
MHz  
MHz  
L
IN  
SR  
±1V on ±2.5V Output Step (Note 8)  
1600  
–3dB BW  
0.1dB BW  
FPBW  
Small-Signal –3dB Bandwidth  
Gain Flatness ±0.1dB Bandwidth  
Full Power Bandwidth 2V  
Full Power Bandwidth 4V  
All-Hostile Crosstalk  
V
V
V
V
= 200mV  
= 200mV  
OUT  
OUT  
OUT  
OUT  
P-P  
120  
P-P  
= 2V (Note 9)  
250  
350  
P-P  
= 4V (Note 9)  
175  
P-P  
f = 10MHz, V = 1V  
f = 100MHz, V = 1V  
–72  
–50  
dB  
dB  
IN  
P-P  
IN  
P-P  
Selected Channel to Unselected  
Channel Crosstalk  
f = 10MHz, V = 1V  
–80  
–55  
dB  
dB  
IN  
P-P  
f = 100MHz, V = 1V  
IN  
P-P  
Channel Select Output Transient  
Channel-to-Channel Select Time  
INA = INB = 0V  
200  
8
mV  
P-P  
INA = –1V, INB = 1V  
from 50% SEL to V  
ns  
= 0V  
OUT  
t
Settling Time  
0.1% of V  
, V = 2V  
6.5  
520  
ns  
ps  
%
S
FINAL STEP  
t , t  
Small-Signal Rise and Fall Time  
Differential Gain  
10% to 90%, V  
(Note 10)  
= 400mV  
P-P  
R
F
OUT  
dG  
dP  
0.033  
0.022  
–80  
Differential Phase  
(Note 10)  
Deg  
dBc  
dBc  
HD2  
HD3  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
f = 10MHz, V  
f = 10MHz, V  
= 2V  
OUT  
P-P  
= 2V  
–70  
OUT  
P-P  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: This parameter is guaranteed to meet specified performance  
through design and characterization. It is not production tested.  
Note 3: As long as output current and junction temperature are kept below  
the Absolute Maximum Ratings, no damage to the part will occur.  
Depending on the supply voltage, a heat sink may be required.  
Note 4: The LT6555C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 5: The LT6555C is guaranteed to meet specified performance from  
0°C to 70°C. The LT6555C is designed, characterized and expected to  
meet specified performance from –40°C and 85°C but is not tested or QA  
sampled at these temperatures. The LT6555I is guaranteed to meet  
specified performance from –40°C to 85°C.  
Note 6: In order to follow the constraints for 4.5V operation for PSRR  
and I  
testing at ±2.25V, the DGND pin is set to V , the EN pin is set  
PSRR  
to V + 0.4V, and the SEL pin is set to either V + 0.4V or V + 4V. At ±6V  
and all other cases, DGND is set to ground and the EN and SEL pins are  
referenced from it.  
Note 7: The V pin is set to 1V when testing positive swing and –1V  
REF  
when testing negative swing to ensure that the internal input clamps do  
not limit the output swing.  
Note 8: Slew rate is 100% production tested using both inputs of  
channel 2. Slew rates of channels 1 and 3 are guaranteed through  
design and characterization.  
Note 9: Full power bandwidth is calculated from the slew rate:  
FPBW = SR/(π • V  
)
P-P  
Note 10: Differential gain and phase are measured using a Tektronix  
TSG120YC/NTSC signal generator and a Tektronix 1780R video  
measurement set. The resolution of this equipment is better than 0.05%  
and 0.05°. Nine identical amplifier stages were cascaded giving an  
effective resolution of better than 0.0056% and 0.0056%.  
6555f  
3
LT6555  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current per Amplifier  
Supply Current per Amplifier  
Supply Current per Amplifier  
vs EN Pin Voltage  
vs Temperature  
vs Supply Voltage  
12  
10  
8
12  
10  
8
12  
10  
8
V
R
V
= ±5V  
=  
IN  
V
A
, V , V  
, V  
= 0V  
V
S
= ±5V  
=  
S
L
EN IN DGND SEL  
T
= 25°C  
R
L
= 0V  
V
= 0V  
IN  
V
= 0V  
EN  
T
= –55°C  
V
= 0.4V  
A
T
EN  
= 25°C  
A
6
6
6
T
= 125°C  
A
4
4
4
2
2
2
V
= 4V  
EN  
0
0
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
–55 –35 –15  
5
25 45 65 85 105 125  
0
2.0  
3.0 3.5  
0.5 1.0 1.5  
2.5  
4.0  
TEMPERATURE (°C)  
TOTAL SUPPLY VOLTAGE (V)  
EN PIN VOLTAGE (V)  
6555 G02  
6555 G01  
6555 G03  
Input Bias Current  
vs Temperature  
Input Referred Offset Voltage  
vs Temperature  
EN Pin Current vs EN Pin Voltage  
0
–5  
15  
10  
0
–20  
V
V
= ±5V  
IN  
V
S
= ±5V  
V
V
= ±5V  
DGND  
S
S
= 0V  
= 0V  
V
= 0V  
IN  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–40  
V
= 1.5V  
IN  
5
T
A
= 125°C  
–60  
0
T
A
= –55°C  
V
= –1.5V  
IN  
–80  
T
A
= 25°C  
–5  
–100  
–120  
–140  
–10  
–15  
25 45  
5
–55 –35 –15  
5
65 85 105 125  
0
1
2
3
4
–55 –35 –15  
5
25 45 65 85 105 125  
EN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6555 G05  
6555 G06  
6555 G04  
Maximum Output Voltage Swing  
vs VREF Pin Voltage  
Output Voltage Swing  
vs ILOAD (Output High)  
Output Voltage Swing  
vs ILOAD (Output Low)  
4
3
5
4
3
0
–1  
–2  
V
V
V
= ±5V  
V
V
V
= ±5V  
T
= –55°C  
S
S
A
= 2V  
= –2V  
IN  
IN  
V
INPUT  
T
= 125°C  
A
REF  
HIGH SWING  
= 0V  
= 0V  
VREF  
VREF  
CLAMPING  
T
= 25°C  
A
T
= 25°C  
A
2
T
= –55°C  
A
T
= 125°C  
A
1
0
T
= 125°C  
A
V
= ±5V  
S
L
2
1
0
–3  
–4  
–5  
–1  
–2  
–3  
–4  
R
= 150  
T
= 125°C  
T
= 25°C  
A
A
T
= 25°C  
A
V
INPUT  
REF  
T
= –55°C  
A
LOW SWING  
CLAMPING  
T
1
= –55°C  
A
0
0.5  
–2 –1.5 –1 –0.5  
1.5  
2
0
10 20 30 40 50 60 70 80 90 100  
SOURCE CURRENT (mA)  
6555 G08  
0
10 20 30 40 50 60 70 80 90 100  
V
PIN VOLTAGE (V)  
SINK CURRENT (mA)  
REF  
6555 G07  
6555 G09  
6555f  
4
LT6555  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Referred PSRR  
vs Frequency  
Input Noise Spectral Density  
Input Impedance vs Frequency  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
1000  
100  
10  
V
V
A
= ±5V  
V
T
= ±5V  
= 25°C  
V
T
= ±5V  
= 25°C  
S
S
A
S
A
±PSRR  
= 0V  
IN  
= 25°C  
T
+PSRR  
–PSRR  
e
n
i
n
1
1
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6555 G12  
6555 G11  
6555 G10  
Frequency Response  
vs Output Amplitude  
Frequency Response with  
Capacitive Loads  
Gain Flatness vs Frequency  
6.20  
18  
16  
14  
12  
10  
8
9
8
7
6
5
4
3
2
1
0
V
V
= ±5V  
V
= ±5V  
= 150Ω  
= 25°C  
S
S
L
= 2V  
R
T
OUT  
P-P  
R
= 150Ω  
6.15  
6.10  
6.05  
6.00  
L
A
T
= 25°C  
A
IN1A  
C
= 10pF  
L
IN3B  
IN3A  
C
= 4.7pF  
L
6
V
OUT  
= 200mV  
P-P  
C
= 0pF  
L
IN1B  
IN2A  
4
V
= 2V  
OUT  
P-P  
2
IN2B  
V
OUT  
= 4V  
P-P  
0
V
V
= ±5V  
S
= 200mV  
P-P  
–2  
–4  
–6  
OUT  
5.95  
5.90  
R
= 150Ω  
L
T
= 25°C  
A
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
FREQUENCY (MHz)  
6555 G14  
6555 G15  
6555 G13  
Harmonic Distortion vs Frequency  
Crosstalk vs Frequency  
Crosstalk vs Frequency  
0
0
0
V
V
R
T
= ±5V  
V
V
= ±5V  
V
V
R
T
= ±5V  
S
S
S
–10  
–20  
= 2V  
= 1V  
P-P  
= 2V  
OUT  
P-P  
IN  
OUT  
P-P  
= 150Ω  
R
T
= 150Ω  
= 25°C  
–20  
–40  
–20  
–40  
= 150Ω  
L
L
A
L
= 25°C  
= 25°C  
A
A
–30  
–40  
–50  
–60  
–60  
–80  
–60  
–80  
WORST  
ADJACENT  
HD3  
DRIVE IN A,  
SELECT IN B  
–70  
ALL  
CHANNELS  
DRIVEN  
–80  
HD2  
DRIVE IN B,  
SELECT IN A  
–90  
–100  
–110  
–120  
–100  
–120  
–100  
–120  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
6555 G16  
6555 G17  
6555 G18  
6555f  
5
LT6555  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Video Amplitude Transient  
Response  
Output Impedance vs Frequency  
Small-Signal Transient Response  
1000  
100  
10  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.4  
0.3  
V
V
= 200mV  
= ±5V  
IN  
S
L
P-P  
DISABLED  
R
= 150  
= 25°C  
V
EN  
= 4V  
T
A
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
ENABLED  
1
V
V
= 0V TO 700mV  
= ±5V  
IN  
S
L
V
EN  
= O.4V  
V
= ±5V  
= 150Ω  
= 25°C  
S
L
R
T
R
T
= 150Ω  
–0.2  
–0.4  
= 25°C  
A
A
0.1  
0.01  
0.1  
1
10  
100  
1000  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
FREQUENCY (MHz)  
TIME (ns)  
TIME (ns)  
6555 G19  
6555 G21  
6555 G20  
Gain Error Distribution  
Large-Signal Transient Response  
Large-Signal Transient Response  
1.5  
1.0  
4
3
40  
35  
30  
25  
20  
15  
10  
5
V
V
= 1V  
P-P  
V
V
= ±5V  
V
V
= 2.5V  
IN  
S
L
S
IN  
S
L
P-P  
= ±5V  
= ±2V  
= 150  
= 25°C  
= ±5V  
OUT  
R
T
= 150  
= 25°C  
R
T
R
T
= 150Ω  
= 25°C  
L
A
A
A
2
0.5  
0
1
0
–1  
–2  
–3  
–4  
–0.5  
–1.0  
–1.5  
0
0
2
4
6
8
10 12 14 16 18 20  
–1.5  
0
1.5  
–1.0 –0.5  
0.5  
1.0  
0
2
4
6
8
10 12 14 16 18 20  
TIME (ns)  
GAIN ERROR—INDIVIDUAL CHANNEL (%)  
TIME (ns)  
6555 G22  
6555 G24  
6555 G23  
Gain Matching Distribution  
Channel Switching Transient  
Channel Switching Transient  
0.2  
0.1  
40  
35  
30  
25  
20  
15  
10  
5
1.5  
1.0  
0.5  
0
V
= ±5V  
INA = 0V  
T = 25°C  
A
V
V
= ±5V  
S
L
S
R
= 150INB = 0V  
= ±2V  
= 150Ω  
= 25°C  
OUT  
R
L
T
A
0
–0.5  
–1.0  
–1.5  
V
= ±5V  
INB = 300MHz, 1V SINE  
P-P  
S
L
–0.1  
R
= 150T = 25°C INA = 0V  
A
5
4
5
4
3
2
1
0
2
0
0
0
–1.5 –1.0 –0.5  
0.5  
1.0  
1.5  
0
10 20 30 40 50 60 70 80 90 100  
TIME (ns)  
0
10 20 30 40 50 60 70 80 90 100  
GAIN MATCHING–BETWEEN CHANNELS (%)  
TIME (ns)  
6555 G25  
6555 G26  
6555 G27  
6555f  
6
LT6555  
U
U
U
PI FU CTIO S (GN24 Package)  
IN1A (Pin 1): Channel 1 Input A. This pin has a nominal  
impedance of 400kand does not have any internal  
termination resistor.  
V(Pin15):NegativeSupplyVoltageforChannel3Output  
Stage. Vpins are not internally connected to each other  
andmustallbeconnectedexternally.Propersupplybypass-  
ingisnecessaryforbestperformance.SeetheApplications  
Information section.  
DGND (Pin 2): Digital Ground Reference for Enable Pin.  
This pin is normally connected to ground.  
OUT3 (Pin 16): Channel 3 Output. It is twice the selected  
channel 3 input and performs optimally with a 150load  
(a double terminated 75cable).  
V+ (Pin 17): Positive Supply Voltage for Channels 2 and 3  
OutputStages.V+ pinsarenotinternallyconnectedtoeach  
other and must all be connected externally. Proper supply  
bypassing is necessary for best performance. See the  
Applications Information section.  
IN2A (Pin 3): Channel 2 Input A. This pin has a nominal  
impedance of 400kand does not have any internal  
termination resistor.  
V
REF (Pin 4): Voltage Reference for Input Clamping. This  
is the tap to an internal voltage divider that defines mid-  
supply. It is normally connected to ground in dual supply,  
DC coupled applications.  
IN3A (Pin 5): Channel 3 Input A. This pin has a nominal  
impedance of 400kand does not have any internal  
termination resistor.  
OUT2 (Pin 18): Channel 2 Output. It is twice the selected  
channel 2 input and performs optimally with a 150load  
(a double terminated 75cable).  
V(Pin 19): Negative Supply Voltage for Channels 1 and  
2OutputStages.Vpinsarenotinternallyconnectedtoeach  
other and must all be connected externally. Proper supply  
bypassing is necessary for best performance. See the Ap-  
plications Information section.  
AGND1 (Pin 6): Analog Ground for the 360Gain Resis-  
tor of Channel 1.  
IN1B (Pin 7): Channel 1 Input B. This pin has a nominal  
impedance of 400kand does not have any internal  
termination resistor.  
AGND2 (Pin 8): Analog Ground for the 360Gain Resis-  
OUT1 (Pin 20): Channel 1 Output. It is twice the selected  
channel 1 input and performs optimally with a 150load  
(a double terminated 75cable).  
V+ (Pin 21): Positive Supply Voltage for Channel 1 Output  
Stage. V+ pins are not internally connected to each other  
and must all be connected externally. Proper supply  
bypassing is necessary for best performance. See the  
Applications Information section.  
tor of Channel 2.  
IN2B (Pin 9): Channel 2 Input B. This pin has a nominal  
impedance of 400kand does not have any internal  
termination resistor.  
AGND3 (Pin 10): Analog Ground for the 360Gain  
Resistor of Channel 3.  
IN3B (Pin 11): Channel 3 Input B. This pin has a nominal  
impedance of 400kand does not have any internal  
termination resistor.  
V(Pin 12): Negative Supply Voltage. Vpins are not in-  
ternallyconnectedtoeachotherandmustallbeconnected  
externally. Proper supply bypassing is necessary for best  
performance. See the Applications Information section.  
V+ (Pins 13, 14, 24): Positive Supply Voltage. V+ pins are  
not internally connected to each other and must all be  
connected externally. Proper supply bypassing is neces-  
sary for best performance. See the Applications Informa-  
tion section.  
SEL (Pin 22): Select Pin. This high impedance pin selects  
which set of inputs are sent to the output pins. When the  
pin is pulled low, the A inputs are selected. When the pin  
is pulled high, the B inputs are selected.  
EN (Pin 23): Enable Control Pin. An internal pull-up  
resistor of 46k defines the pin’s impedance and will turn  
thepartoffifthepinisunconnected.Whenthepinispulled  
low, the amplifiers are enabled.  
Exposed Pad (Pin 25, QFN Only): The Exposed Pad is V–  
and must be soldered to the PCB. It is internally connected  
to the QFN Pin 4, V.  
6555f  
7
LT6555  
U
W U U  
APPLICATIO S I FOR ATIO  
Power Supplies  
The DGND pin should not be pulled above the EN pin since  
doing so will turn on an ESD protection diode. If the EN pin  
voltageisforcedadiodedropbelowtheDGNDpin,current  
should be limited to 10mA or less.  
The LT6555 is optimized for ±5V supplies but can be  
operated on as little as ±2.25V or a single 4.5V supply and  
as much as ±6V or a single 12V supply. Internally, each  
supply is independent to improve channel isolation. Do  
not leave any supply pins disconnected or the part may  
not function correctly!  
The enable/disable times of the LT6555 are fast when  
driven with a logic input. Turn on (from 50% EN input to  
50% output) typically occurs in less than 50ns. Turn off is  
slower, but is typically below 500ns.  
Enable/Shutdown  
The LT6555 has a shutdown mode controlled by the EN  
pin and referenced to the DGND pin. If the amplifier will  
be enabled at all times, the EN pin can be connected  
directly to DGND. If the enable function is desired, either  
driving the pin above 2V or allowing the internal 46k pull-  
up resistor to pull the EN pin to the top rail will disable the  
amplifier. When disabled, the DC output impedance will  
rise to approximately 360through the internal feedback  
and gain resistors. Supply current into the amplifier in the  
disabled state will be:  
Channel Select  
TheSELpinusesthesameinternalthresholdastheENpin  
and is also referenced to DGND. When the pin is logic low,  
the channel A inputs are passed to the output. When the  
pin is logic high, the channel B inputs are passed to the  
output. The pin should not be floated but can be tied to  
DGND to force the outputs to always be channel A or to V+  
(when less than 8V) to force the outputs to always be  
channel B.  
Truth Table  
V+ VEN  
46k  
V+ – V–  
80k  
SEL A/B  
EN  
0
OUT  
2 × IN A  
2 × IN B  
OFF  
IS =  
+
0
1
X
0
It is important that the following constraints on the DGND,  
EN and SEL pins are always followed:  
1
V+ – VDGND 4.5V  
VEN – VDGND 5.5V  
VSEL – VDGND 8V  
Input Considerations  
The LT6555 uses input clamps referenced to the VREF pin  
to prevent damage to the input stage on the unselected  
channel. Three transistors in series limit the input voltage  
to within three diode drops (±) from VREF. VREF is nomi-  
nally set to half of the sum of the supplies by the 40k  
resistors. A simplified schematic is shown in Figure 1.  
In dual supply cases where V+ is less than 4.5V, DGND  
should be connected to a potential below ground, such as  
V. Since the EN and SEL pins are referenced to DGND,  
they may need to be pulled below ground in those cases.  
In single supply applications above 5.5V, an additional  
resistor may be needed from the EN pin to DGND if the pin  
is ever allowed to float. For example, on a 12V single  
supply, a 33k resistor would protect the pin from floating  
too high while still allowing the internal pull-up resistor to  
disable the part.  
To improve clamping, the pin’s DC impedance should be  
minimizedbyconnectingtheVREF pindirectlytogroundin  
the symmetric dual supply case with a common mode  
voltage of 0V. While loaded output swing limits the useful  
input voltage range in that case, if the common mode  
voltage is not centered at ground or the input voltage  
exceeds plus or minus three diodes from ground, an  
external resistor to either supply can be added to shift the  
On dual ±2.25V supplies, connecting the DGND pin to V–  
is the only way of ensuring that V+ – VDGND 4.5V.  
6555f  
8
LT6555  
W U U  
APPLICATIO S I FOR ATIO  
U
+
V
40k  
IN  
V
REF  
40k  
6555 F01  
V
Figure 1. Simplified Schematic of VREF Pin and Input Clamping  
VREF voltage to the desired level. The only way to cover the  
full common mode voltage range of V+ 1V to V+ – 1V is  
to shift VREF up or down. Note that on a single supply, the  
unclamped input range limits the output low swing to 2V  
(1V multiplied by the internal gain of 2).  
Series termination resistors should be placed as close to  
the output pins as possible to minimize output capaci-  
tance. See the Typical Performance Characteristics sec-  
tion for a plot of frequency response with various output  
capacitors—only 10pF of parasitic output capacitance  
before the series termination resistor causes 6dB of  
peaking in the frequency response!  
The VREF pin can also be directly driven with a DC source.  
Bypassing the VREF pin is not necessary.  
Low ESL/ESR bypass capacitors should be placed as  
close to the positive and negative supply pins as possible.  
One 4700pF ceramic capacitor is recommended for both  
V+ and Vsupply busses. Additional 470pF ceramic ca-  
pacitors with minimal trace length on each supply pin will  
further improve AC and transient response as well as  
channel isolation. For high current drive and large-signal  
transient applications, additional 1µF to 10µF tantalums  
should be added on each supply. The smallest value  
capacitors should be placed closest to the package.  
The inputs can be driven beyond the point at which the  
output clips so long as input currents are limited to less  
than ±10mA. Continuing to drive the input beyond the  
output limit can result in increased current drive and  
slightly increased swing, but will also increase supply  
current and may result in delays in transient response at  
larger levels of overdrive.  
Layout and Grounding  
It is imperative that care is taken in PCB layout in order to  
benefit from the very high speed and very low crosstalk of  
the LT6555. Separate power and ground planes are highly  
recommended and trace lengths should be kept as short  
as possible. If input or output traces must be run over a  
distance of several centimeters, they should use a con-  
trolled impedance with matching series and shunt resis-  
tances (nominally 75) to maintain signal fidelity.  
If the AGND pins are not connected to ground, they must  
be carefully bypassed to maintain minimal impedance  
over frequency. Although crosstalk will vary depending  
upon board layout, a recommended starting point for  
bypass capacitors would be 470pF as close as possible to  
each AGND pin with a single 4700pF capacitor in parallel.  
6555f  
9
LT6555  
W U U  
U
APPLICATIO S I FOR ATIO  
To maintain the LT6555’s channel isolation, it is beneficial  
to shield parallel input and parallel output traces using a  
groundplaneorpowersupplytraces.Viasbetweentopside  
and backside metal may be required to maintain a low  
inductance ground near the part where numerous traces  
converge. See Figures 6 and 7 for photos of an optimized  
layout.  
Figure 3 illustrates the loading effect of expanding the  
number of inputs. The resultant gain error can be calcu-  
lated by the following formula using n as the number of  
LT6555s:  
435Ω  
n – 1  
75Ω  
Gain Error (dB)= 6dB+20log  
dB  
435Ω  
n – 1  
75 +  
75Ω  
Input Expansion  
In applications with more than two inputs per channel,  
multiple LT6555s can be connected by several different  
methods. The simplest method is to connect the outputs  
afterthe75seriestermination,asshowninFigure2. The  
compromise of this approach is that the internal gain  
settingresistorscausea435shuntacrossthe75cable  
termination, resulting in increased gain error.  
For example, two LT6555s would result in a gain error of  
–0.74dB per channel. Three LT6555s (i.e., six red inputs,  
six green inputs and six blue inputs), would have a gain  
error of –1.4dB.  
1/3 LT6555 #1  
75  
IN1A  
IN1B  
360Ω  
OFF  
360Ω  
75Ω  
IN1A  
A
= 2  
V
75Ω  
R2  
75Ω  
435  
n – 1  
360Ω  
OFF  
IN1B  
360Ω  
EN  
n = NUMBER OF LT6555s  
IN PARALLEL  
LT6555 #1  
1/3 LT6555 #2  
CABLE  
75Ω  
IN1C  
IN1D  
360Ω  
OFF  
75Ω  
IN1C  
IN1D  
360Ω  
A
= +2  
V
75Ω  
OUT  
75Ω  
360Ω  
ON  
360Ω  
EN  
6555 F03  
LT6555 #2  
74HC04  
.
.
.
CHIP  
SELECT  
6555 F02  
n
Figure 3. Disabled Amplifiers Load the Cable  
Termination with 435Each  
Figure 2. Two LT6555s Build a 4-Input Router  
6555f  
10  
LT6555  
W U U  
APPLICATIO S I FOR ATIO  
U
1.5  
This systematic gain error can be significantly reduced by  
loweringthevalueofthe75seriesterminationresistors.  
The compromise of this approach is an increased depen-  
dence on the accuracy of the 75shunt termination at the  
receiving end of the line. A table of values for 1% series  
termination resistors from n = 2 to n = 4 is shown below.  
V
V
V
= ±5V  
S
1.0  
0.5  
= –0.5V  
= 0.5V  
IN(AMP1)  
IN(AMP2)  
= 150Ω  
R
L
0
SERIES 63.9Ω  
–0.5  
–1.0  
AT EACH OUTPUT  
OUTPUTS  
DIRECTLY  
CONNECTED  
150  
100  
50  
NUMBER OF DEVICES (n)  
SERIES R  
63.9  
T
I
+
2
3
4
S
I
S
56.2  
0
2
2.5  
0
0.5  
1
1.5  
TIME (µs)  
3
3.5  
4
49.9  
6555 F04  
Another approach that does not compromise gain accu-  
racy is to connect the outputs directly together before the  
series termination. In this case, there will be slightly  
increased output glitching and supply current spiking  
during the EN pin switching, but the additional output  
loading will not increase the gain error, and the series  
termination resistors remain at their ideal value for AC  
response. See Figure 4 for a scope photo showing the  
result of the outputs connected both before and after the  
series terminations, and Figure 8 for a full schematic of a  
4:1 RGB multiplexer with the output pins directly con-  
nected together. It is imperative that the output traces be  
as short as possible before the series termination in order  
to reduce capacitance and minimize AC peaking.  
Figure 4. 4-Input Router Switching with Outputs Directly  
Connected and with Outputs Connected After 63.9Ω  
Series Termination  
ESD Protection  
The LT6555 has reverse-biased ESD protection diodes on  
all pins. If any pins are forced a diode drop above the  
positive supply or a diode drop below the negative supply,  
large currents may flow through these diodes. If the  
current is kept below 10mA, no damage to the devices will  
occur.  
U
TYPICAL APPLICATIO  
RGB Multiplexer Demo Board  
possible. The board is fabricated with four layers with  
internal ground and power planes. For ideal operation, a  
75load termination should be connected at the output.  
The LT6555’s gain of 2 will compensate for the resulting  
divider between the series and load termination resistors.  
Figures 6 and 7 show the topside and bottom side board  
layout and placement.  
The DC858A Demo Board illustrates optimal routing,  
bypassing and termination using the LT6555 as an  
RGB video multiplexer. The schematic is shown in Fig-  
ure 5. All inputs and outputs are routed to have a charac-  
teristicimpedanceof75and75inputshuntandoutput  
series terminations are connected as close to the part as  
6555f  
11  
LT6555  
U
TYPICAL APPLICATIO  
E1  
EN  
E4  
SEL A/B  
J8  
J1  
50BNC  
1
50BNC  
Z = 50  
Z = 50  
1
R7  
20k  
2
JP1  
EN  
SEL A/B  
E2  
DGND  
R8  
50Ω  
OPT  
R9  
50Ω  
OPT  
CONTROL  
A
B
1
3
1
3
V
CC  
2
JP4  
SEL  
EXT ENABLE  
5
4 3 2  
DGND  
5
4
3
2
DGND  
JP2  
DGND  
3
1
2
FLOAT AGND  
E5  
REF  
V
J2  
BANANA JACK  
JP5  
REF  
V
3
1
V
CC  
3.3V TO 5V  
2
C1  
4700pF  
C2  
470pF  
C3  
470pF  
C10  
4700pF  
C4  
C11  
0.33µF  
16V  
BNC × 6  
EXT GND  
10µF  
16V  
1206  
5
JP12  
U1 LT6555CGN  
IN1A  
V
1
L1 Z = 75  
L1 Z = 75  
L1 Z = 75  
L1 Z = 75  
L1 Z = 75  
L1 Z = 75  
CC  
1
2
24  
4
3
2
+
IN1A  
V
DGND  
23 EN  
DGND  
IN2A  
EN  
5
4
3
2
5
4
3
2
5
4
3
2
5
4
3
2
JP13  
JP14  
JP5  
1
1
1
1
1
SEL  
3
22  
21  
20  
19  
18  
17  
16  
15  
IN2A  
IN3A  
IN1B  
IN2B  
IN3B  
SEL  
V
BNC × 3  
4
REF  
+
V
V
R1  
75Ω  
REF  
5
4
3
2
5
4
3
2
5
4
3
2
J9  
Z = 75  
Z = 75  
Z = 75  
L2  
1
1
1
5
IN3A  
OUT1  
OUT1  
OUT2  
OUT3  
6
AGND1  
IN1B  
V
R2  
75Ω  
J10  
J11  
L2  
L2  
7
OUT2  
8
+
AGND2  
IN2B  
V
R3  
75Ω  
JP6  
9
OUT3  
10  
AGND3  
IN3B  
V
5
4
3
2
JP7  
11  
12  
14  
13  
+
V
R10  
75Ω  
R11  
75Ω  
R12  
75Ω  
R4  
75Ω  
R5  
75Ω  
R6  
+
J4  
V
V
75Ω  
BANANA JACK  
V
EE  
E3  
AGND  
–3.3V TO –5V  
C5  
4700pF  
C6  
470pF  
C7  
470pF  
C9  
C8  
0.33µF  
6555 F05  
10µF  
16V  
1206  
J3  
BANANA JACK  
SINGLE DUAL  
2
V
EE  
AGND  
NOTE:  
1
3
JP3  
SUPPLY  
470pF BYPASS CAPACITORS LOCATED  
AS CLOSE TO PINS AS POSSIBLE  
Figure 5. Demo Board Schematic  
Figure 6. Demo Board Topside  
(IC Removed for Clarity)  
Figure 7. Demo Board Bottom Side  
6555f  
12  
LT6555  
W
W
SI PLIFIED SCHE ATIC (One channel shown)  
6555f  
13  
LT6555  
U
PACKAGE DESCRIPTIO  
GN Package  
24-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.337 – .344*  
(8.560 – 8.738)  
.033  
(0.838)  
REF  
24 23 22 21 20 19 18 17 16 15 14 13  
.045 ±.005  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.254 MIN  
.150 – .165  
1
2
3
4
5
6
7
8
9 10 11 12  
.0165 ± .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
.015 ± .004  
(0.38 ± 0.10)  
.0532 – .0688  
(1.35 – 1.75)  
× 45°  
.004 – .0098  
(0.102 – 0.249)  
.0075 – .0098  
(0.19 – 0.25)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.008 – .012  
.0250  
(0.635)  
BSC  
GN24 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
6555f  
14  
LT6555  
U
PACKAGE DESCRIPTIO  
UF Package  
24-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1697)  
0.70 ±0.05  
4.50 ± 0.05  
3.10 ± 0.05  
2.45 ± 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
R = 0.115  
PIN 1 NOTCH  
R = 0.20 TYP OR  
0.35 × 45° CHAMFER  
0.75 ± 0.05  
4.00 ± 0.10  
(4 SIDES)  
TYP  
23 24  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 ± 0.10  
1
2
2.45 ± 0.10  
(4-SIDES)  
(UF24) QFN 0105  
0.200 REF  
0.25 ± 0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGD-X)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
6555f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT6555  
U
TYPICAL APPLICATIO  
RED 1  
GREEN 1  
BLUE 1  
+
V
LT6555 #1  
×2  
5V  
75  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
IN1A  
IN1B  
OUT1  
OUT2  
OUT3  
IN2A  
IN2B  
×2  
×2  
RED 2  
GREEN 2  
BLUE 2  
IN3A  
IN3B  
AGND  
DGND  
SEL  
EN  
75Ω  
V
R
G
REF  
OUT  
75Ω  
V
75Ω  
75Ω  
–2V  
5V  
OUT  
75Ω  
75Ω  
RED 3  
GREEN 3  
BLUE 3  
+
V
LT6555 #2  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
75Ω  
IN1A  
IN1B  
OUT1  
OUT2  
OUT3  
B
OUT  
×2  
×2  
×2  
IN2A  
IN2B  
RED 4  
GREEN 4  
BLUE 4  
IN3A  
IN3B  
AGND  
DGND  
SEL1 SEL0 OUTPUT  
SEL  
EN  
0
0
1
1
0
1
0
1
1
2
3
4
V
REF  
SEL0  
V
NC75Z14  
SEL1  
6555 F08  
–2V  
Figure 8. 4:1 RGB Multiplexer  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Single SPDT Video Switch  
0.1dB Gain Flatness to 150MHz, Shutdown  
LT1203  
150MHz Single 2:1 Multiplexer  
LT1399  
300MHz Triple Current Feedback Amplifier  
250MHz Triple RGB Multiplexer  
LT1675  
100MHz Pixel Switching, 1100V/µs Slew Rate, 16-Lead SSOP  
110MHz Gain of 2 Buffers in MS Package  
LT6550/LT6551 3.3V Triple and Quad Video Buffers  
LT6553  
LT6554  
650MHz Gain of 2 Triple Video Amplifier  
650MHz Gain of 1 Triple Video Amplifier  
Performance Similar to the LT6555 with One Set of Inputs, 16-Lead SSOP  
Same Pinout as the LT6553 but Optimized for High Impedance Loads  
6555f  
LT/TP 0405 500 • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LT6556

750MHz Gain of 1 Triple 2:1Video Multiplexer
Linear

LT6556CGN

750MHz Gain of 1 Triple 2:1Video Multiplexer
Linear

LT6556CGN#PBF

750MHz Gain of 1 Triple 2:1Video Multiplexer
ADI

LT6556CGN#TR

LT6556 - 750MHz Gain of 1 Triple 2:1Video Multiplexer; Package: SSOP; Pins: 24; Temperature Range: 0°C to 70°C
ADI

LT6556CGN#TRPBF

暂无描述
Linear

LT6556CUF

750MHz Gain of 1 Triple 2:1Video Multiplexer
Linear

LT6556CUF#PBF

LT6556 - 750MHz Gain of 1 Triple 2:1Video Multiplexer; Package: QFN; Pins: 24; Temperature Range: 0°C to 70°C
ADI

LT6556CUF#TR

Video Multiplexer, 3 Func, 1 Channel, BIPolar, PQCC24
ADI

LT6556CUF#TRPBF

LT6556 - 750MHz Gain of 1 Triple 2:1Video Multiplexer; Package: QFN; Pins: 24; Temperature Range: 0°C to 70°C
ADI

LT6556IGN

750MHz Gain of 1 Triple 2:1Video Multiplexer
Linear

LT6556IUF

750MHz Gain of 1 Triple 2:1Video Multiplexer
Linear

LT6556IUF#TR

LT6556 - 750MHz Gain of 1 Triple 2:1Video Multiplexer; Package: QFN; Pins: 24; Temperature Range: -40°C to 85°C
ADI