LT8410_15 [Linear]

Ultralow Power Boost Converter with Output Disconnect;
LT8410_15
型号: LT8410_15
厂家: Linear    Linear
描述:

Ultralow Power Boost Converter with Output Disconnect

文件: 总16页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8410/LT8410-1  
Ultralow Power Boost  
Converter with Output  
Disconnect  
FEATURES  
DESCRIPTION  
TheLT®8410/LT8410-1areultralowpowerboostconverters  
with integrated power switch, Schottky diode and output  
disconnect circuitry. The parts control power delivery by  
varying both the peak inductor current and switch off-  
time. This control scheme results in low output voltage  
ripple as well as high efficiency over a wide load range.  
The quiescent current is a low 8.5μA, which is further  
reduced to 0μA in shutdown. The internal disconnect  
circuitry allows the output voltage to be blocked from the  
input during shutdown. High value (12.4M/0.4M) resis-  
tors are integrated on chip for output voltage detection,  
significantlyreducinginputreferredquiescentcurrent.The  
LT8410/LT8410-1alsofeaturesacomparatorbuiltintothe  
n
Ultralow Quiescent Current  
8.5μA in Active Mode  
0μA in Shutdown Mode  
n
Comparator Built into SHDN Pin  
n
Low Noise Control Scheme  
n
Adjustable FB Reference Voltage  
n
Wide Input Range: 2.5V to 16V  
n
Wide Output Range: Up to 40V  
n
Integrated Power NPN Switch  
25mA Current Limit (LT8410)  
8mA Current Limit (LT8410-1)  
n
Integrated Schottky Diode  
n
Integrated Output Disconnect  
n
High Value (12.4M/0.4M) Feedback Resistors  
SHDN pin, overvoltage protection for the CAP and V  
OUT  
Integrated  
pins, built in soft-start and comes in a tiny 8-pin 2mm ×  
n
Built in Soft-Start (Optional Capacitor from V  
2mm DFN package.  
REF  
to GND)  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. Hot Swap is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. Protected by U.S. Patents, including  
5481178, 6580258, 6304066, 6127815, 6498466, 6611131.  
n
n
Overvoltage Protection for CAP and V  
Pins  
OUT  
Tiny 8-Pin 2mm × 2mm DFN Package  
APPLICATIONS  
n
Sensor Power  
n
RF Mems Relay Power  
n
General Purpose Bias  
TYPICAL APPLICATION  
General Purpose Bias with Wide Input Voltage  
Output Voltage Ripple  
vs Load Current  
Efficiency vs Load Current  
10  
8
100  
90  
80  
70  
60  
50  
40  
V
IN  
2.5V to 16V  
V
= 3.6V  
100µH  
IN  
V
= 12V  
IN  
2.2µF  
0.1µF  
V
SW  
CAP  
V
= 5V  
IN  
= 16V  
OUT  
V
V
CC  
OUT  
6
V
= 3.6V  
IN  
LT8410  
V
0.1µF*  
CHIP  
ENABLE  
REF  
SHDN  
4
604k  
0.1µF  
GND  
FBP  
2
412k  
*HIGHER VALUE CAPACITOR IS REQUIRED  
WHEN THE V IS HIGHER THAN 5V  
8410-1 TA01a  
IN  
0
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
8410-1 TA02  
LOAD CURRENT (mA)  
8410-1 TA03  
84101fb  
1
LT8410/LT8410-1  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V
Voltage................................................0.3V to 16V  
CC  
8
7
6
5
SHDN  
1
2
3
4
FBP  
SW Voltage ................................................0.3V to 40V  
CAP Voltage ...............................................0.3V to 40V  
V
CC  
V
REF  
9
GND  
SW  
CAP  
V
Voltage..............................................0.3V to 40V  
OUT  
V
OUT  
SHDN Voltage ............................................0.3V to 16V  
REF  
FBP Voltage ..............................................0.3V to 2.5V  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range (Note 2)..40°C to 125°C  
Storage Temperature Range...................65°C to 150°C  
DC PACKAGE  
V
Voltage..............................................0.3V to 2.5V  
8-LEAD (2mm × 2mm) PLASTIC DFN  
T
= 125°C, θ = 88°C/W  
JMAX JA  
EXPOSED PAD (PIN #9) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT8410EDC#PBF  
LT8410IDC#PBF  
TAPE AND REEL  
PART MARKING*  
LDQR  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT8410EDC#TRPBF  
LT8410IDC#TRPBF  
LT8410EDC-1#TRPBF  
LT8410IDC-1#TRPBF  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
LDQR  
LT8410EDC-1#PBF  
LT8410IDC-1#PBF  
LFCC  
LFCC  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 3V, VSHDN = VCC unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2.5  
UNITS  
V
Minimum Operating Voltage  
Maximum Operating Voltage  
Reference Voltage  
2.2  
16  
V
l
1.220  
1.235  
10  
1.255  
V
V
REF  
V
REF  
V
REF  
Current Limit  
(Note 3)  
µA  
µS  
%/V  
µA  
µA  
µA  
Discharge Time  
Line Regulation  
70  
0.01  
8.5  
0
l
l
Quiescent Current  
Not Switching  
12  
1
Quiescent Current in Shutdown  
V = 0V  
SHDN  
Quiescent Current from V  
and CAP  
V
= 16V  
OUT  
3
OUT  
Minimum Switch Off Time  
After Start-Up (Note 4)  
During Start-Up (Note 4)  
240  
600  
nS  
nS  
l
l
Switch Current Limit  
LT8410  
LT8410-1  
20  
6
25  
8
30  
10  
mA  
mA  
84101fb  
2
LT8410/LT8410-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 3V, VSHDN = VCC unless otherwise noted. (Note 2)  
PARAMETER  
Switch V  
CONDITIONS  
LT8410, I = 10mA  
MIN  
TYP  
MAX  
UNITS  
150  
100  
mV  
mV  
CESAT  
SW  
LT8410-1, I = 4mA  
SW  
Switch Leakage Current  
Schottky Forward Voltage  
Schottky Reverse Leakage  
V
= 5V  
0
1
µA  
SW  
I
= 10mA  
650  
850  
mV  
DIODE  
V
CAP  
V
CAP  
– V = 5  
0
0
0.5  
1
µA  
µA  
SW  
– V = 40  
SW  
PMOS Disconnect Current Limit  
LT8410  
LT8410-1  
14  
2.5  
19  
4
25  
5
mA  
mA  
PMOS Disconnect V  
– V  
I = 1mA  
OUT  
50  
31.85  
1.3  
mV  
CAP  
OUT  
l
l
l
V
OUT  
Resistor Divider Ratio  
31.6  
1.20  
0.08  
32.2  
30  
FBP Pin Bias Current  
V
FBP  
= 0.5V, Current Flows Out of Pin  
nA  
V
SHDN Minimum Input Voltage High  
SHDN Input Voltage High Hysteresis  
SHDN Hysteresis Current  
SHDN Rising  
1.30  
60  
1.45  
mV  
µA  
V
0.1  
0.14  
0.3  
(Note 3)  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
V
SHDN  
V
SHDN  
= 3V  
= 16V  
0
2
1
3
µA  
µA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: See the Applications Information section for more information.  
Note 4: Start-up mode occurs when V is less than V • 64/3.  
OUT  
FBP  
Note 2: The LT8410E/LT8410E-1 are guaranteed to meet performance  
specifications from 0°C to 125°C junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LT8410I/LT8410I-1 are guaranteed over the full –40°C to 125°C  
operating junction temperature range.  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Switching Frequency  
vs Load Current  
Load Regulation  
VOUT vs FBP Voltage  
1000  
800  
600  
400  
200  
0
0.6  
50  
40  
30  
20  
10  
0
V
V
= 3.6V  
V
V
= 3.6V  
CC  
CC  
= 16V  
= 16V  
OUT  
OUT  
0.4  
0.2  
0
FIGURE 4 CIRCUIT  
FIGURE 4 CIRCUIT  
0.2  
0.4  
0.6  
0
1
2
3
0
1
2
3
0
0.5  
1
1.5  
2
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
FBP VOLTAGE (V)  
8410-1 G01  
8410-1 G02  
8410-1 G03  
84101fb  
3
LT8410/LT8410-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage vs Temperature  
Quiescent Current—Not Switching  
Quiescent Current vs Temperature  
1.00  
0.75  
12  
10  
8
10  
8
V
= 3.6V, V  
= 16V  
OUT  
CC  
LOAD = 0.5mA  
FIGURE 4 CIRCUIT  
0.50  
0.25  
6
0
6
4
0.25  
0.50  
0.75  
–1.00  
4
2
2
V
= 3.6V  
0
CC  
0
0
40  
0
40  
80  
120  
0
4
8
12  
16  
40  
40  
80  
120  
TEMPERATURE (°C)  
V
VOLTAGE (V)  
TEMPERATURE (°C)  
CC  
8410-1 G04  
8410-1 G05  
8410-1 G06  
Quiescent Current  
vs SHDN Voltage  
Quiescent Current in Regulation  
with No Load  
SHDN Current vs SHDN Voltage  
10  
8
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.6V  
V
= 3.6V  
CC  
CC  
6
4
2
V
CC  
= 3.6V  
0
0.5  
0
1
2
3
4
5
0
10  
20  
30  
40  
0
4
8
12  
16  
SHDN VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
SHDN VOLTAGE (V)  
8410-1 G07  
8410-1 G08  
8410-1 G09  
Peak Inductor Current  
vs Temperature (LT8410)  
Peak Inductor Current  
vs Temperature (LT8410-1)  
VREF Voltage vs Temperature  
40  
36  
32  
28  
24  
20  
15  
13  
11  
9
1.235  
1.234  
1.233  
1.232  
1.231  
1.230  
V
V
= 3.6V  
= 16V  
V
V
= 3.6V  
= 16V  
CC  
OUT  
CC  
OUT  
FIGURE 4 CIRCUIT  
FIGURE 5 CIRCUIT  
7
V
= 3.6V  
CC  
5
40  
0
40  
TEMPERATURE (°C)  
80  
120  
40  
0
40  
TEMPERATURE (°C)  
80  
120  
40  
0
40  
TEMPERATURE (°C)  
80  
120  
8410-1 G10  
8410-1 G11  
8410-1 G12  
84101fb  
4
LT8410/LT8410-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT8410 Switching Waveform  
at No Load  
LT8410 Switching Waveform  
at 0.5mA Load  
V
VOLTAGE  
2mV/DIV  
V
VOLTAGE  
10mV/DIV  
OUT  
OUT  
AC COUPLED  
AC COUPLED  
SW VOLTAGE  
10V/DIV  
SW VOLTAGE  
10V/DIV  
INDUCTOR  
CURRENT  
20mA/DIV  
INDUCTOR  
CURRENT  
10mA/DIV  
8410-1 G13  
8410-1 G14  
V
V
= 3.6V  
OUT  
50µs/DIV  
V
V
= 3.6V  
OUT  
2µs/DIV  
CC  
CC  
= 16V  
= 16V  
LT8410 Switching Waveform  
at 3mA Load  
UVLO vs Temperature  
2.6  
2.4  
V
VOLTAGE  
10mV/DIV  
OUT  
AC COUPLED  
V
RISING  
CC  
2.2  
2.0  
1.8  
1.6  
SW VOLTAGE  
10V/DIV  
V
FALLING  
CC  
INDUCTOR  
CURRENT  
20mA/DIV  
8410-1 G15  
V
V
= 3.6V  
OUT  
500ns/DIV  
CC  
= 16V  
1.4  
40  
0
40  
TEMPERATURE (°C)  
80  
120  
8410-1 G16  
SHDN Minimum Input Voltage  
High vs Temperature  
Line Regulation  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
V
= 16V  
OUT  
SHDN RISING  
SHDN FALLING  
0
4
8
12  
16  
40  
0
40  
80  
120  
V
VOLTAGE (V)  
TEMPERATURE (°C)  
CC  
8410-1 G17  
8410-1 G18  
84101fb  
5
LT8410/LT8410-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Disconnect PMOS Current  
vs CAP to VOUT Voltage Difference  
LT8410 Start-Up Waveforms  
without Capacitor at VREF Pin  
25  
SHDN VOLTAGE  
V
= 16V  
CAP  
5V/DIV  
LT8410  
INDUCTOR  
CURRENT  
20mA/DIV  
20  
15  
10  
5
CAP VOLTAGE  
5V/DIV  
V
OUT  
VOLTAGE  
5V/DIV  
LT8410-1  
8
8410-1 G20  
V
V
= 3.6V  
OUT  
200µs/DIV  
CC  
= 16V  
0
0
4
CAP TO V  
12  
16  
VOLTAGE DIFFERENCE (V)  
OUT  
8410-1 G19  
LT8410 Start-Up Waveforms with  
0.1μF Capacitor at VREF Pin  
LT8410 Transient Response  
0.5mA1.5mA0.5mA Load Pulse  
SHDN VOLTAGE  
V
VOLTAGE  
5V/DIV  
OUT  
200mV/DIV  
INDUCTOR  
CURRENT  
20mA/DIV  
AC COUPLED  
INDUCTOR  
CURRENT  
20mA/DIV  
LOAD  
CURRENT  
0.5mA/DIV  
CAP VOLTAGE  
5V/DIV  
V
VOLTAGE  
5V/DIV  
OUT  
8410-1 G21  
8410-1 G22  
V
V
= 3.6V  
OUT  
2ms/DIV  
V
V
= 3.6V  
OUT  
2ms/DIV  
CC  
CC  
= 16V  
= 16V  
SW Saturation Voltage  
vs Switch Current (LT8410)  
300  
250  
200  
150  
100  
50  
0
0
5
10  
15  
20  
25  
SWITCH CURRENT (mA)  
8410-1 G24  
84101fb  
6
LT8410/LT8410-1  
PIN FUNCTIONS  
SHDN (Pin 1): Shutdown Pin. This pin is used to enable/  
disablethechip.Drivebelow0.3Vtodisablethechip.Drive  
above 1.45V to activate the chip. Do not float this pin.  
V
(Pin 7): Reference Pin. Soft-start can be achieved  
REF  
by placing a capacitor from this pin to GND. This cap  
will be discharged for 70µs (typical) at the beginning  
of start-up and then be charged to 1.235V with a 10μA  
current source.  
V
(Pin 2): Input Supply Pin. Must be locally bypassed  
CC  
to GND. See the Typical Applications section.  
FBP (Pin 8): Positive Feedback Pin. This pin is the error  
GND (Pin 3): Ground. Tie directly to local ground plane.  
amplifier’s positive input terminal. To achieve the desired  
SW (Pin 4): Switch Pin. This is the collector of the inter-  
nal NPN power switch. Minimize the metal trace area  
connected to this pin to minimize EMI.  
output voltage, choose the FBP pin voltage (V ) accord-  
FBP  
ing to the following formula:  
VOUT  
31.85  
VFBP  
=
V
(Pin 5): Drain of Output Disconnect PMOS. Place  
OUT  
a bypass capacitor from this pin to GND.  
Forprotectionpurposes,theoutputvoltagecannotexceed  
40V even if V is driven higher than V  
CAP (Pin 6): Cathode of the Internal Schottky Diode. Place  
a bypass capacitor from this pin to GND.  
.
FBP  
REF  
ExposedPad(Pin9):Pin9isoatingbutmustbeground-  
ed for proper shielding.  
BLOCK DIAGRAM  
2
1
5
6
4
V
V
OUT  
SHDN  
CAP  
SW  
CC  
ENABLE  
CHIP  
MAX  
10µA  
12.4M  
400k  
1.235V  
+
+
OUTPUT DISCONNECT  
CONTROL  
V
REF  
1.235V  
7
DISCHARGE  
CONTROL  
SWITCH  
CONTROL  
TIMING AND PEAK  
CURRENT CONTROL  
+
+
FB  
FBP  
VC  
+
8
1.235V  
EXPOSED PAD  
(GND)  
GND  
9
3
84101fb  
7
LT8410/LT8410-1  
OPERATION  
The LT8410 series utilizes a variable peak current, variable  
off-time control scheme to provide high efficiency over a  
wide output current range.  
the circuit, special precautions are taken to ensure that  
the inductor current remains under control  
The LT8410 series also has a PMOS output disconnect  
switch. The PMOS switch is turned on when the part is  
enabled via the SHDN pin. When the part is in shutdown,  
The operation of the part can be better understood by  
referring to the Block Diagram. The part senses the output  
voltage by monitoring the internal FB node, and servoing  
the FB node voltage to be equal to the FBP pin voltage.  
The chip integrates an accurate high value resistor divider  
the PMOS switch turns off, allowing the V  
node to  
OUT  
go to ground. This type of disconnect function is often  
required in power supplies.  
(12.4M/0.4M) from the V  
pin. The output voltage is set  
OUT  
The differences between the LT8410 and LT8410-1 are  
the SW current limit and the output disconnect PMOS  
current limit. For the LT8410, the SW current limit and  
PMOS current limit are approximately 25mA and 19mA,  
respectively,whilethoseoftheLT8410-1areapproximately  
8mA and 4mA, respectively.  
by the FBP pin voltage, which in turn is set by an external  
resistor divider from the V pin. The FBP pin voltage can  
REF  
also bedirectly biasedwith anexternalreference, allowing  
full control of the output voltage during operation.  
The switch control block senses the output of the ampli-  
fier and adjusts the switching frequency as well as other  
parameters to achieve regulation. During the start-up of  
APPLICATIONS INFORMATION  
Inductor Selection  
Table 1. Recommended Inductors for LT8410/ LT8410-1  
L
DCR  
SIZE  
Several inductors that work well with the LT8410 and  
LT8410-1arelistedinTable1. Thetablesarenotcomplete,  
and there are many other manufacturers and devices that  
can be used. Consult each manufacturer for more detailed  
information and for their entire selection of related parts,  
as many different sizes and shapes are available.  
PART  
(µH) (Ω)  
(mm)  
VENDOR  
Murata  
www.murata.com  
LQH2MCN680K02 68 6.6  
LQH32CN101K53 100 3.5  
2.0 × 1.6 × 0.9  
3.2 × 2.5 × 2.0  
DO2010-683ML  
LPS3015-104ML  
LPS3015-154ML  
LPS3314-154ML  
68  
8.8  
Coilcraft  
www.coilcraft.com  
2.0 × 2.0 × 1.0  
3.0 × 3.0 × 1.4  
3.0 × 3.0 × 1.4  
3.3 × 3.3 × 1.3  
100 3.4  
150 6.1  
150 4.1  
Inductorswithavalueof4Horhigherarerecommended  
for most LT8410 series designs. Inductors with low core  
losses and small DCR (copper wire resistance) are good  
choices for LT8410 series applications. For full output  
power,theinductorshouldhaveasaturationcurrentrating  
higher than the peak inductor current. The peak inductor  
current can be calculated as:  
Capacitor Selection  
The small size and low ESR of ceramic capacitors make  
them suitable for most LT8410 applications. X5R and  
X7R types are recommended because they retain their  
capacitance over wider voltage and temperature ranges  
than other types such as Y5V or Z5U. A 2.2μF or higher  
input capacitor, and a 0.1μF to 1μF output capacitor, are  
sufficient for most applications. Always use a capacitor  
with a sufficient voltage rating. Many ceramic capacitors  
rated at 0.1μF to 1μF have greatly reduced capacitance  
when bias voltages are applied. Be sure to check actual  
capacitanceatthedesiredoutputvoltage.Generally,a0603  
V 150 106  
IN  
IPK = ILIMIT  
+
mA  
L
where the worst case I  
is 30mA and 10mA for LT8410  
LIMIT  
and LT8410-1, respectively. L is the inductance value in  
henrys and V is the input voltage to the boost circuit.  
IN  
84101fb  
8
LT8410/LT8410-1  
APPLICATIONS INFORMATION  
or 0805 size capacitor will be adequate. A 0.1μF to 1μF  
capacitorplacedontheCAPnodeisrecommendedtolter  
the inductor current, while a 0.1μF to 1μF capacitor placed  
Connecting the Load to the CAP Node  
The efficiency of the converter can be improved by con-  
necting the load to the CAP pin instead of the V pin.  
OUT  
on the V  
node will give excellent transient response  
OUT  
The power loss in the PMOS disconnect circuit is then  
made negligible. No quiescent current will be consumed  
in the internal feedback resistor divider string during  
shutdown since the PMOS transistor will be open and the  
and stability. To make the V pin less sensitive to noise,  
REF  
REF  
puttingacapacitorontheV pinisrecommended,butnot  
required.A47nFto220nF0402capacitorwillbesufficient.  
Table 2 shows a list of several capacitor manufacturers.  
Consult the manufacturers for more detailed information  
and for their entire selection of related parts.  
internal feedback resistor divider is connected at the V  
OUT  
pin. The disadvantage of this method is that the CAP node  
cannot go to ground during shutdown, but will be limited  
Table 2. Recommended Ceramic Capacitor Manufacturers  
to around a diode drop below V . Loads connected to the  
CC  
MANUFACTURER  
Taiyo Yuden  
Murata  
PHONE  
WEB SITE  
www.t-yuden.com  
part should only sink current. Never force external power  
(408) 573-4150  
(814) 237-1431  
(843) 448-9411  
(408) 986-0424  
(847) 803-6100  
supplies onto the CAP or V  
pins.  
OUT  
www.murata.com  
www.avxcorp.com  
www.kemet.com  
www.tdk.com  
AVX  
Maximum Output Load Current  
Kemet  
ThemaximumoutputcurrentofaparticularLT8410series  
circuitisafunctionofseveralcircuitvariables.Thefollowing  
method can be helpful in predicting the maximum load  
current for a given circuit:  
TDK  
Setting Output Voltage  
The output voltage is set by the FBP pin voltage. V  
is  
OUT  
Step 1. Calculate the peak inductor current:  
equal to 31.85 • V  
when the output is regulated, as  
FBP  
V 150 106  
shown in Figure 1. Since the V  
pin provides a good  
REF  
IN  
IPK = ILIMIT  
where I  
+
mA  
reference (1.235V), the FBP voltage can be easily set by  
L
a resistor divider from the V pin to ground. The series  
REF  
is 25mA and 8mA for LT8410 and LT8410-1  
LIMIT  
resistanceofthisresistordividershouldbekeptlargerthan  
respectively. L is the inductance value in henrys and V  
is the input voltage to the boost circuit.  
200KΩ to prevent loading down the V pin. The FBP pin  
IN  
REF  
can also be biased directly by an external reference. For  
overvoltage protection, the output voltage is limited to  
Step 2. Calculate the inductor ripple current:  
40V. Therefore, if V  
voltage will stay at 40V.  
is higher than 1.235V, the output  
FBP  
V
+ 1– V 200 106  
(
)
OUT  
IN  
IRIPPLE  
=
mA  
L
50  
where V  
is the desired output voltage. If the inductor  
OUT  
40  
30  
20  
10  
0
ripple current is less than the peak current, then the circuit  
will only operate in discontinuous conduction mode. The  
inductor value should be increased so that I  
< I .  
RIPPLE  
PK  
An application circuit can be designed to operate only in  
discontinuous mode, but the output current capability  
will be reduced.  
Step 3. Calculate the average input current:  
0
0.5  
1
1.5  
2
I
RIPPLE mA  
2
FBP VOLTAGE (V)  
I
= IPK  
IN(AVG)  
8410-1 F01  
Figure 1. FBP to VOUT Transfer Curve  
84101fb  
9
LT8410/LT8410-1  
APPLICATIONS INFORMATION  
Step 4. Calculate the nominal output current:  
protection against pin glitches and slow ramping), then  
an internal 10μA current source pulls the V pin slowly  
REF  
I
V 0.7  
IN  
IN(AVG)  
to 1.235V. Since the V  
voltage is set by the FBP pin  
IOUT(NOM)  
=
mA  
OUT  
VOUT  
Step 5. Derate output current:  
= I 0.8  
voltage, the V  
voltage will also slowly increase to the  
OUT  
regulated voltage, which results in lower peak inductor  
current. The voltage ramp rate on the pin can be set by  
I
OUT  
OUT(NOM)  
the value of the V pin capacitor.  
REF  
For low output voltages the output current capability will  
beincreased. Whenusingoutputdisconnect(loadcurrent  
Output Disconnect  
taken from V ), these higher currents will cause the  
The LT8410 series has an output disconnect PMOS that  
blocks the load from the input during shutdown. The  
maximumcurrentthroughthePMOSislimitedbycircuitry  
inside the chip, helping the chip survive output shorts.  
OUT  
drop in the PMOS switch to be higher resulting in lower  
output current capability than predicted by the preceding  
equations.  
Inrush Current  
SHDN Pin Comparator and Hysteresis Current  
WhenV issteppedfromgroundtotheoperatingvoltage  
CC  
An internal comparator compares the SHDN pin voltage  
with an internal voltage reference (1.3V) which gives a  
preciseturn-onvoltagelevel.Theinternalhysteresisofthis  
turn-onvoltageisabout60mV.Whenthechipisturnedon,  
and the SHDN pin voltage is close to this turn-on voltage,  
0.1μA current flows out of the SHDN pin. This current is  
calledSHDNpinhysteresiscurrent, andwillgoawaywhen  
the chip is off. By connecting the external resistors as in  
Figure 2, a user-programmable enable voltage function  
can be realized.  
while the output capacitor is discharged, a high level of  
inrushcurrentmayowthroughtheinductorandSchottky  
diode into the output capacitor. Conditions that increase  
inrush current include a larger more abrupt voltage step  
at V , a larger output capacitor tied to the CAP pin and  
CC  
an inductor with a low saturation current. While the chip is  
designed to handle such events, the inrush current should  
not be allowed to exceed 0.3A. For circuits that use output  
capacitor values within the recommended range and have  
input voltages of less than 6V, inrush current remains low,  
posing no hazard to the device. In cases where there are  
The turn-on voltage for the configuration is:  
large steps at V (more than 6V) and/or a large capacitor  
CC  
R1  
R2  
1.30 1+  
is used at the CAP pin, inrush current should be measured  
to ensure safe operation.  
and the turn-off voltage is:  
Soft-Start  
R1  
R2  
1.24R3 107 1+  
(R1107)  
(
)
The LT8410 series contains a soft-start circuit to limit  
peak switch currents during start-up. High start-up cur-  
rent is inherent in switching regulators, in general, since  
where R1, R2 and R3 are resistance value in Ω.  
the feedback loop is saturated due to V  
being far from  
OUT  
ENABLE VOLTAGE  
its final value. The regulator tries to charge the output  
capacitor as quickly as possible, which results in large  
peak current.  
R1  
R3  
CONNECT TO  
SHDN PIN  
WhentheFBPpinvoltageisgeneratedbyaresistordivider  
from the V  
pin, the start-up current can be limited by  
R2  
REF  
connecting an external capacitor (typically 47nF to 220nF)  
84101 F02  
to the V pin. When the part is brought out of shutdown,  
REF  
Figure 2. Programming Enable Voltage by Using External Resistors  
thiscapacitorisrstdischargedforabout7s(providing  
84101fb  
10  
LT8410/LT8410-1  
APPLICATIONS INFORMATION  
Board Layout Considerations  
V
IN  
SHDN  
As with all switching regulators, careful attention must  
be paid to the PCB layout and component placement. To  
maximize efficiency, switch rise and fall times are made as  
shortaspossible.Topreventelectromagneticinterference  
(EMI) problems, proper layout of the high frequency  
switchingpathisessential.ThevoltagesignaloftheSWpin  
hassharprisingandfallingedges.Minimizethelengthand  
area of all traces connected to the SW pin and always use  
a ground plane under the switching regulator to minimize  
SHDN  
FBP  
V
CC  
V
REF  
GND  
SW  
CAP  
GND  
interplane coupling. In addition, the FBP pin and V pin  
REF  
V
OUT  
are sensitive to noise. Minimize the length and area of all  
traces to these two pins is recommended. Recommended  
component placement is shown in Figure 3.  
8410-1 F03  
CAPACITOR GROUNDS MUST BE  
RETURNED DIRECTLY TO IC GROUND  
Figure 3. Recommended Board Layout  
84101fb  
11  
LT8410/LT8410-1  
TYPICAL APPLICATIONS  
L1  
Efficiency vs Load Current  
V
IN  
100µH  
2.5V to 16V  
100  
90  
80  
70  
60  
50  
40  
C2  
0.1µF  
C1  
2.2µF  
V
= 12V  
IN  
SW  
CAP  
V
= 16V  
C3  
OUT  
C4  
V
V
CC  
OUT  
V
= 5V  
IN  
LT8410  
V
0.1µF  
V
= 3.6V  
REF  
IN  
TURN ON/OFF  
SHDN  
604k  
0.1µF  
GND  
FBP  
412k  
C1: 2.2μF, 16V, X5R, 0603  
C2: 0.1μF, 25V, X5R, 0603  
8410-1 TA05  
C3: 0.1μF, 25V, X5R, 0603 *  
C4: 0.1μF, 16V, X7R, 0402  
L1: MURATA LQH32CN101K53  
0.01  
0.1  
1
10  
100  
8410-1 TA07  
LOAD CURRENT (mA)  
* HIGHER CAPACITANCE VALUE IS REQUIRED FOR  
C3 WHEN THE V IS HIGHER THAN 5V  
IN  
V
(V)  
I
(mA)  
IN  
OUT  
Figure 4. 16V Output Converter with Wide Input Voltage  
3.6  
2.2  
5
3.6  
13  
16V Output Converter with 2mm × 2mm Inductor  
12  
L1  
68µH  
V
IN  
2.5V to 16V  
C2  
C1  
Efficiency vs Load Current  
0.1µF  
2.2µF  
90  
80  
70  
60  
50  
40  
SW  
CAP  
V
= 16V  
C3  
OUT  
C4  
V
IN  
= 12V  
V
V
CC  
OUT  
LT8410  
V
V
= 5V  
IN  
0.1µF  
REF  
TURN ON/OFF  
SHDN  
R1  
301k  
V
= 3.6V  
IN  
0.1µF  
GND  
FBP  
R2  
210k  
C1: 2.2μF, 16V, X5R, 0603  
C2: 0.1μF, 25V, X5R, 0603  
C3: 0.1μF, 25V, X5R, 0603 *  
C4: 0.1μF, 16V, X7R, 0402  
L1: COILCRAFT DO2010-683ML  
8410 TA06  
* HIGHER CAPACITANCE VALUE IS REQUIRED FOR  
C3 WHEN THE V IS HIGHER THAN 5V  
0.01  
0.1  
1
10  
100  
IN  
LOAD CURRENT (mA)  
8410-1 TA08  
LT8410 Maximum Output Current vs Output Voltage  
RESISTOR DIVIDER  
MAXIMUM OUTPUT CURRENT (mA)  
FROM V  
REF  
V
(V)  
R1 (kΩ) / R2 ( kΩ)  
V
IN  
= 2.8V  
0.5  
0.7  
0.8  
1
V
= 3.6V  
0.7  
0.9  
1
V
IN  
= 5V  
V
IN  
= 12V  
3.6  
4.4  
5.5  
7.2  
9.7  
14  
OUT  
IN  
40  
NA  
1.1  
35  
30  
25  
20  
15  
10  
5
110/887  
237/768  
365/634  
487/511  
619/383  
750/255  
866/127  
1.4  
1.5  
2.1  
2.9  
4
1.4  
1.9  
2.4  
4.6  
11  
1.4  
1.6  
3.3  
8
7
NA  
17  
NA  
84101fb  
12  
LT8410/LT8410-1  
TYPICAL APPLICATIONS  
34V Output Converter with Wide Input Voltage  
Efficiency vs Load Current  
90  
80  
70  
60  
50  
40  
L1  
V
IN  
V
= 12V  
IN  
150µH  
2.5V to 16V  
C2  
C1  
V
= 5V  
IN  
0.1µF  
2.2µF  
SW  
CAP  
V
= 34V  
C3  
OUT  
C4  
V
V
CC  
OUT  
V
= 3.6V  
IN  
LT8410  
V
0.1µF  
REF  
TURN ON/OFF  
SHDN  
133k  
0.1µF  
GND  
FBP  
866k  
C1: 2.2μF, 16V, X5R, 0603  
8410-1 TA09  
C2: 0.1μF, 100V, X5R, 0603  
C3: 0.1μF, 100V, X5R, 0603 *  
C4: 0.1μF, 16V, X7R, 0402  
0.01  
0.1  
1
10  
LOAD CURRENT (mA)  
8410-1 TA10  
L1: COILCRAFT LPS3314-154ML  
* HIGHER CAPACITANCE VALUE IS REQUIRED FOR  
V
IN  
(V)  
I
(mA)  
OUT  
C3 WHEN THE V IS HIGHER THAN 8V  
IN  
3.6  
0.8  
5
1.2  
4
12  
L1  
220µH  
V
IN  
2.5V to 16V  
C2  
1.0µF  
C1  
2.2µF  
SW  
CAP  
V
= 16V  
OUT  
V
V
SHDN VOLTAGE  
CC  
OUT  
C3  
10000µF  
2V/DIV  
LT8410-1  
V
REF  
TURN ON/OFF  
SHDN  
R1  
604k  
C4  
V
OUT  
VOLTAGE  
10V/DIV  
0.1µF  
GND  
FBP  
R2  
412k  
INPUT CURRENT  
5mA/DIV  
C1: 2.2μF, 16V, X5R, 0603  
C2: 1.0μF, 25V, X5R, 0603 *  
8410-1 TA10a  
INDUCTOR  
CURRENT  
10mA/DIV  
C3: 10000μF, ELECTROLYTIC CAPACITOR  
C4: 0.1μF, 16V, X7R, 0402  
8410-1 G10b  
V
= 3.6V  
20s/DIV  
IN  
L1: COILCRAFT LPS3008-224ML  
* HIGHER CAPACITANCE VALUE IS REQUIRED FOR  
C2 WHEN THE V IS HIGHER THAN 12V  
IN  
Figure 5. Capacitor Charger with the LT8410-1  
LT8410-1 Maximum Output Current vs Output Voltage  
FEEDBACK RESISTOR  
DIVIDER  
R1 (kΩ) / R2 ( kΩ)  
MAXIMUM OUTPUT CURRENT (mA)  
V
(V)  
V
IN  
= 2.8V  
V
= 3.6V = 5V  
V
V = 12V  
IN  
OUT  
IN  
IN  
40  
NA  
0.12  
0.14  
0.18  
0.25  
0.34  
0.48  
0.84  
2.3  
0.16  
0.19  
0.25  
0.35  
0.48  
0.69  
1.2  
0.24  
0.89  
35  
30  
25  
20  
15  
10  
5
110/887  
237/768  
365/634  
487/511  
619/383  
750/255  
866/127  
0.3  
0.38  
0.55  
0.76  
1.1  
1.1  
1.5  
2
2.9  
3.5  
NA  
NA  
2.1  
3.3  
3.5  
84101fb  
13  
LT8410/LT8410-1  
PACKAGE DESCRIPTION  
DC Package  
8-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1719 Rev A)  
0.70 ±0.05  
2.55 ±0.05  
0.64 ±0.05  
1.15 ±0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.45 BSC  
1.37 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
TYP  
5
8
R = 0.05  
TYP  
0.40 ± 0.10  
PIN 1 NOTCH  
2.00 ±0.10 0.64 ± 0.10  
(4 SIDES)  
(2 SIDES)  
R = 0.20 OR  
0.25 × 45°  
CHAMFER  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
(DC8) DFN 0409 REVA  
4
1
0.23 ± 0.05  
0.45 BSC  
0.75 ±0.05  
0.200 REF  
1.37 ±0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
84101fb  
14  
LT8410/LT8410-1  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
01/11 Corrected Pin Configuration  
Revised Note 2 in Electrical Characteristics  
DESCRIPTION  
PAGE NUMBER  
B
2
3
84101fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT8410/LT8410-1  
TYPICAL APPLICATION  
High Voltage Power Supply Does Not Need a Transformer  
DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
C3, 0.1µF  
C5, 0.1µF  
D2  
L1  
100µH  
V
IN  
2.5V to 16V  
D1  
C4  
D3  
C6  
D4  
C2  
0.1µF  
C1  
2.2µF  
0.1µF  
0.1µF  
SW  
CAP  
V
V
OUT  
CC  
C7  
LT8410  
OUTPUT = 100V  
0.1µF  
0.4mA (V = 5V)  
IN  
V
TURN ON/OFF  
C1: 2.2μF, 16V, X5R, 0603  
REF  
SHDN  
1.4mA (V = 12V)  
IN  
C8  
0.1µF  
143k  
787k  
C2 – C7: 0.1μF, 100V, X5R, 0603  
C8: 0.1μF, 16V, X7R, 0402  
GND  
FBP  
D1 – D4: ON SEMI RB751S40T1G  
L1: MURATA LQH32CN101K53  
8410-1 TA11  
Output Voltage vs FBP Voltage  
Efficiency vs Load Current  
140  
120  
100  
90  
80  
70  
60  
50  
40  
V
= 5V  
IN  
V
= 100V  
OUT  
V
= 12V  
IN  
80  
60  
40  
20  
V
= 5V  
IN  
0
0
0.5  
1
1.5  
2
0.01  
0.1  
1
10  
FBP VOLTAGE (V)  
LOAD CURRENT (mA)  
8410-1 TA12  
8410-1 TA13  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
: 2.45V to 16V, V  
LT1946/LT1946A  
1.5A (I ), 1.2MHz/2.7MHz, High Efficiency Step-Up DC/DC  
V
= 34V, I = 3.2mA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
Converters  
8-Lead MS Package  
LT3464  
85mA (I ), High Efficiency Step-Up DC/DC Converter with  
V
: 2.3V to 10V, V  
= 34V, I = 25µA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
Integrated Schottky and PNP Disconnect  
ThinSOT™ Package  
LT3471  
Dual Output, Boost/Inverter, 1.3A (I ), High Efficiency  
V
: 2.4V to 16V, V  
= 40V, I = 2.5mA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
Boost-Inverting DC/DC Converter  
DFN Package  
LT3473/LT3473A  
LT3494/LT3494A  
LT3495/LT3495B/  
1A (I ), 1.2MHz, High Efficiency Step-Up DC/DC Converter  
V
: 2.2V to 16V, V  
= 36V, I = 100µA, I < 1µA,  
Q SD  
SW  
IN  
with Integrated Schottky Diode and Output Disconnect  
DFN Package  
180mA/350mA (I ), High Efficiency, Low Noise Step-Up  
V
: 2.1V to 16V, V  
= 40V, I = 65µA, I < 1µA,  
Q SD  
SW  
IN  
DC/DC Converter with Output Disconnect  
DFN Package  
650mA/350mA (I ), High Efficiency, Low Noise Step-Up  
V
: 2.3 V to 16V, V  
= 40V, I = 60µA, I < 1µA,  
OUT(MAX) Q SD  
SW  
IN  
LT3495-1/LT3495B-1 DC/DC Converter with Output Disconnect  
DFN Package  
84101fb  
LT 0211 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY