LT8415IDDB#PBF [Linear]

LT8415 - Ultralow Power Boost Converter with Dual Half-Bridge Switches; Package: DFN; Pins: 12; Temperature Range: -40°C to 85°C;
LT8415IDDB#PBF
型号: LT8415IDDB#PBF
厂家: Linear    Linear
描述:

LT8415 - Ultralow Power Boost Converter with Dual Half-Bridge Switches; Package: DFN; Pins: 12; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总12页 (文件大小:177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8415  
Ultralow Power Boost  
Converter with Dual  
Half-Bridge Switches  
FEATURES  
DESCRIPTION  
The LT®8415 is an ultralow power boost converter with  
two integrated complementary MOSFET half-bridges  
(N- and P-channel), integrated power switch, Schottky  
diode and output disconnect circuitry. The N-channel and  
P-channelMOSFETsineachhalf-bridgearesynchronously  
controlled by a single input pin, and never turn on at the  
same time in typical applications.  
n
High Voltage Switches Built in (Dual half-bridge)  
Ultralow Quiescent Current  
n
10.5μA in Active Mode  
0μA in Shutdown Mode  
n
Comparator Built into SHDN pin  
n
Low Noise Control Scheme  
n
Adjustable FB reference voltage  
n
Wide Input Range: 2.5V to 16V  
The boost regulator controls power delivery by varying  
both the peak inductor current and switch off-time. This  
control scheme results in low output voltage ripple as well  
as high efficiency over a wide load range. The quiescent  
current is a low 10.5μA, which is further reduced to 0μA  
in shutdown. The internal disconnect circuitry allows the  
output voltage to be blocked from the input during shut-  
down. High value (12.4M/0.4M) resistors are integrated  
onchipforoutputvoltagedetection,significantlyreducing  
inputreferredquiescentcurrent.TheLT8415alsofeaturesa  
comparatorbuiltintotheSHDNpin,overvoltageprotection  
n
Wide Output Range: Up to 40V  
n
Integrated Power NPN Switch (25mA Current Limit)  
n
Integrated Schottky Diode  
Integrated Output Disconnect  
n
n
High Value (12.4M/0.4M) Feedback Resistor Integrated  
Built in Soft Start (Optional Capacitor from V to GND)  
Over Voltage Protection for CAP, V , OUT1 and  
OUT2 Pins  
12-Pin 3mm × 2mm DFN package  
n
REF  
n
OUT  
n
APPLICATIONS  
for the CAP, V , OUT1 and OUT2 pins, built in soft start  
OUT  
n
Sensor Power  
and comes in a tiny 12-pin 3mm × 2mm DFN package.  
n
RF Mems Relay Power  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. Hot Swap  
is a trademark of Linear Technology Corporation. All other trademarks are the property of their  
respective owners. Protected by U.S. Patents including 5481178, 6580258, 6304066, 6127815,  
6498466, 6611131.  
n
Low Power Actuator Bias/Control  
Liquid Lens Driver  
n
TYPICAL APPLICATION  
Drive External Capacitors to 34V/0V with the LT8415  
Response Driving External Capacitors  
V
IN  
100ꢀH  
2.5V to 16V  
OUT2 VOLTAGE  
20/DIV  
2.2ꢀF  
22nF  
SW  
CAP  
IN2 VOLTAGE  
2V/DIV  
V
V
OUT  
CC  
V
OUT  
= 34V  
LT8415  
0.1ꢀF*  
OUT1 VOLTAGE  
20/DIV  
IN 1  
IN 2  
OUT 1  
OUT 2  
LOGIC  
LEVEL  
34V/0V  
V
CHIP  
ENABLE  
IN1 VOLTAGE  
2V/DIV  
REF  
SHDN  
34V/0V  
137K  
8415 TA02  
C
C
= 1nF  
= 200pF  
20ꢀs/DIV  
OUT1  
OUT2  
GND  
FBP  
887K  
0.1ꢀF**  
*HIGHER VALUE CAPACITOR IS REQUIRED  
WHEN THE V IS HIGHER THAN 8V  
IN  
8415 TA01  
**THIS CAPACITOR IS OPTIONAL  
8415f  
1
LT8415  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V
Voltage................................................0.3V to 16V  
CC  
CAP, V  
1
2
3
4
5
6
SHDN  
12 FBP  
Voltage......................................0.3V to 40V  
OUT  
V
CC  
11  
10  
9
V
REF  
SW.............................................................0.3V to 41V  
IN1,IN2 ........................................................0.3V to 6V  
OUT1,OUT2................................................0.3V to 40V  
SHDN Voltage ............................................0.3V to 16V  
GND  
SW  
IN1  
IN2  
CAP  
13  
V
OUT  
8
OUT1  
OUT2  
7
V
Voltage..............................................0.3V to 2.5V  
DDB PACKAGE  
12-PIN (3mm s 2mm) PLASTIC DFN  
REF  
FBP Voltage...............................................0.3V to 2.5V  
Maximum Junction Temperature........................... 125°C  
Operating Temperature Range (Note 2)..–40°C to 125°C  
Storage Temperature Range...................65°C to 150°C  
T
= 125°C, θ = 76°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT8415EDDB#PBF  
LT8415IDDB#PBF  
TAPE AND REEL  
PART MARKING*  
LFDC  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT8415EDDB#TRPBF  
LT8415IDDB#TRPBF  
40°C to 125°C  
40°C to 125°C  
12-Pin (3mm × 2mm) Plastic DFN  
12-Pin (3mm × 2mm) Plastic DFN  
LFDC  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VIN = 3.0V, VSHDN = VIN unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2.50  
16  
UNITS  
V
Minimum Operating Voltage  
Maximum Operating Voltage  
Reference Voltage  
2.20  
V
l
1.220  
1.235  
10  
1.255  
V
V
V
V
Current Limit  
(Note 3)  
(Note 3)  
ꢀA  
ꢀS  
%/V  
ꢀA  
ꢀA  
ꢀA  
REF  
REF  
REF  
Discharge Time  
Line Regulation  
70  
0.01  
10.5  
0
l
l
Quiescent Current  
Not Switching  
15.5  
1
Quiescent Current in Shutdown  
V = 0V  
SHDN  
Quiescent Current from V  
and CAP  
V = 16V  
OUT  
4
OUT  
Minimum Switch Off Time  
After Start-Up (Note 4)  
During Start-Up (Note 4)  
240  
600  
nS  
mA  
mV  
ꢀA  
l
Switch Current Limit  
20  
25  
150  
0
30  
Switch V  
I
= 10mA  
= 5V  
CESAT  
SW  
Switch Leakage Current  
Schottky Forward Voltage  
Schottky Reverse Leakage  
V
1
SW  
I
= 10mA  
650  
850  
mV  
DIODE  
V
CAP  
V
CAP  
– V = 5  
0
0
0.5  
1
ꢀA  
ꢀA  
SW  
– Vsw = 40  
8415f  
2
LT8415  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VIN = 3.0V, VSHDN = VIN unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
19  
MAX  
UNITS  
mA  
PMOS Disconnect Current Limit  
14  
25  
PMOS Disconnect V  
- V  
I = 1mA  
OUT  
50  
mV  
CAP  
OUT  
l
l
l
Internal Resistor Divider Ratio  
FBP pin Bias Current  
31.6  
1.20  
0.08  
31.85  
1.3  
32.2  
30  
V
= 0.5V, Current Flows Out of Pin  
nA  
V
FBP  
SHDN Minimum Input Voltage High  
SHDN Input Voltage High hysteresis  
SHDN Hysteresis Current  
SHDN Rising  
1.30  
60  
1.45  
mV  
ꢀA  
V
(Note 3)  
0.1  
0.14  
0.3  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
V
V
3V  
16V  
0
2
1
3
ꢀA  
ꢀA  
SHDN =  
SHDN =  
l
l
IN1,IN2 Minimum Input Voltage High  
IN1,IN2 Input Voltage Low  
OUT1,OUT2 Rise Time  
1.1  
V
V
0.3  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 34V, C  
= 34V, C  
= 34V, C  
= 34V, C  
= 200pF (Note 5)  
= 200pF (Note 5)  
= 200pF (Note 5)  
= 200pF (Note 5)  
2.5  
3
ꢀs  
LOAD  
LOAD  
LOAD  
LOAD  
OUT1,OUT2 Fall Time  
ꢀs  
OUT1,OUT2 Rise Delay  
4
ꢀs  
OUT1,OUT2 Fall Delay  
2
ꢀs  
Half-bridge PMOS Voltage Drop V  
Half-bridge NMOS Voltage Drop V  
– V  
IN1,IN2 = 2V, 0.1mA Load From OUT1,OUT2  
IN1,IN2 = 0V, 0.1mA Current Into OUT1,OUT2  
70  
85  
mV  
mV  
OUT  
OUT1,OUT2  
OUT1,OUT2  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT8415 is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls.  
Note 3: See applications section for more information.  
Note 4: Start-Up mode occurs when V is less than V *64/3.  
Note 5: See Timing Diagram. Rise times are measured from 4V to 30V and  
fall times are measured from 30V to 4V. Delay times are measured from  
the IN1,IN2 transition to when the OUT1,OUT2 voltage has risen to 4V or  
decreased to 30V.  
OUT  
FBP  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Switching Frequency  
vs Load Current  
Load Regulation  
Vout vs FBP Voltage  
1000  
800  
600  
400  
200  
0
0.6  
50  
40  
30  
20  
10  
0
V
V
= 3.6V  
V
V
= 3.6V  
CC  
CC  
= 16V  
= 16V  
OUT  
OUT  
0.4  
0.2  
0
FIGURE 4 CIRCUIT  
FIGURE 4 CIRCUIT  
0.2  
0.4  
0.6  
0
1
2
3
0
1
2
3
0
0.5  
1
1.5  
2
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
FBP VOLTAGE (V)  
8415 G01  
8415 G02  
8415 G03  
8415f  
3
LT8415  
T = 25°C, unless otherwise noted.  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
Quiescent Current –  
Not Switching  
Output Voltage vs Temperature  
Quiescent Current vs Temperature  
18  
15  
12  
9
1
0.75  
0.5  
V
= 3.6V  
CC  
V
= 3.6V, V  
= 16V  
OUT  
CC  
LOAD = 0.5mA  
FIGURE 4 CIRCUIT  
15  
12  
9
0.25  
0
6
0.25  
0.5  
0.75  
–1  
6
3
0
3
0
0
4
8
12  
16  
40  
0
40  
80  
120  
40  
0
40  
80  
120  
V
VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CC  
8415 G05  
8415 G06  
8415 G04  
Quiescent Current  
Average Input Current in  
Regulation with No Load  
vs SHDN Voltage  
SHDN Current vs SHDN Voltage  
2.5  
2
1000  
100  
10  
12  
9
V
= 3.6V  
CC  
V
= 3.6V  
CC  
1.5  
1
6
0.5  
0
3
V
= 3.6V  
CC  
0.5  
0
0
4
8
12  
16  
0
1
2
3
4
5
0
10  
20  
30  
40  
SHDN VOLTAGE (V)  
SHDN VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
8415 G09  
8415 G07  
8415 G08  
Peak Inductor Current  
vs Temperature  
VREF Voltage vs Temperature  
UVLO vs Temperature  
40  
36  
32  
28  
24  
20  
1.235  
1.234  
1.233  
1.232  
1.231  
1.23  
2.6  
2.4  
V
V
= 3.6V  
CC  
= 16V  
OUT  
FIGURE 4 CIRCUIT  
V
RISING  
CC  
2.2  
2
V
FALLING  
CC  
1.8  
1.6  
V
= 3.6V  
CC  
1.4  
40  
0
40  
TEMPERATURE (°C)  
80  
120  
40  
0
40  
TEMPERATURE (°C)  
80  
120  
40  
0
40  
TEMPERATURE (°C)  
80  
120  
8415 G10  
8415 G11  
8415 G12  
8415f  
4
LT8415  
T = 25°C, unless otherwise noted.  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
SW Saturation Voltage  
vs Switch Current  
SHDN Minimum Input Voltage  
High vs Temperature  
Line Regulation  
300  
250  
200  
150  
100  
50  
0.3  
0.25  
0.2  
1.5  
1.4  
1.3  
1.2  
1.1  
1
V
= 16V  
OUT  
SHDN RISING  
0.15  
0.1  
SHDN FALLING  
0.05  
0
0
0
5
10  
15  
20  
25  
0
4
8
12  
16  
40  
0
40  
TEMPERATURE (°C)  
80  
120  
SWITCH CURRENT (mA)  
V
VOLTAGE (V)  
CC  
8415 G13  
8415 G14  
8415 G15  
Start-Up Waveforms Without  
Capacitor at VREF Pin  
Output Disconnect PMOS current  
vs CAP to VOUT Voltage Difference  
Start-Up Waveforms With 0.1μF  
Capacitor at VREF pin  
25  
20  
15  
10  
5
SHDN  
VOLTAGE  
5V/DIV  
SHDN  
VOLTAGE  
5V/DIV  
V
= 16V  
CAP  
INDUCTOR  
CURRENT  
20mA/DIV  
INDUCTOR  
CURRENT  
20mA/DIV  
CAP  
VOLTAGE  
5V/DIV  
CAP  
VOLTAGE  
5V/DIV  
V
OUT  
V
OUT  
VOLTAGE  
5V/DIV  
VOLTAGE  
5V/DIV  
8415 G17  
8415 G18  
V
V
= 3.6V  
OUT  
200ꢀs/DIV  
V
V
= 3.6V  
OUT  
2ms/DIV  
CC  
CC  
= 16V  
= 16V  
0
0
4
CAP TO V  
8
12  
16  
VOLTAGE DIFFERENCE (V)  
OUT  
8415 G16  
IN1,IN2 Minimum Input Voltage  
High vs Temperature  
Half-Bridge Fall Time and Fall  
Delay vs Temperature  
Half-Bridge Rise Time and Rise  
Delay vs Temperature  
5
4
3
2
1
0
1
5
4
3
2
1
0
RISE DELAY  
0.8  
0.6  
0.4  
0.2  
0
FALL TIME  
RISE TIME  
FALL DELAY  
LOAD = 220pF  
V
V
= 3.6V  
= 34V  
LOAD = 220pF  
CC  
OUT  
V
= 3.6V, V  
= 34V  
V
= 3.6V, V  
= 34V  
CC  
OUT  
CC  
OUT  
FRONT PAGE APPLICATION  
FRONT PAGE APPLICATION  
FRONT PAGE APPLICATION  
40  
0
40  
80  
120  
40  
0
40  
80  
120  
40  
0
40  
80  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8415 G21  
8415 G19  
8415 G20  
8415f  
5
LT8415  
PIN FUNCTIONS  
SHDN(Pin1):ShutdownPin.Thispinisusedtoenable/dis-  
able the chip. Drive below 0.3V to disable the chip. Drive  
above 1.4V to activate the chip. Do not float this pin.  
V
(Pin 9): Drain of Output Disconnect PMOS. Place a  
OUT  
bypass capacitor from this pin to GND.  
CAP (Pin 10): This is the Cathode of the Internal Schottky  
Diode. Place a bypass capacitor from this pin to GND.  
V
(Pin 2): Input Supply Pin. Must be locally bypassed  
CC  
to GND. See typical applications section.  
V
REF  
(Pin 11): Reference Pin. Soft start can be achieved  
GND (Pin 3 and Pin 13): Ground. Tie directly to local  
ground plane. Pin 13 is floating but must be grounded  
for proper shielding.  
by placing a capacitor from this pin to GND. This cap  
will be discharged for 70ꢀs (typical) at the beginning  
of start-up and then be charged to 1.235V with a 10μA  
current source.  
SW (Pin 4): Switch Pin. This is the collector of the internal  
NPNpowerswitch.Minimizethemetaltraceareaconnected  
to this pin to minimize EMI.  
FBP(Pin 12): Positive Feedback Pin. This pin is the error  
amplifier’s positive input terminal. To achieve the desired  
output voltage, choose the FBP pin voltage (V ) accord-  
FBP  
IN1 (Pin 5): First Half-Bridge Control Input. Do not float  
this pin.  
ing to the following formula:  
V
FBP  
= V /31.85  
OUT  
IN2 (Pin 6): Second Half-Bridge Control Input. Do not  
float this pin.  
When resistor divider from the V is used to set the FBP  
REF  
voltage, choose the resistor divider ratio according to the  
OUT2 (Pin 7): Second Half-Bridge Output. This pin is  
following formula:  
controlled in phase by the voltage on IN2. The output level  
is either the voltage on V  
or GND.  
R1/R2 = (39.33 – V )/V  
OUT OUT  
OUT  
OUT1(Pin8):FirstHalf-BridgeOutput.Thispiniscontrolled  
Forprotectionpurposes,theoutputvoltagecannotexceed  
in phase by the voltage on IN1. The output level is either  
40V even if V is driven higher than V  
.
FBP  
REF  
the voltage on V  
or GND.  
OUT  
BLOCK DIAGRAM  
V
V
SHDN  
CAP  
10  
SW  
4
OUT1 OUT2  
CC  
OUT  
2
1
9
8
7
ENABLE  
CHIP  
V
OUT  
MAX  
10ꢀA  
12.4M  
400K  
TOP GATE  
CONTROL  
1.235V  
+
+
OUTPUT DISCONNECT  
CONTROL  
BOTTOM GATE  
CONTROL  
V
1.235V  
REF  
11  
DISCHARGE  
CONTROL  
SWITCH  
CONTROL  
TIMING AND PEAK  
CURRENT CONTROL  
V
R
OUT  
1
TOP GATE  
CONTROL  
+
+
FB  
VC  
FBP  
+
12  
BOTTOM GATE  
CONTROL  
1.235V  
R
2
13  
3
5
6
GND  
GND IN1 IN2  
8415 BD  
8415f  
6
LT8415  
TIMING DIAGRAM  
2V  
IN1,IN2  
VOLTAGE  
0V  
RISE  
TIME  
FALL  
DELAY  
34V  
30V  
OUT1,OUT2  
VOLTAGE  
4V  
0V  
RISE  
FALL  
TIME  
DELAY  
8415 TD  
OPERATION  
Switching Regulator  
the circuit, special precautions are taken to ensure that  
the inductor current remains under control.  
The LT8415 utilizes a variable peak current, variable off-  
time control scheme to provide high efficiency over a wide  
output current range.  
The LT8415 also has a PMOS output disconnect switch.  
The PMOS switch is turned on when the part is enabled  
via the SHDN pin. When the part is in shutdown, the  
The operation of the part can be better understood by  
referring to the Block Diagram. The part senses the  
output voltage by monitoring the internal FB node, and  
servoing the FB node voltage to be equal to the FBP  
pin voltage. The chip integrates an accurate high value  
PMOS switch turns off, allowing the V  
node to go to  
OUT  
ground. This type of disconnect function is often required  
in power supplies.  
Half-Bridge  
resistor divider (12.4MEG/0.4MEG) from the V  
pin.  
OUT  
TheN-channelandP-channelMOSFETsineachhalf-bridge  
are synchronously controlled by a single input pin, and  
will never turn on at the same time in typical applications,  
protecting against shoot-through current. The OUT1 and  
OUT2 pins are the same polarity as the IN1 and IN2 pins  
respectively. When the part is disabled, both N-channel  
and P-channel MOSFETs turn off, and the OUT1 and OUT2  
pins will become high impedance with a 20MΩ pull down  
resistor connected to ground.  
The output voltage is set by the FBP pin voltage, which  
in turn is set by an external resistor divider from the V  
pin. The FBP pin voltage can also be directly biased with  
an external reference, allowing full control of the output  
voltage during operation.  
REF  
The Switch Control block senses the output of the ampli-  
fier and adjusts the switching frequency as well as other  
parameters to achieve regulation. During the start-up of  
8415f  
7
LT8415  
APPLICATIONS INFORMATION  
Inductor Selection  
capacitorplacedontheCAPnodeisrecommendedtolter  
the inductor current while a 0.1μF to 1μF capacitor placed  
Several inductors that work well with the LT8415 are listed  
inTable1. Thetablesarenotcomplete, andtherearemany  
othermanufacturersanddevicesthatcanbeused.Consult  
each manufacturer for more detailed information and for  
their entire selection of related parts, as many different  
sizes and shapes are available.  
on the V  
node will give excellent transient response  
OUT  
and stability. To make the V pin less sensitive to noise,  
REF  
putting a capacitor on the V pin is recommended, but  
REF  
not required. A 47nF to 220nF 0402 capacitor will be suf-  
ficient. See also Soft-Start section for more information  
aboutacapacitoracrossV .Table2showsalistofseveral  
REF  
Inductorswithavalueof4Horhigherarerecommended  
for most LT8415 designs. Inductors with low core losses  
and small DCR (copper wire resistance) are good choices  
for LT8415 applications. For full output power, the induc-  
tor should have a saturation current rating higher than  
the peak inductor current. The peak inductor current can  
be calculated as:  
capacitor manufacturers. Consult the manufacturers for  
more detailed information and for their entire selection  
of related parts.  
Table 2. Recommended Ceramic Capacitor Manufacturers  
MANUFACTURER  
Taiyo Yuden  
Murata  
PHONE  
WEBSITE  
(408) 573-4150  
(814) 237-1431  
(843) 448-9411  
(408)986-0424  
(847) 803-6100  
www.t-yuden.com  
www.murata.com  
www.avxcorp.com  
www.kemet.com  
www.tdk.com  
AVX  
V 150 10−  
6
IN  
Kemet  
IPK = ILIMIT  
+
mA  
L
TDK  
where the worst case I  
is 30mA. L is the inductance  
LIMIT  
Setting Output Voltage  
The output voltage is set by the FBP pin voltage, and V  
value in Henrys and V is the input voltage to the boost  
IN  
circuit.  
OUT  
is equal to 31.85 • V  
when the output is regulated,  
Table 1. Recommended Inductors for LT8415  
FBP  
shown in Figure 1. Since the V  
pin provides a good  
L
DCR  
SIZE  
(mm)  
REF  
PART  
(ꢀH) (ꢀH)  
VENDOR  
reference (~1.235V), the FBP voltage can be easily set by  
LQH2MCN680K02 68  
LQH32CN101K53 100  
6.6  
3.5  
Murata  
www.murata.com  
2.0 × 1.6 × 0.9  
3.2 × 2.5 × 2.0  
a resistor divider from the V pin to ground. The series  
REF  
resistanceofthisresistordividershouldbekeptlargerthan  
DO2010-683ML  
DO2010-104ML  
LPS3015-104ML  
LPS3015-154ML  
68  
8.8  
15.7  
3.4  
6.1  
Coilcraft  
www.coilcraft.com  
2.0 × 2.0 × 1.0  
2.0 × 2.0 × 1.0  
3.0 × 3.0 × 1.4  
3.0 × 3.0 × 1.4  
200KΩ to prevent loading down the V pin. The FBP pin  
REF  
100  
100  
150  
can also be biased directly by an external reference. For  
over voltage protection, the output voltage is limited to  
40V. Therefore, if V  
is higher than 1.235V, the output  
FBP  
voltage will stay at 40V.  
Capacitor Selection  
50  
The small size and low ESR of ceramic capacitors make  
them suitable for most LT8415 applications. X5R and  
X7R types are recommended because they retain their  
capacitance over wider voltage and temperature ranges  
than other types such as Y5V or Z5U. A 2.2μF or higher  
input capacitor and a 0.1μF to 1μF output capacitor are  
sufficient for most applications. Always use a capacitor  
with a sufficient voltage rating. Many ceramic capacitors  
rated at 0.1μF to 1μF have greatly reduced capacitance  
when bias voltages are applied. Be sure to check actual  
capacitanceatthedesiredoutputvoltage.Generallya0603  
or 0805 size capacitor will be adequate. A 0.1μF to 1μF  
40  
30  
20  
10  
0
0
0.5  
1
1.5  
2
FBP VOLTAGE (V)  
8415 F01  
Figure 1. FBP to VOUT Transfer Curve  
8415f  
8
LT8415  
APPLICATIONS INFORMATION  
Maximum Output Load Current  
Inrush Current  
ThemaximumoutputcurrentofaparticularLT8415circuit  
is a function of several circuit variables. The following  
method can be helpful in predicting the maximum load  
current for a given circuit:  
WhenV issteppedfromgroundtotheoperatingvoltage  
CC  
while the output capacitor is discharged, a high level of  
inrushcurrentmayowthroughtheinductorandSchottky  
diode into the output capacitor. Conditions that increase  
inrush current include a larger more abrupt voltage step  
Step 1: Calculate the peak inductor current:  
at V , a larger output capacitor tied to the CAP pin and  
CC  
an inductor with a low saturation current. While the chip is  
designed to handle such events, the inrush current should  
not be allowed to exceed 0.3A. For circuits that use output  
capacitor values within the recommended range and have  
input voltages of less than 6V, inrush current remains low,  
posing no hazard to the device. In cases where there are  
V 150 10−  
6
IN  
IPK = ILIMIT  
where I  
+
mA  
L
is 25mA. L is the inductance value in Henrys  
and V is the input voltage to the boost circuit.  
LIMIT  
IN  
Step 2: Calculate the inductor ripple current:  
large steps at V (more than 6V) and/or a large capacitor  
CC  
is used at the CAP pin, inrush current should be measured  
to ensure safe operation.  
(VOUT + 1V )200 10−  
6
IN  
L
IRIPPLE  
=
mA  
Soft-Start  
where V  
is the desired output voltage. If the inductor  
OUT  
TheLT8415containsasoft-startcircuittolimitpeakswitch  
currents during start-up. High start-up current is inherent  
in switching regulators in general since the feedback loop  
ripple current is less than the peak current, then the circuit  
will only operate in discontinuous conduction mode. The  
inductor value should be increased so that I  
< I .  
RIPPLE  
PK  
is saturated due to V  
being far from its final value. The  
OUT  
An application circuit can be designed to operate only in  
discontinuous mode, but the output current capability  
will be reduced.  
regulator tries to charge the output capacitor as quickly  
as possible, which results in large peak current.  
WhentheFBPpinvoltageisgeneratedbyaresistordivider  
Step 3: Calculate the average input current:  
from the V  
pin, the start-up current can be limited by  
REF  
IRIPPLE  
connecting an external capacitor (typically 47nF to 220nF)  
IIN(AVG) = IPK  
mA  
to the V pin. When the part is brought out of shutdown,  
2
REF  
thiscapacitorisrstdischargedforabout7s(providing  
Step 4: Calculate the nominal output current:  
IN(AVG) V 0.7  
protection against pin glitches and slow ramping), then  
an internal 10μA current source pulls the V pin slowly  
REF  
I
IN  
IOUT(NOM)  
=
mA  
to 1.235V. Since the V  
voltage is set by the FBP pin  
voltage will also slowly increase to the  
OUT  
VOUT  
Step 5: Derate output current:  
= I 0.8  
voltage, the V  
OUT  
regulated voltage, which results in lower peak inductor  
current. The voltage ramp rate on the pin can be set by  
I
OUT  
OUT(NOM)  
the value of the V pin capacitor.  
REF  
For low output voltages the output current capability will  
beincreased. Whenusingoutputdisconnect(loadcurrent  
Output Disconnect  
taken from V ), these higher currents will cause the  
OUT  
The LT8415 has an output disconnect PMOS that blocks  
the load from the input during shutdown. The maximum  
current through the PMOS is limited to 19mA by circuitry  
inside the chip, helping the chip survive output shorts.  
drop in the PMOS switch to be higher resulting in lower  
output current capability than predicted by the preceding  
equations.  
8415f  
9
LT8415  
APPLICATIONS INFORMATION  
If the application doesn’t require the output disconnect  
Board Layout Considerations  
function, the CAP and V  
pin can be shorted, and higher  
OUT  
As with all switching regulators, careful attention must  
be paid to the PCB layout and component placement. To  
maximize efficiency, switch rise and fall times are made  
as short as possible. To prevent electromagnetic interfer-  
ence (EMI) problems, proper layout of the high frequency  
switchingpathisessential.ThevoltagesignaloftheSWpin  
hassharprisingandfallingedges.Minimizethelengthand  
area of all traces connected to the SW pin and always use  
a ground plane under the switching regulator to minimize  
power converter efficiency can be achieved.  
SHDN Pin Comparator and Hysteresis Current  
An internal comparator compares the SHDN pin voltage  
with an internal voltage reference (~1.3V) which gives a  
preciseturn-onvoltagelevel.Theinternalhysteresisofthis  
turn-onvoltageisabout60mV.Whenthechipisturnedon,  
and the SHDN pin voltage is close to this turn-on voltage,  
0.1μA current flows out of the SHDN pin. This current is  
calledSHDNpinhysteresiscurrent, andwillgoawaywhen  
the chip is off. By connecting the external resistors as in  
Figure 2, a user-programmable enable voltage function  
can be realized.  
interplane coupling. In addition, the FBP pin and V pin  
REF  
are sensitive to noise. Minimizing the length and area of all  
traces to these two pins is recommended. Recommended  
component placement is shown in Figure 3.  
V
SHDN  
IN  
The turn-on voltage for the configuration is:  
1.30 (1 + R1/R2)  
SHDN  
FBP  
and the turn-off voltage is:  
GND  
V
V
CC  
REF  
–7  
–7  
(1.24 – R3 10 ) (1 + R1/R2) – R1 10  
CAP  
GND  
SW  
IN1  
IN2  
where R1, R2 and R3 are resistance value in Ω.  
V
OUT  
OUT1  
OUT2  
ENABLE VOLTAGE  
R1  
R3  
CONNECT TO  
SHDN PIN  
8410 F03  
R2  
IN2 IN1  
OUT1 OUT2  
VIAS TO GROUND PLANE REQUIRED  
TO IMPROVE THERMAL PERFORMANCE  
Figure 2. Programming Enable Voltage by Using External  
Resistors  
VIAS FOR CAP AND V  
SECOND METAL LAYER, CAPACITOR GROUNDS MUST  
BE RETURNED DIRECTLY TO IC GROUND  
GROUND RETURN THROUGH  
OUT  
Figure 3. Recommended Board Layout  
Half-Bridge Control Signals  
The half-bridge is controlled by the IN1 and IN2 pins. The  
IN1 and IN2 pins should be driven with a logic signal.  
When the chip is enabled, the OUT1 and OUT2 voltages  
are equal to V  
IN1 and IN2 are driven higher than 1V,  
OUT  
and they are near GND when IN1 and IN2 are driven below  
0.3V. Do not drive the IN1 or IN2 pins between 0.3V to  
1V for more than 20ꢀs since this will leave OUT1 or OUT2  
in an uncertain state and may also cause shoot-through  
current.  
8415f  
10  
LT8415  
TYPICAL APPLICATIONS  
Drive External Capacitors to 34V/0V with the LT8415  
Response Driving External Capacitors  
L1  
100ꢀH  
V
IN  
2.5V to 16V  
OUT2 VOLTAGE  
20/DIV  
C2  
22nF  
C1  
2.2ꢀF  
SW  
CAP  
V
V
CC OUT  
LT8415  
V
OUT  
= 34V  
IN2 VOLTAGE  
2V/DIV  
C3  
0.1ꢀF*  
IN 1  
IN 2  
OUT 1  
OUT 2  
LOGIC  
34V/0V  
LEVEL  
OUT1 VOLTAGE  
20/DIV  
C
OUT1  
V
REF  
CHIP  
ENABLE  
SHDN  
34V/0V  
OUT2  
R1  
137K  
C
IN1 VOLTAGE  
2V/DIV  
GND  
FBP  
R2  
887K  
C4  
0.1ꢀF  
8415 TA02  
C
C
= 1nF  
= 200pF  
20ꢀs/DIV  
OUT1  
OUT2  
C1: 2.2ꢀF, 16V, X5R, 0603  
C2: 22nF, 100V, X5R, 0603  
C3: 0.1ꢀF, 100V, X5R, 0603*  
C4: 0.1ꢀF, 16V, X7R, 0402  
8415 TA03  
L1: COILCRAFT DO2010-104ML  
* HIGHER CAPACITANCE VALUE IS  
REQUIRED FOR C3 WHEN THE VIN IS  
HIGHER THAT 8V  
RESISTOR DIVIDER  
FROM V  
MAXIMUM OUTPUT CURRENT (mA)  
REF  
V
(V)  
R1 (kΩ)/R2 (kΩ)  
V
IN  
= 2.8V  
V
IN  
= 3.6V  
0.7  
V
IN  
= 5.0V  
1.1  
V
IN  
= 12V  
3.6  
4.4  
5.5  
7.2  
9.7  
14  
OUT  
40  
NA  
0.5  
0.7  
0.8  
1.0  
1.4  
1.6  
3.3  
8.0  
35  
30  
25  
20  
15  
10  
5
110/887  
237/768  
365/634  
487/511  
619/383  
750/255  
866/127  
0.9  
1.4  
1.0  
1.5  
1.4  
2.1  
1.9  
2.9  
2.4  
4.0  
4.6  
7.0  
NA  
11  
17  
NA  
PACKAGE DESCRIPTION  
DDB Package  
12-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1723 Rev Ø)  
R = 0.115  
TYP  
7
0.64 0.05  
(2 SIDES)  
0.40 0.10  
12  
3.00 0.10  
(2 SIDES)  
R = 0.05  
TYP  
0.70 0.05  
2.55 0.05  
1.15 0.05  
2.00 0.10  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
PIN 1  
R = 0.20 OR  
0.25 s 45°  
CHAMFER  
(SEE NOTE 6)  
0.64 0.10  
(2 SIDES)  
PACKAGE  
OUTLINE  
6
1
(DDB12) DFN 0106 REV  
Ø
0.23 0.05  
0.25 0.05  
0.75 0.05  
0.200 REF  
0.45 BSC  
0.45 BSC  
2.39 0.10  
(2 SIDES)  
2.39 0.05  
(2 SIDES)  
0 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
8415f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LT8415  
TYPICAL APPLICATION  
L1  
100ꢀH  
V
IN  
2.5V to 16V  
C2  
0.1ꢀF  
C1  
2.2ꢀF  
SW  
CAP  
V
V
OUT  
CC  
V
OUT  
= 16V  
C3  
0.1ꢀF*  
LT8415  
IN 1  
IN 2  
OUT 1  
OUT 2  
LOGIC  
LEVEL  
CHIP  
16V/0V  
C
OUT1  
V
REF  
SHDN  
ENABLE  
16V/0V  
604K  
412K  
C
OUT2  
GND  
FBP  
C4  
0.1ꢀF  
C1: 2.2ꢀF, 16V, X5R, 0603  
C2: 0.1ꢀF, 25V, X5R, 0603  
C3: 0.1ꢀF, 25V, X5R, 0603*  
C4: 0.1ꢀF, 16V, X7R, 0402  
L1: MURATA LQH32CN101K53  
8415 TA04  
* HIGHER CAPACITANCE VALUE IS REQUIRED FOR C3 WHEN THE V IS HIGHER THAT 8V  
IN  
Figure 4. Drive External Capacitors to 16V/0V with the LT8415  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
: 2.6V to 16V, V  
LT1930/LT1930A  
1A (I ), 1.2MHz/2.2MHz, High Efficiency Step-Up DC/DC  
V
= 34V, I = 4.2mA/5.5mA, I < 1ꢀA,  
Q SD  
SW  
IN  
OUT(MAX)  
Converters  
ThinSOT Package  
LT1945 (Dual)  
LT1946/LT1946A  
LT3467/LT3467A  
LT3464  
Dual Output, Boost/Inverter, 350mA (I ), Constant Off-  
V
: 1.2V to 15V, V  
= 34V, I = 40ꢀA, I < 1ꢀA, 10-Lead  
Q SD  
SW  
IN  
OUT(MAX)  
Time, High Efficiency Step-Up DC/DC Converter  
MS Package  
1.5A (I ), 1.2MHz/2.7MHz, High Efficiency Step-Up DC/DC  
V
: 2.45V to 16V, V  
= 34V, I = 3.2mA, I < 1ꢀA, 8-Lead  
OUT(MAX) Q SD  
SW  
IN  
Converters  
MS Package  
1.1A (I ), 1.3MHz/2.1MHz, High Efficiency Step-Up DC/DC  
V
: 2.4V to 16V, V  
= 40V, I = 1.2mA, I < 1ꢀA, ThinSOT  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
Converters with Soft-Start  
Package  
85mA (I ), High Efficiency Step-Up DC/DC Converter with  
V
: 2.3V to 10V, V  
= 34V, I = 25ꢀA, I < 1ꢀA, ThinSOT  
Q SD  
SW  
IN  
Integrated Schottky and PNP Disconnect  
Package  
LT3463/LT3463A  
Dual Output, Boost/Inverter, 250mA (I ), Constant  
V
: 2.3V to 15V, V  
=
=
40V, I = 40ꢀA, I < 1ꢀA, DFN  
Q SD  
SW  
IN  
Off-Time, High Efficiency Step-Up DC/DC Converters with  
Integrated Schottkys  
Package  
LT3471  
Dual Output, Boost/Inverter, 1.3A (I ), High Efficiency  
V
: 2.4V to 16V, V  
40V, I = 2.5mA, I < 1ꢀA, DFN  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
Boost-Inverting DC/DC Converter  
Package  
LT3473/LT3473A  
LT3494/LT3494A  
LT3580  
1A (I ), 1.2MHz, High Efficiency Step-Up DC/DC Converter  
V
: 2.2V to 16V, V  
= 36V, I = 100ꢀA, I < 1ꢀA, DFN  
Q SD  
SW  
IN  
with integrated Schottky Diode and Output Disconnect  
Package  
180mA/350mA (I ), High Efficiency, Low Noise Step-Up  
V
: 2.1V to 16V, V  
= 40V, I = 65ꢀA, I < 1ꢀA, DFN  
Q SD  
SW  
IN  
DC/DC Converter with Output Disconnect  
Package  
2A, 40V, 2.5MHz Boost DC/DC Converter  
V
: 2.5V to 32V, V  
= 40V, I = 1mA, I <1μA, MS8E  
Q SD  
IN  
3mm × 3mm DFN-8 Package  
LT3495/LT3495B/  
650mA/350mA (I ), High Efficiency, Low Noise Step-Up  
V
: 2.3V to 16V, V  
= 40V, I = 60ꢀA, I < 1ꢀA, DFN  
Q SD  
SW  
IN  
OUT(MAX)  
LT3495-1/LT3495B-1 DC/DC Converter with Output Disconnect  
Package  
LT8410/LT8410-1  
25mA/8mA (I ), High Efficiency, Low Noise Step-Up DC/DC  
V
: 2.3V to 16V, V  
= 40V, I = 8.5μA, I < 1μA, DFN  
Q SD  
SW  
IN  
OUT(MAX)  
Converter with Output Disconnect  
Package  
8415f  
LT 0409 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY