LT8570 [Linear]

Boost/SEPIC/Inverting DC/DC Converter with 65V Switch, Soft-Start and Synchronization;
LT8570
型号: LT8570
厂家: Linear    Linear
描述:

Boost/SEPIC/Inverting DC/DC Converter with 65V Switch, Soft-Start and Synchronization

文件: 总34页 (文件大小:663K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8570/LT8570-1  
Boost/SEPIC/Inverting  
DC/DC Converter with 65V  
Switch, Soft-Start and Synchronization  
FeaTures  
DescripTion  
The LT®8570 and LT8570-1 are PWM DC/DC converters.  
n
65V Power Switch  
n
Current Limit Options of 0.5A (LT8570) or 0.25A  
(LT8570-1)  
The LT8570 contains a 0.5A, 65V power switch, while  
the LT8570-1 contains a 0.25A, 65V power switch. The  
LT8570andLT8570-1canbeconfiguredaseitheraboost,  
SEPIC or inverting converter.  
n
n
n
n
Adjustable Switching Frequency  
Single Feedback Resistor Sets V  
OUT  
Synchronizable to External Clock  
High Gain SHDN Pin Accepts Slowly Varying  
Input Signals  
The LT8570/LT8570-1 have an adjustable oscillator, set  
by a resistor from the RT pin to ground. Additionally, the  
LT8570/LT8570-1 can be synchronized to an external  
clock. The switching frequency of the part may be free  
running or synchronized, and can be set between 200kHz  
and 1.5MHz.  
n
n
n
n
Wide Input Voltage Range: 2.55V to 40V  
Low V  
Switch  
CESAT  
Integrated Soft-Start Function  
Easily Configurable as a Boost, SEPIC, or Inverting  
Converter  
The LT8570/LT8570-1 also feature innovative SHDN pin  
circuitry that allows for slowly varying input signals and  
an adjustable undervoltage lockout function.  
n
n
n
User Configurable Undervoltage Lockout (UVLO)  
Pin Compatible with LT3580 and LT8580  
Tiny Thermally Enhanced 8-Lead 3mm × 3mm DFN  
and 8-Lead MSOP Packages  
Additional features such as frequency foldback and soft-  
start are integrated. The LT8570/LT8570-1 are available  
in tiny thermally enhanced 3mm × 3mm 8-lead DFN and  
8-lead MSOP packages.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents, including 7579816.  
applicaTions  
n
VFD Bias Supplies  
n
TFT-LCD Bias Supplies  
n
GPS Receivers  
DSL Modems  
Local Power Supply  
n
n
Typical applicaTion  
Efficiency and Power Loss  
1.5MHz, 5V to 12V Boost Converter  
100  
90  
80  
70  
60  
50  
40  
30  
20  
320  
280  
240  
200  
160  
120  
80  
22µH  
V
OUT  
V
IN  
12V  
5V  
125mA  
10k  
V
IN  
SW  
FBX  
VC  
130k  
SHDN  
2.2µF  
LT8570  
1µF  
SYNC  
RT  
6.19k  
2.2nF  
GND SS  
47pF  
EFFICIENCY  
40  
POWER LOSS  
56.2k  
0.1µF  
0
125  
8570 TA01a  
0
25  
50  
LOAD CURRENT (mA)  
75  
100  
8570 TA01b  
85701f  
1
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
absoluTe MaxiMuM raTings (Note 1)  
V Voltage.................................................0.3V to 40V  
SYNC Voltage............................................0.3V to 5.5V  
Operating Junction Temperature Range  
IN  
SW Voltage ................................................0.4V to 65V  
RT Voltage ...................................................0.3V to 5V  
SS Voltage ................................................0.3V to 2.5V  
FBX Voltage.................................................................5V  
FBX Current............................................................1mA  
VC Voltage ...................................................0.3V to 2V  
SHDN Voltage ............................................0.3V to 40V  
LT8570E, LT8570-1E (Notes 2, 5) ......40°C to 125°C  
LT8570I, LT8570-1I (Notes 2, 5) ........40°C to 125°C  
Storage Temperature Range ..............–65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
MS8E Package Only..........................................300°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
FBX  
VC  
1
2
3
4
8
7
6
5
SYNC  
SS  
FBX  
VC  
1
2
3
4
8 SYNC  
7 SS  
9
GND  
9
GND  
6
5
V
IN  
RT  
SHDN  
V
IN  
RT  
SW  
SW  
SHDN  
MS8E PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
θ
= 35°C/W TO 40°C/W  
JA  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
θ
= 43°C/W  
JA  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LGRY  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT8570EDD#PBF  
LT8570EDD#TRPBF  
LT8570IDD#TRPBF  
LT8570EMS8E#TRPBF  
LT8570IMS8E#TRPBF  
LT8570EDD-1#TRPBF  
LT8570IDD-1#TRPBF  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead Plastic MSOP  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
LT8570IDD#PBF  
LGRY  
LT8570EMS8E#PBF  
LT8570IMS8E#PBF  
LT8570EDD-1#PBF  
LT8570IDD-1#PBF  
LT8570EMS8E-1#PBF  
LT8570IMS8E-1#PBF  
LTGRZ  
LTGRZ  
8-Lead Plastic MSOP  
LGSB  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead Plastic MSOP  
LGSB  
LT8570EMS8E-1#TRPBF LTGSC  
LT8570IMS8E-1#TRPBF LTGSC  
8-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
85701f  
2
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 5V, VSHDN = VIN unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
2.55  
1.185  
–3  
81  
81  
TYP  
MAX  
40  
1.220  
12  
85  
86  
UNITS  
V
l
l
l
l
l
Operating Voltage Range  
Positive Feedback Voltage  
Negative Feedback Voltage  
Positive FBX Pin Bias Current  
Negative FBX Pin Bias Current  
Error Amplifier Transconductance  
Error Amplifier Voltage Gain  
Quiescent Current  
1.204  
3
83.3  
83.3  
200  
60  
1.2  
0
0.01  
V
mV  
µA  
V
V
= Positive Feedback Voltage, Current Into Pin  
= Negative Feedback Voltage, Current Out of Pin  
FBX  
µA  
FBX  
µmhos  
V/V  
mA  
µA  
V
V
= 2.5V, Not Switching  
= 0V  
1.7  
1
0.05  
SHDN  
Quiescent Current in Shutdown  
Reference Line Regulation  
SHDN  
2.55V ≤ V ≤ 40V  
%/V  
IN  
l
l
Switching Frequency, f  
R = 56.2k  
T
1.23  
165  
1.5  
200  
1.77  
235  
MHz  
kHz  
OSC  
T
R = 422k  
Switching Frequency in Foldback  
Switching Frequency Set Range  
SYNC High Level for Synchronization  
SYNC Low Level for Synchronization  
SYNC Clock Pulse Duty Cycle  
Compared to Normal f  
SYNCing or Free Running  
1/6  
Ratio  
kHz  
V
OSC  
l
l
l
200  
1.3  
1500  
0.4  
65  
V
%
V
SYNC  
= 0V to 2V  
35  
Recommended Minimum SYNC Ratio  
SYNC OSC  
3/4  
f
/f  
Minimum Off-Time  
Minimum On-Time  
Switch Current Limit  
100  
100  
0.75  
0.5  
0.4  
ns  
ns  
A
A
A
l
l
l
Minimum Duty Cycle (Note 3), LT8570  
Maximum Duty Cycle (Notes 3, 4), LT8570, f  
Maximum Duty Cycle (Notes 3, 4), LT8570, f  
0.6  
0.27  
0.15  
1
0.85  
0.8  
= 1.5MHz  
= 200kHz  
OSC  
OSC  
l
l
l
Minimum Duty Cycle (Note 3), LT8570-1  
Maximum Duty Cycle (Notes 3, 4), LT8570-1, f  
Maximum Duty Cycle (Notes 3, 4), LT8570-1, f  
0.3  
0.15  
0.075  
0.375  
0.25  
0.2  
0.5  
0.43  
0.4  
A
A
A
= 1.5MHz  
= 200kHz  
OSC  
OSC  
Switch V  
I
I
V
V
= 0.4A (LT8570)  
= 0.2A (LT8570-1)  
250  
250  
0.01  
6
mV  
mV  
µA  
CESAT  
SW  
SW  
Switch Leakage Current  
Soft-Start Charging Current  
= 5V  
= 0.5V  
1
8
SW  
SS  
l
4
µA  
l
l
SHDN Minimum Input  
Voltage High  
Active Mode, SHDN Rising  
Active Mode, SHDN Falling  
1.23  
1.21  
1.31  
1.27  
1.4  
1.33  
V
V
SHDN Minimum Input Voltage Hysteresis  
SHDN Input Voltage Low  
40  
mV  
V
l
Shutdown Mode  
0.3  
SHDN Pin Bias Current  
V
SHDN  
V
SHDN  
V
SHDN  
= 3V  
= 1.3V  
= 0V  
44  
12  
0
56  
15  
0.1  
µA  
µA  
µA  
9
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
junction temperature range. Operating lifetime is derated at junction  
temperatures greater than 125°C.  
Note 3: Current limit guaranteed by design and/or correlation to static test.  
Note 4: Current limit measured at equivalent of listed switching frequency.  
Note 2: The LT8570E/LT8570-1E are guaranteed to meet performance  
specifications from 0°C to 125°C junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls. The  
LT8570I/LT8570-1I are guaranteed over the full –40°C to 125°C operating  
Note 5: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
85701f  
3
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
Typical perForMance characTerisTics TA = 25°C, unless otherwise specified  
Maximum Switch Current vs SS  
Switch Current Limit vs Duty Cycle  
Switch Saturation Voltage  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.00  
0.75  
0.50  
0.25  
0
700  
600  
500  
400  
300  
200  
100  
0
LT8570  
LT8570-1  
LT8570, 1.5MHz  
LT8570, 200kHz  
LT8570  
LT8570-1  
LT8570-1, 1.5MHz  
LT8570-1, 200kHz  
0
0.4  
0.6  
0.8  
1
1.2  
0.2  
60 70  
10 20 30 40 50  
DUTY CYCLE (%)  
80 90  
0
0.2  
0.4  
0.6  
0.8  
SS VOLTAGE (V)  
SWITCH CURRENT (A)  
8570 G03  
8570 G01  
8570 G02  
Switch Current Limit  
vs Temperature  
Positive and Negative Output  
Voltage Regulation  
1.0  
0.8  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
1.175  
1.170  
30  
25  
20  
15  
10  
5
0.6  
0.4  
0.2  
0
–5  
–10  
–15  
–20  
LT8570  
LT8570-1  
0.0  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
8570 G04  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
8570 G05  
Positive and Negative FBX Current  
at Output Voltage Regulation  
Oscillator Frequency  
86  
85  
84  
83  
82  
81  
80  
86  
85  
84  
83  
82  
81  
80  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
= 56.2k  
T
R
T
= 422k  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
25 50 75  
125  
100 150  
0
TEMPERATURE (°C)  
8570 G06  
8570 G07  
85701f  
4
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
Typical perForMance characTerisTics TA = 25°C, unless otherwise specified  
Oscillator Frequency During  
Soft-Start  
Internal UVLO  
SHDN Pin Current  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
30  
25  
1
125°C  
25°C  
–40°C  
20  
15  
1/2  
1/3  
1/4  
1/5  
1/6  
10  
5
INVERTING  
NONINVERTING  
CONFIGURATIONS CONFIGURATIONS  
0
0
0
0.2 0.4 0.6 0.8  
FBX VOLTAGE (V)  
1
1.2  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
SHDN VOLTAGE (V)  
8570 G08  
8570 G09  
8570 G10  
SHDN Pin Current  
Active/Lockout Threshold  
Minimum On-Time vs Temperature  
280  
240  
200  
160  
120  
80  
400  
350  
300  
250  
200  
150  
100  
50  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
125°C  
25°C  
–40°C  
RECOMMENDED MINIMUM ON-TIME  
SHDN RISING  
SHDN FALLING  
MEASURED MINIMUM ON-TIME  
40  
0
0
0
5
10 15 20 25 30 35 40  
SHDN VOLTAGE (V)  
8570 G11  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
8570 G13  
8570 G12  
85701f  
5
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
pin FuncTions  
FBX (Pin 1): Positive and Negative Feedback Pin. For a  
RT (Pin 6): Timing Resistor Pin. Adjusts the switching  
frequency. Place a resistor from this pin to ground to set  
the frequency to a fixed free running level. Do not float  
this pin.  
noninverting or inverting converter, tie a resistor from  
the FBX pin to V  
according to the following equations:  
OUT  
V
1.204V  
(
)
OUT  
RFBX  
=
=
; Noninverting Converter  
SS(Pin7):Soft-StartPin.Placeasoft-startcapacitorhere.  
Upon start-up, the SS pin will be charged by a (nominally)  
280k resistor to about 2.1V.  
83.3µA  
+ 3mV  
V
(
)
; InvertingConverter  
OUT  
RFBX  
83.3µA  
SYNC (Pin 8): To synchronize the switching frequency to  
an outside clock, simply drive this pin with a clock. The  
high voltage level of the clock needs to exceed 1.3V, and  
the low level should be less 0.4V. Drive this pin to less  
than 0.4V to revert to the internal free-running clock. See  
theApplicationsInformationsectionformoreinformation.  
VC (Pin 2): Error Amplifier Output Pin. Tie external com-  
pensation network to this pin.  
V (Pin 3): Input Supply Pin. Must be locally bypassed.  
IN  
SW (Pin 4): Switch Pin. This is the collector of the internal  
NPN Power switch. Minimize the metal trace area connec-  
ted to this pin to minimize EMI.  
GND (Exposed Pad Pin 9): Ground. Exposed pad must  
be soldered directly to local ground plane.  
SHDN (Pin 5): Shutdown Pin. In conjunction with the  
UVLO (undervoltage lockout) circuit, this pin is used  
to enable/disable the chip and restart the soft-start  
sequence. Drive below 1.21V to disable the chip. Drive  
above 1.40V to activate the chip and restart the soft-start  
sequence. Do not float this pin.  
85701f  
6
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
block DiagraM  
R
C
V
IN  
C
SS  
C
C
C
IN  
7
2
50k  
SS  
VC  
SHDN  
5
+
DISCHARGE  
DETECT  
L1  
1.3V  
280k  
D1  
SW  
UVLO  
SR2  
VC  
I
SOFT-  
START  
4
V
OUT  
R
COMPARATOR  
LIMIT  
SR1  
S
Q2  
Q
+
DRIVER  
C1  
V
IN  
S
A3  
R
Q
Q1  
1.204V  
REFERENCE  
3
+
+
R
FBX  
0.04Ω (LT8570)  
14.5k  
A4  
A1  
A2  
0.08Ω (LT8570-1)  
SLOPE  
COMPENSATION  
GND  
FBX  
9
1
+
÷N  
FREQUENCY  
FOLDBACK  
ADJUSTABLE  
OSCILLATOR  
14.5k  
SYNC  
BLOCK  
SYNC  
RT  
8
6
R
T
8570 BD  
85701f  
7
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
operaTion  
The LT8570/LT8570-1 use a constant-frequency, current  
mode control scheme to provide excellent line and load  
regulation. Refer to the Block Diagram for the following  
description of the part’s operation. At the start of each  
oscillator cycle, the SR latch (SR1) is set, which turns on  
the power switch, Q1. The switch current flows through  
the internal current sense resistor, generating a voltage  
proportional to the switch current. This voltage (amplified  
by A4) is added to a stabilizing ramp and the resulting sum  
isfedintothepositiveterminalofthePWM comparatorA3.  
Whenthisvoltageexceedsthelevelatthenegativeinputof  
A3, the SR latch is reset, turning off the power switch. The  
level at the negative input of A3 (VC pin) is set by the error  
amplifier A1 (or A2) and is simply an amplified version of  
the difference between the feedback voltage (FBX pin) and  
the reference voltage (1.204V or 3mV, depending on the  
configuration). In this manner, the error amplifier sets the  
correct peak current level to keep the output in regulation.  
down to 3mV by the R  
to FBX. Amplifier A1 becomes inactive and amplifier A2  
performs the noninverting amplification from FBX to VC.  
resistor connected from V  
FBX OUT  
SEPIC Topology  
As shown in Figure 1, the LT8570/LT8570-1 can be  
configured as a SEPIC (single-ended primary inductance  
converter). This topology allows for the input to be higher,  
equal, or lower than the desired output voltage. Output  
disconnect is inherently built into the SEPIC topology,  
meaning no DC path exists between the input and output.  
This is useful for applications requiring the output to be  
disconnected from the input source when the circuit is  
in shutdown.  
Inverting Topology  
The LT8570/LT8570-1 can also work in a dual induc-  
tor inverting topology, as shown in Figure 2. The part’s  
unique feedback pin allows for the inverting topology to  
be built by simply changing the connection of external  
components. This solution results in very low output  
voltage ripple due to the inductor L2 in series with the  
output. Abrupt changes in output capacitor current are  
eliminated because the output inductor delivers current  
to the output during both the off-time and the on-time of  
the LT8570/LT8570-1 switch.  
TheLT8570/LT8570-1haveanFBXpinarchitecturethatcan  
beusedforeithernoninvertingorinvertingconfigurations.  
When configured as a noninverting converter, the FBX pin  
is pulled up to the internal bias voltage of 1.204V by the  
R
FBX  
resistor connected from V  
to FBX. Amplifier A2  
OUT  
becomes inactive and amplifier A1 performs the inverting  
amplificationfromFBXtoVC.WhentheLT8570/LT8570-1  
are in an inverting configuration, the FBX pin is pulled  
C2  
C2  
L1  
D1  
L1  
L2  
V
V
V
> V  
= V  
< V  
IN  
OUT  
OR  
OUT  
OR  
V
IN  
V
V
OUT  
OUT  
IN  
IN  
V
SW  
V
SW  
IN  
IN  
L2  
D1  
+
+
OUT  
C1  
LT8570/LT8570-1  
C1  
LT8570/LT8570-1  
R1  
R1  
SHDN  
RT  
SYNC  
FBX  
SHUTDOWN  
SHDN  
RT  
FBX  
SHUTDOWN  
+
GND  
VC  
SS  
GND  
VC  
SS  
C3  
C3  
+
SYNC  
R
C
R
C
R
T
R
T
C
SS  
C
SS  
C
C
C
C
8570 F01  
8570 F02  
Figure 1. SEPIC Topology Allows for the Input to Span  
the Output Voltage. Coupled or Uncoupled Inductors  
Can Be Used. Follow Noted Phasing if Coupled  
Figure 2. Dual Inductor Inverting Topology Results in  
Low Output Ripple. Coupled or Uncoupled Inductors  
Can Be Used. Follow Noted Phasing if Coupled  
85701f  
8
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
operaTion  
Start-Up Operation  
duty cycle that the part can achieve thus allowing better  
control of the switch current during start-up. When the  
FBXvoltageispulledoutsideofthisrange,theswitching  
frequency returns to normal.  
Several functions are provided to enable a very clean  
start-up for the LT8570/LT8570-1.  
•ꢀ First, the SHDN pin voltage is monitored by an internal  
voltage reference to give a precise turn-on voltage level.  
Anexternalresistor(orresistordivider)canbeconnected  
from the input power supply to the SHDN pin to provide  
a user-programmable undervoltage lockout function.  
Current Limit and Thermal Shutdown Operation  
The LT8570/LT8570-1 have a current limit circuit not  
shown in the Block Diagram. The switch current is con-  
stantlymonitoredandnotallowedtoexceedthemaximum  
switch current at a given duty cycle (see the Electrical  
Characteristics table). If the switch current reaches this  
value, the SR latch (SR1) is reset regardless of the state  
of the comparator (A1/A2). Also, not shown in the Block  
Diagramisthethermalshutdowncircuit.Ifthetemperature  
of the part exceeds approximately 165°C, the SR2 latch is  
set regardless of the state of the amplifier (A1/A2). When  
the part temperature falls below approximately 160°C, a  
full soft-start cycle will then be initiated. The current limit  
and thermal shutdown circuits protect the power switch  
as well as the external components connected to the  
LT8570/LT8570-1.  
•ꢀ Second, the soft-start circuitry provides for a gradual  
ramp-up of the switch current. When the part is brought  
out of shutdown, the external SS capacitor is first  
discharged (providing protection against SHDN pin  
glitches and slow ramping), then an integrated 280k  
resistor pulls the SS pin up to ~2.1V. By connecting an  
external capacitor to the SS pin, the voltage ramp rate  
on the pin can be set. Typical values for the soft-start  
capacitor range from 100nF to 1µF.  
•ꢀ Finally,thefrequencyfoldbackcircuitreducestheswitch-  
ing frequency when the FBX pin is in a nominal range  
of 300mV to 920mV. This feature reduces the minimum  
85701f  
9
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
Setting Output Voltage  
For the SEPIC or dual inductor inverting topology (see  
Figure 1 and Figure 2):  
The output voltage is set by connecting a resistor (R  
)
FBX  
VD + |VOUT  
|
from V  
to the FBX pin. R  
is determined from the  
OUT  
FBX  
DC ≅  
following equation:  
V + |V | + VD V  
IN  
OUT  
CESAT  
|VOUT V  
|
FBX  
RFBX  
=
The LT8570/LT8570-1 can be used in configurations  
where the duty cycle is higher than DC , but it must be  
83.3µA  
MAX  
operated in the discontinuous conduction mode so that  
where V is 1.204V (typical)for noninverting topologies  
FBX  
the effective duty cycle is reduced.  
(i.e., boost and SEPIC regulators) and 3mV (typical) for  
inverting topologies (see the Electrical Characteristics).  
Inductor Selection  
Power Switch Duty Cycle  
General Guidelines: The high frequency operation of the  
LT8570/LT8570-1allowsfortheuseofsmallsurfacemount  
inductors. For high efficiency, choose inductors with high  
frequency core material, such as ferrite, to reduce core  
losses. To improveefficiency, chooseinductorswithmore  
volume for a given inductance. The inductor should have  
In order to maintain loop stability and deliver adequate  
current to the load, the power NPN (Q1 in the Block Dia-  
gram) cannot remain “on” for 100% of each clock cycle.  
The maximum allowable duty cycle is given by:  
2
(TP MinOffTime)  
lowDCR(copperwireresistance)toreduceI Rlosses,and  
DCMAX  
=
100%  
must be able to handle the peak inductor current without  
saturating. Note that in some applications, the current  
handling requirements of the inductor can be lower, such  
asintheSEPICtopology, whereeachinductoronlycarries  
a fraction of the total switch current. Multilayer or chip  
inductors usually do not have enough core area to sup-  
port peak inductor currents in the 0.25A to 1A range. To  
minimize radiated noise, use a toroidal or shielded induc-  
tor. Note that the inductance of shielded types will drop  
more as current increases, and will saturate more easily.  
See Table 1 for a list of inductor manufacturers. Thorough  
lab evaluation is recommended to verify that the following  
guidelines properly suit the final application.  
TP  
where T is the clock period and Min Off Time (found in  
P
the Electrical Characteristics) is typically 100ns.  
The application should be designed so that the operating  
duty cycle does not exceed DC  
.
MAX  
The minimum allowable duty cycle is given by:  
MinOn Time  
DCMIN  
=
100%  
TP  
where T is the clock period and Min On-Time is as shown  
P
in the Typical Performance Characteristics.  
The application should be designed so that the operating  
Table 1. Inductor Manufacturers  
duty cycle is at least DC  
.
MIN  
Coilcraft  
LPS5030, MSS7341, LPS4018,  
LPD6235 and LPD5030 Series  
www.coilcraft.com  
Duty cycle equations for several common topologies are  
given below, where V is the diode forward voltage drop  
Coiltronics DR, DRQ, SD and SDQ Series  
www.coiltronics.com  
www.sumida.com  
D
Sumida  
CDRH8D58/LD, CDRH64B, and  
CDRH70D430MN Series  
and V  
is typically 250mV at 0.4A for the LT8570 and  
250mV at 0.2A for the LT8570-1.  
CESAT  
Würth  
WE-PD, WE-DD, WE-TPC,  
WE-LHMI and WE-LQS Series  
www.we-online.com  
For the boost topology:  
VOUT V + VD  
VOUT + VD VCESAT  
Minimum Inductance: Although there can be a trade-off  
with efficiency, it is often desirable to minimize board  
space by choosing smaller inductors. When choosing  
an inductor, there are two conditions that limit the mini-  
IN  
DC ≅  
mum inductance: (1) providing adequate load current,  
85701f  
10  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
and (2) avoiding subharmonic oscillation. Choose an  
inductance that is high enough to meet both of these  
requirements.  
is greater than 50%, provided that the inductance exceeds  
a minimum value. In applications that operate with duty  
cycles greater than 50%, the inductance must be at least:  
V
2i DC 1  
Adequate Load Current : Small value inductors result in  
increased ripple currents and thus, due to the limited peak  
switch current, decrease the average current that can be  
IN  
LMIN  
>
i
kSC (DC300ns f) f 1DC  
for boost topologies (see Figure 15)  
L
MIN  
= L1  
provided to a load (I ). In order to provide adequate  
OUT  
load current, L should be at least:  
L
= L1 = L2 for coupled dual inductor topologies  
(see Figure 16 and Figure 17)  
MIN  
DC V  
IN  
LBOOST  
>
|VOUT| IOUT  
||  
L
= L1 L2 for uncoupled dual inductor topologies  
(see Figure 16 and Figure 17)  
MIN  
2 f ILIM  
V η  
IN  
k
SC  
= 0.6 for LT8570 and 0.3 for LT8570-1  
for boost, topologies, or:  
Maximum Inductance: Excessive inductance can reduce  
currentrippletolevelsthataredifficultforthecurrentcom-  
parator (A3 in the Block Diagram) to cleanly discriminate,  
thus causing duty cycle jitter and/or poor regulation. The  
maximum inductance can be calculated by:  
DC V  
IN  
LDUAL  
>
VOUT IOUT  
2 f ILIM  
IOUT  
V η  
IN  
for the SEPIC and inverting topologies.  
where:  
V V  
IMIN-RIPPLE  
DC  
f
IN  
CESAT  
LMAX  
=
L
L
= L1 for boost topologies (see Figure 15)  
BOOST  
where  
= L1 = L2 for coupled dual inductor topologies  
(see Figure 16 and Figure 17)  
DUAL  
for boost topologies (see Figure 15)  
L
L
= L1  
MIN  
= L1 = L2 for coupled dual inductor topologies  
(see Figure 16 and Figure 17)  
L
DUAL  
= L1||L2 for uncoupled dual inductor topologies  
(see Figure 16 and Figure 17)  
MIN  
||  
L
= L1 L2 for uncoupled dual inductor topologies  
DC = switch duty cycle (see previous section)  
MIN  
(see Figure 16 and Figure 17)  
I
= switch current limit, typically about 0.6A for  
LIM  
I
= typically 40mA for LT8570 and 20mA for  
LT8570 and 0.3A for LT8570-1 at 50% duty cycle (see  
MIN-RIPPLE  
LT8570-1  
the Typical Performance Characteristics section).  
Current Rating: Finally, the inductor(s) must have a rating  
greater than its peak operating current to prevent inductor  
saturation resulting in efficiency loss. In steady state, the  
peakinputinductorcurrent(continuousconductionmode  
only) is given by:  
h =powerconversionefficiency(typically85%forboost  
and 83% for dual inductor topologies at high currents).  
f = switching frequency  
I
= maximum load current  
OUT  
Negative values of L indicate that the output load current  
OUT  
LT8570/LT8570-1.  
|VOUT IOUT  
|
V DC  
2 L1f  
IN  
IL1-PEAK  
=
+
I
exceeds the switch current limit capability of the  
V η  
IN  
fortheboost,SEPICanddualinductorinvertingtopologies.  
Avoiding Subharmonic Oscillations: The LT8570/  
LT8570-1’sinternalslopecompensationcircuitcanprevent  
subharmonicoscillationsthatcanoccurwhenthedutycycle  
85701f  
11  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
For uncoupled dual inductor topologies, the peak output  
inductor current is given by:  
Table 2. Ceramic Capacitor Manufacturers  
Kemet  
www.kemet.com  
Murata  
Taiyo Yuden  
TDK  
www.murata.com  
www.t-yuden.com  
www.tdk.com  
VOUT 1DC  
(
)
IL2-PEAK =IOUT  
+
2 L2 f  
For the coupled inductor topologies:  
Compensation—Adjustment  
VOUT  
V DC  
2 L f  
IN  
To compensatethefeedbackloopoftheLT8570/LT8570-1,  
a series resistor-capacitor network in parallel with a single  
capacitor should be connected from the VC pin to GND.  
For most applications, the series capacitor should be in  
the range of 470pF to 2.2nF with 1nF being a good start-  
ing value. The parallel capacitor should range in value  
from 10pF to 100pF with 47pF a good starting value. The  
IL2-PEAK = IOUT 1+  
+
η V  
IN  
Note:Inductorcurrentcanbehigherduringloadtransients.  
Itcanalsobehigherduringstart-upifinadequatesoft-start  
capacitance is used.  
Capacitor Selection  
compensation resistor, R , is usually in the range of 5k to  
C
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multilayer ceramic capacitors are an excellent choice, as  
they have an extremely low ESR and are available in very  
small packages. X5R or X7R dielectrics are preferred, as  
these materials retain their capacitance over wider voltage  
and temperature ranges. For LT8570, a 0.22µF to 4.7µF  
and for LT8570-1, a 0.1µF to 2.2µF output capacitor is  
sufficient for most applications. Always use a capacitor  
with a sufficient voltage rating. Although many ceramic  
capacitorshavegreatlyreducedcapacitanceatthedesired  
output voltage, ceramic capacitors with larger case sizes  
are less sensitive to applied voltage. Solid tantalum or  
OS-CON capacitors can be used, but they will occupy  
more board area than a ceramic and will have a higher  
ESR with greater output ripple.  
50k. A good technique to compensate a new application  
is to use a 100kΩ potentiometer in place of series resis-  
tor R . With the series capacitor and parallel capacitor at  
C
1nF and 47pF respectively, adjust the potentiometer while  
observing the transient response and the optimum value  
for R can be found. Figure 3 (3a to 3c) illustrates this pro-  
C
cess for the circuit of Figure 4 with a load current stepped  
between 30mA and 90mA. Figure 3a shows the transient  
response with R equal to 1.04k. The phase margin is  
C
poor, as evidenced by the excessive ringing in the output  
voltage and inductor current. In Figure 3b, the value of  
R is increased to 2.09k, which results in a more damped  
C
response.Figure3cshowstheresultswhenR isincreased  
C
further to 6.19k. The transient response is nicely damped  
and the compensation procedure is complete.  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as closely  
Compensation—Theory  
Like all other current mode switching regulators, the  
LT8570/LT8570-1 need to be compesated for stable and  
efficient operation. Two feedback loops are used in the  
LT8570/LT8570-1 — a fast current loop which does not  
require compensation, and a slower voltage loop which  
does. Standard bode plot analysis can be used to under-  
stand and adjust the voltage feedback loop.  
as possible to the V pin of the LT8570/LT8570-1 as well  
IN  
as to the inductor connected to the input of the power  
path. If it is not possible to optimally place a single input  
capacitor, thenuseone attheV pinofthechip (C )and  
IN  
VIN  
one at the V side of the inductor (C  
). See equations  
IN  
PWR  
in Table 4, Table 5 and Table 6 for sizing information. For  
LT8570, a 0.47µF to 1µF and for LT8570-1, a 0.22µF to  
0.47µF input capacitor is sufficient for most applications.  
Table 2 shows a list of several ceramic capacitor manu-  
facturers. Consultthemanufacturersfordetailedinforma-  
tion on their entire selection of ceramic parts.  
85701f  
12  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
V
V
OUT  
OUT  
500mV/DIV  
500mV/DIV  
AC-COUPLED  
AC-COUPLED  
I
I
STEP  
STEP  
50mA/DIV  
50mA/DIV  
I
I
L1  
L1  
100mA/DIV  
100mA/DIV  
8570 F03a  
8570 F03b  
R
= 1.04k  
50µs/DIV  
R
C
= 2.09k  
50µs/DIV  
C
(3a) Transient Response Shows Excessive Ringing  
(3b) Transient Response Is Better  
V
OUT  
500mV/DIV  
AC-COUPLED  
I
STEP  
50mA/DIV  
I
L1  
100mA/DIV  
8570 F03c  
R
C
= 6.19k  
50µs/DIV  
(3c) Transient Response Is Well Damped  
Figure 3. Transient Response  
D1  
22µH  
V
OUT  
V
IN  
12V  
5V  
125mA  
10k  
V
SW  
FBX  
R
IN  
FBX  
130k  
C
OUT  
SHDN  
2.2µF  
C
IN  
LT8570  
1µF  
SYNC  
RT  
VC  
R
C
6.19k  
GND SS  
C
F
47pF  
C
C
C
2.2nF  
R
56.2k  
SS  
T
0.1µF  
8570 F04  
Figure 4. 1.5MHz, 5V to 12V Boost Converter  
85701f  
13  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
As with any feedback loop, identifying the gain and phase  
contribution of the various elements in the loop is critical.  
Figure5showsthekeyequivalentelementsofaboostcon-  
verter. Because of the fast current control loop, the power  
stage of the IC, inductor and diode have been replaced by  
a combination of the equivalent transconductance ampli-  
From Figure 5, the DC gain, poles and zeros can be cal-  
culated as follows:  
DCGain:  
(Breaking Loop at FBX Pin)  
VC IVIN VOUT V  
FBX  
fier g and the current controlled current source which  
ADC = AOL(0) =  
=
mp  
V  
VC IVIN VOUT  
FBX  
converts I to (hV /V ) •ꢀI . g acts as a current  
VIN  
IN OUT  
VIN mp  
source where the peak input current, I , is proportional  
VIN  
V
VOUT  
RL  
2
0.5R2  
R1+ 0.5R2  
IN  
g
R gmpη •  
to the VC voltage. h is the efficiency of the switching  
(
)
ma  
0
regulator, and is typically about 85%.  
2
Notethatthemaximumoutputcurrentsofg andg are  
Output Pole: P1=  
mp  
ma  
2 π RL COUT  
finite.Thelimitsforg areintheElectricalCharacteristics  
mp  
section(switchcurrentlimit), andg isnominallylimited  
ma  
1
Error AmpPole: P2 =  
Error Amp Zero: Z1=  
ESR Zero: Z2 =  
to about +15µA and –17µA.  
2 π R +R C  
C
C ⎦  
O  
1
V
OUT  
I
VIN  
g
mp  
2 π RCCC  
+
R
ESR  
R
L
ηV  
VOUT  
IN  
1
IVIN  
C
C
OUT  
PL  
2 π RESRCOUT  
1.204V  
REFERENCE  
R1  
+
V
V
2 RL  
C
IN  
g
ma  
RHP Zero: Z3 =  
R2  
R2  
2 π VOUT2 L  
FBX  
R
R
O
C
C
8570 F05  
F
C
C
fS  
HighFrequency Pole: P3 >  
3
C : COMPENSATION CAPACITOR  
C
C
C
: OUTPUT CAPACITOR  
: PHASE LEAD CAPACITOR  
OUT  
1
PhaseLead Zero: Z4 =  
PL  
C : HIGH FREQUENCY FILTER CAPACITOR  
2 π R1CPL  
F
g
ma  
g
mp  
: TRANSCONDUCTANCE AMPLIFIER INSIDE IC  
: POWER STAGE TRANSCONDUCTANCE AMPLIFIER  
1
R : COMPENSATION RESISTOR  
R : OUTPUT RESISTANCE DEFINED AS V  
R : OUTPUT RESISTANCE OF g  
R1, R2: FEEDBACK RESISTOR DIVIDER NETWORK  
C
PhaseLeadPole: P4 =  
Error Amp Filter Pole:  
R2  
2
DIVIDED BY I  
LOAD(MAX)  
L
OUT  
R1•  
O
ma  
2 π •  
CPL  
R
: OUTPUT CAPACITOR ESR  
R2  
R1+  
2
ESR  
η: CONVERTER EFFICIENCY (~85% AT HIGHER CURRENTS)  
Figure 5. Boost Converter Equivalent Model  
1
CC  
,CF <  
10  
P5 =  
RC RO  
RC +RO  
2 π •  
CF  
85701f  
14  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
The current mode zero (Z3) is a right-half plane zero  
which can be an issue in feedback control design, but is  
manageable with proper external component selection.  
In Figure 6, the phase is –135° when the gain reaches 0dB  
giving a phase margin of 45°. The crossover frequency is  
17kHz, which is more than three times lower than the fre-  
quencyoftheRHPzerotoachieveadequatephasemargin.  
Using the circuit in Figure 4 as an example, Table 3 shows  
the parameters used to generate the bode plot shown in  
Figure 6.  
Diode Selection  
Schottkydiodes, withtheirlowforward-voltagedropsand  
fast switching speeds, are recommended for use with the  
140  
120  
100  
80  
0
–45  
LT8570/LT8570-1. For applications where V (see Tables  
R
PHASE  
4, 5 and 6) < 40V, the Diodes, Inc. PD3S140 is a good  
–90  
choice. Where V > 40V, the Diodes Inc. DFLS1100 works  
R
–135  
–180  
–225  
–270  
–315  
–360  
well. These diodes are rated to handle an average forward  
60  
45° AT  
17kHz  
current of 1A.  
40  
GAIN  
100  
20  
Oscillator  
0
TheoperatingfrequencyoftheLT8570/LT8570-1canbeset  
by the internal free-running oscillator. When the SYNC pin  
is driven low (< 0.4V), the frequency of operation is set by  
aresistorfromRT toground. Aninternallytrimmedtiming  
capacitor resides inside the IC. The oscillator frequency  
is calculated using the following formula:  
–20  
10  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
8570 F06  
Figure 6. Bode Plot for Example Boost Converter  
Table 3. Bode Plot Parameters  
85.5  
(RT + 1)  
fOSC  
=
PARAMETER  
VALUE  
96  
UNITS  
W
COMMENT  
Application Specific  
Application Specific  
Application Specific  
Not Adjustable  
Adjustable  
R
C
L
2.2  
10  
µF  
where f  
is in MHz and R is in kΩ. Conversely, R  
T
OUT  
OSC  
T
(in kΩ) can be calculated from the desired frequency  
(in MHz) using:  
R
mW  
kW  
pF  
ESR  
O
R
300  
2200  
47  
C
C
C
C
85.5  
fOSC  
RT =  
1  
pF  
Optional/Adjustable  
Optional/Adjustable  
Adjustable  
F
0
pF  
PL  
R
C
6.19  
130  
14.5  
12  
kW  
kW  
kW  
V
Clock Synchronization  
R1  
R2  
Adjustable  
Not Adjustable  
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Application Specific  
Adjustable  
The operating frequency of the LT8570/LT8570-1 can be  
synchronized to an external clock source. To synchronize  
totheexternalsource, simplyprovideadigitalclocksignal  
into the SYNC pin. The LT8570/LT8570-1 will operate at  
the SYNC clock frequency. The LT8570/LT8570-1 will  
revert to the internal free-running oscillator clock after  
SYNC is driven low for a few free-running clock periods.  
V
OUT  
V
IN  
5
V
g
ma  
g
mp  
L
200  
7
µmho  
mho  
µH  
22  
f
S
1.5  
MHz  
85701f  
15  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
Driving SYNC high for an extended period of time effec-  
tively stops the operating clock and prevents latch SR1  
from becoming set (see the Block Diagram). As a result,  
theswitchingoperationoftheLT8570/LT8570-1willstop.  
This capacitor is slowly charged to ~2.1V by an internal  
280k resistor once the part is activated. SS pin voltages  
below ~1.1V reduce the internal current limit. Thus, the  
gradualrampingoftheSSvoltagealsograduallyincreases  
the current limit as the capacitor charges. This, in turn,  
allows the output capacitor to charge gradually toward its  
final value while limiting the start-up current.  
The duty cycle of the SYNC signal must be between 35%  
and 65% for proper operation. Also, the frequency of the  
SYNC signal must meet the following two criteria:  
In the event of a commanded shutdown or lockout (SHDN  
pin), internal undervoltage lockout (UVLO) or a thermal  
lockout,thesoft-startcapacitorisautomaticallydischarged  
to ~200mV before charging resumes, thus assuring that  
the soft-start occurs after every reactivation of the chip.  
(1) SYNC may not toggle outside the frequency range of  
200kHz to 1.5MHz unless it is stopped low to enable  
the free-running oscillator.  
(2) The SYNC frequency can always be higher than the  
free-runningoscillatorfrequency, f , butshouldnot  
OSC  
be less than 25% below f  
.
Shutdown  
OSC  
The SHDN pin is used to enable or disable the chip. For  
most applications, SHDN can be driven by a digital logic  
source. Voltages above 1.4V enable normal active op-  
eration. Voltages below 300mV will shutdown the chip,  
resulting in extremely low quiescent current.  
Operating Frequency Selection  
There are several considerations in selecting the operat-  
ing frequency of the converter. The first is staying clear  
of sensitive frequency bands, which cannot tolerate any  
spectral noise. For example, in products incorporating RF  
communications, the 455kHz IF frequency is sensitive to  
any noise, therefore switching above 600kHz is desired.  
Some communications have sensitivity to 1.1MHz, and in  
thatcase, a1.5MHzswitchingconverterfrequencymaybe  
employed. The second consideration is the physical size  
of the converter. As the operating frequency goes up, the  
inductor and filter capacitors go down in value and size.  
The trade-off is efficiency, since the switching losses due  
to NPN base charge (see Thermal Calculations), Schottky  
diode charge, and other capacitive loss terms increase  
proportionally with frequency.  
While the SHDN voltage transitions through the lockout  
voltagerange(0.3Vto1.21V)thepowerswitchisdisabled  
and the SR2 latch is set (see the Block Diagram). This  
causesthesoft-startcapacitortobegindischarging,which  
continues until the capacitor is discharged and active op-  
eration is enabled. Although the power switch is disabled,  
SHDN voltages in the lockout range do not necessarily  
reduce quiescent current until the SHDN voltage is near  
or below the shutdown threshold.  
Also note that SHDN can be driven above V or V  
as  
OUT  
IN  
long as the SHDN voltage is limited to less than 40V.  
Soft-Start  
ACTIVE  
(NORMAL OPERATION)  
The LT8570/LT8570-1 contain a soft-start circuit to limit  
peak switch currents during start-up. High start-up cur-  
rent is inherent in switching regulators in general since  
1.40V  
(HYSTERESIS AND TOLERANCE)  
1.21V  
LOCKOUT  
the feedback loop is saturated due to V  
being far from  
OUT  
(POWER SWITCH OFF,  
its final value. The regulator tries to charge the output  
capacitor as quickly as possible, which results in large  
peak currents.  
SS CAPACITOR DISCHARGED)  
0.3V  
SHUTDOWN  
(LOW QUIESCENT CURRENT)  
0.0V  
8570 F07  
The start-up current can be limited by connecting an  
external capacitor (typically 100nF to 1µF) to the SS pin.  
Figure 7. Chip States vs SHDN Voltage  
85701f  
16  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
Configurable Undervoltage Lockout  
For example, to disable the LT8570/LT8570-1 for V  
IN  
voltages below 3.5V using the single resistor configura-  
Figure 8 shows how to configure an undervoltage lockout  
(UVLO)fortheLT8570/LT8570-1. Typically, UVLOisused  
in situations where the input supply is current-limited,  
has a relatively high source resistance, or ramps up/down  
slowly. A switching regulator draws constant power from  
the source, so source current increases as source voltage  
drops. This looks like a negative resistance load to the  
source and can cause the source to current-limit or latch  
low under low source voltage conditions. UVLO prevents  
the regulator from operating at source voltages where  
these problems might occur.  
tion, choose:  
3.5V 1.27V  
RUVLO1  
=
= 187k  
1.27V  
+ 12µA  
To activate the LT8570/LT8570-1 for V voltages greater  
IN  
than 4.5V using the double resistor configuration, choose  
R
= 10k and:  
UVLO2  
4.5V 1.31V  
RUVLO1  
=
= 22.1k  
1.31V  
+ 12µA  
The shutdown pin comparator has voltage hysteresis with  
typicalthresholdsof1.31V(rising)and1.27V(falling). Re-  
10k  
sistorR  
isoptional.R  
canbeincludedtoreduce  
UVLO2  
UVLO2  
Internal Undervoltage Lockout  
The LT8570/LT8570-1 monitor the V supply voltage in  
the overall UVLO voltage variation caused by variations  
IN  
in SHDN pin current (see the Electrical Characteristics).  
A good choice for R  
value for R  
of the following:  
caseV dropsbelowaminimumoperatinglevel(typically  
IN  
is 10k 1%. After choosing a  
can be determined from either  
UVLO2  
UVLO2 UVLO1  
about 2.35V). When V is detected low, the power switch  
IN  
, R  
is deactivated, and while sufficient V voltage persists,  
IN  
the soft-start capacitor is discharged. After V is detected  
IN  
V
+ 1.31V  
high,thepowerswitchwillbereactivatedandthesoft-start  
IN  
RUVLO1  
=
=
capacitor will begin charging.  
1.31V  
+12µA  
R
UVLO2  
Thermal Considerations  
or  
FortheLT8570/LT8570-1todelivertheirfulloutputpower,  
it is imperative that a good thermal path be provided to  
dissipate the heat generated within the package. This is  
accomplished by taking advantage of the thermal pad on  
the underside of the IC. It is recommended that multiple  
vias in the printed circuit board be used to conduct heat  
away from the IC and into a copper plane with as much  
area as possible.  
V
1.27V  
IN  
RUVLO1  
1.27V  
+12µA  
R
UVLO2  
+
where V and V are the V voltages when rising or  
IN  
IN  
IN  
falling, respectively.  
V
IN  
V
IN  
ACTIVE/  
LOCKOUT  
1.3V  
+
R
UVLO1  
SHDN  
12µA  
AT 1.3V  
R
UVLO2  
(OPTIONAL)  
GND  
8570 F08  
Figure 8. Configurable UVLO  
85701f  
17  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
Thermal Lockout  
P
P
P
P
= 32mW  
= 85mW  
= 22mW  
= 23mW  
SW  
If the die temperature reaches approximately 165°C, the  
part will go into thermal lockout, the power switch will be  
turned off and the soft-start capacitor will be discharged.  
The part will be enabled again when the die temperature  
has dropped by ~5°C (nominal).  
BAC  
BDC  
INP  
Total LT8570 power dissipation (P ) = 161mW  
TOT  
ThermalresistancefortheLT8570/LT8570-1isinfluenced  
by the presence of internal, topside or backside planes.  
To calculate die temperature, use the appropriate ther-  
mal resistance number and add in worst-case ambient  
temperature:  
Thermal Calculations  
Power dissipation in the LT8570/LT8570-1 chip comes  
fromfourprimarysources:switchI Rloss,NPNbasedrive  
(AC), NPN base drive (DC), and additional input current.  
The following formulas can be used to approximate the  
power losses. These formulas assume continuous mode  
operation, so they should not be used for calculating ef-  
ficiency in discontinuous mode or at light load currents.  
2
T = T + θ ꢀ•ꢀP  
TOT  
J
A
JA  
whereT =junctiontemperature,T =ambienttemperature,  
J
A
and θ is the thermal resistance from the silicon junction  
JA  
to the ambient air.  
VOUT IOUT  
AverageInput Current: I =  
IN  
V η  
The published θ value is 43°C/W for the 3mm × 3mm  
IN  
JA  
DFN package and 35°C/W to 40°C/W for the MSOP ex-  
Switch Conduction Loss: PSW =(DC)(I )(V  
)
IN  
SW  
posed pad package. In practice, lower θ values can be  
JA  
obtained if the board layout uses ground as a heat sink.  
For instance, thermal resistances of 34.7°C/W for the  
DFN package and 22.5°C/W for the MSOP package were  
obtained on a board designed with large ground planes.  
BaseDriveLoss(AC): P = 20ns(I )(VOUT)(f)  
IN  
BAC  
(V )(I )(DC)  
IN IN  
BaseDriveLoss(DC): P  
=
BDC  
40  
Input Power Loss: PINP = 4.5mA (V )  
IN  
V Ramp Rate  
IN  
where:  
While initially powering a switching converter application,  
theV ramprateshouldbelimited.HighV rampratescan  
V
SW  
= switch on voltage (see Typical Performance  
IN  
IN  
causeexcessiveinrushcurrentsinthepassivecomponents  
of the converter. This can lead to current and/or voltage  
overstress and may damage the passive components or  
the chip. Ramp rates less than 500mV/µs, depending on  
componentparameters,willgenerallypreventtheseissues.  
Also,becarefultoavoidhot-plugging.Hot-pluggingoccurs  
when an active voltage supply is “instantly” connected or  
switchedtotheinputoftheconverter.Hot-pluggingresults  
in very fast input ramp rates and is not recommended.  
Finally, for more information, refer to Linear application  
note AN88, which discusses voltage overstress that can  
occurwhenaninductivesourceimpedanceishot-plugged  
to an input pin bypassed by ceramic capacitors.  
Characteristics for Switch Saturation Voltage)  
DC = duty cycle (see the Power Switch Duty Cycle sec-  
tion for formulas)  
h = power conversion efficiency (typically 85% at high  
currents)  
Example: LT8570 in boost configuration, V = 5V,  
IN  
V
OUT  
= 12V, I  
= 0.1A, f = 1.25MHz, V = 0.5V:  
OUT D  
I = 0.28A  
IN  
DC = 62.0%  
85701f  
18  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
Layout Hints  
a good thermal path for heat out of the package. Solder-  
ing the pad onto the board reduces die temperature and  
increases the power capability of the LT8570/LT8570-1.  
Provide as much copper area as possible around this  
pad. Adding multiple feedthroughs around the pad to the  
ground plane will also help. Figure 10 and Figure 11 show  
the recommended component placement for the boost  
and SEPIC configurations, respectively.  
As with all high frequency switchers, when considering  
layout, care must be taken to achieve optimal electrical,  
thermal and noise performance. One will not get adver-  
tised performance with a careless layout. For maximum  
efficiency, switch rise and fall times are typically in the  
10ns to 20ns range. To prevent noise, both radiated and  
conducted,thehighspeedswitchingcurrentpath,shownin  
Figure 9, must be kept as short as possible. This is imple-  
mented in the suggested layout of a boost configuration in  
Figure10.Shorteningthispathwillalsoreducetheparasitic  
trace inductance. At switch-off, this parasitic inductance  
produces a flyback spike across the LT8570/LT8570-1  
switch. When operating at higher currents and output  
voltages, with poor layout, this spike can generate volt-  
ages across the LT8570/LT8570-1 that may exceed the  
absolute maximum rating. A ground plane should also  
be used under the switcher circuitry to prevent interplane  
coupling and overall noise.  
Layout Hints for Inverting Topology  
Figure12showsrecommendedcomponentplacementfor  
thedualinductorinvertingtopology.Inputbypasscapacitor,  
C1,shouldbeplacedclosetotheLT8570/LT8570-1,asshown.  
The load should connect directly to the output capacitor,  
C2, for best load regulation. The local ground may be tied  
into the system ground plane at the C3 ground terminal.  
The cut ground copper at D1’s cathode is essential to  
obtain low noise. This important layout issue arises due  
to the chopped nature of the currents flowing in Q1 and  
D1. If they are both tied directly to the ground plane before  
being combined, switching noise will be introduced into  
the ground plane. It is almost impossible to get rid of this  
noise, once present in the ground plane. The solution is to  
tieD1’scathodetothegroundpinoftheLT8570/LT8570-1  
before the combined currents are dumped in the ground  
plane as drawn in Figure 12, Figure 13 and Figure 14. This  
single layout technique can virtually eliminate high  
frequency “spike” noise, so often present on switching  
regulator outputs.  
The VC and FBX components should be kept as far away  
as practical from the switch node, while still remaining  
closetothechip.Thegroundforthesecomponentsshould  
be separated from the switch current path. Failure to do  
so can result in poor stability or subharmonic oscillation.  
Board layout also has a significant effect on thermal re-  
sistance. The exposed package ground pad is the copper  
plate that runs under the LT8570/LT8570-1 die. This is  
L1  
Differences from LT3580  
D1  
C1  
LT8570/LT8570-1 are very similar to LT3580. However,  
LT8570/LT8570-1 do deviate from LT3580 in a few areas:  
V
OUT  
SW  
•ꢀ 65V, 0.5A switch for LT8570  
HIGH  
FREQUENCY  
SWITCHING  
PATH  
V
IN  
C2 LOAD  
LT8570/  
LT8570-1  
•ꢀ 65V, 0.25A switch for LT8570-1  
GND  
•ꢀ 40V V and SHDN absolute maximum rating  
IN  
•ꢀ FB renamed to FBX  
8570 F09  
•ꢀ 5V FBX absolute maximum rating  
Figure 9. High Speed “Chopped” Switching  
Path for Boost Topology  
85701f  
19  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
GND  
GND  
SYNC  
1
2
3
4
8
7
6
5
SYNC  
1
2
3
4
8
7
6
5
9
C1  
9
C1  
V
IN  
V
IN  
SHDN  
SHDN  
L1  
L1  
L2  
SW  
SW  
C2  
VIAS TO GROUND  
PLANE REQUIRED  
TO IMPROVE  
D1  
C2  
VIAS TO GROUND  
PLANE REQUIRED  
TO IMPROVE  
THERMAL  
D1  
C3  
PERFORMANCE  
8570 F10  
V
OUT  
THERMAL  
PERFORMANCE  
8570 F11  
V
OUT  
Figure 10. Suggested Component Placement for Boost Topology  
(Both DFN and MSOP Packages. Not to Scale). Pin 9 (Exposed  
Pad) Must Be Soldered Directly to the Local Ground Plane for  
Adequate Thermal Performance. Multiple Vias to Additional  
Ground Planes Will Improve Thermal Performance  
Figure 11. Suggested Component Placement for SEPIC Topology  
(Both DFN And MSOP Packages. Not to Scale). Pin 9 (Exposed  
Pad) Must Be Soldered Directly to the Local Ground Plane for  
Adequate Thermal Performance. Multiple Vias to Additional  
Ground Planes Will Improve Thermal Performance  
GND  
SYNC  
1
8
9
C1  
2
3
4
7
V
IN  
6
SHDN  
5
L1  
L2  
SW  
C2  
D1  
VIAS TO GROUND  
PLANE REQUIRED  
TO IMPROVE  
C3  
THERMAL  
PERFORMANCE  
8570 F12  
V
OUT  
Figure 12. Suggested Component Placement for Inverting Topology (Both DFN and MSOP Packages. Not to Scale).  
Note Cut in Ground Copper at Diode’s Cathode. Pin 9 (Exposed Pad) Must be Soldered Directly to Local Ground Plane  
for Adequate Thermal Performance. Multiple Vias to Additional Ground Planes Will Improve Thermal Performance  
85701f  
20  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
V
–(V + V )  
IN OUT  
CESAT  
C2  
L1  
L2  
SW  
SWX  
V
–V  
OUT  
IN  
D1  
Q1  
+
C1  
C3  
R
LOAD  
+
8570 F13  
Figure 13. Switch-On Phase of an Inverting Converter. L1 and L2 Have Positive dI/dt  
V
+ V + V  
V
D
IN  
OUT  
D
C2  
L1  
L2  
SW  
SWX  
V
–V  
OUT  
IN  
D1  
Q1  
+
C1  
C3  
R
LOAD  
+
8570 F14  
Figure 14. Switch-Off Phase of an Inverting Converter. L1 and L2 Currents Have Negative dI/dt  
85701f  
21  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
BOOST CONVERTER COMPONENT SELECTION  
Table 4. Boost Design Equations  
PARAMETERS/EQUATIONS  
D1  
22µH  
V
OUT  
V
IN  
Pick V , V , and f  
to calculate equations below  
Step 1:  
Inputs  
IN OUT  
OSC  
12V  
5V  
125mA  
10k  
Step 2:  
DC  
V
OUT VIN(MIN) + 0.5V  
DCMAX  
DCMIN  
=
V
SW  
FBX  
R
IN  
FBX  
VOUT + 0.5V– 0.4V  
130k  
C
2.2µF  
OUT  
SHDN  
VOUT VIN(MAX) + 0.5V  
C
IN  
=
LT8570  
V
OUT + 0.5V– 0.4V  
1µF  
SYNC  
RT  
VC  
Step 3:  
L1  
R
C
(VIN(MIN) – 0.4V)DCMAX  
fOSC IRTYP  
(1)  
(2)  
(3)  
(4)  
6.19k  
LTYP  
=
GND SS  
C
F
47pF  
C
C
C
2.2nF  
R
56.2k  
SS  
T
(VIN(MIN) – 0.4V)(2 DCMAX 1)  
0.1µF  
LMIN  
=
8570 F15  
kSC (DCMAX 300ns fOSC)fOSC (1DCMAX  
(VIN(MIN) – 0.4V)DCMAX  
)
LMAX1  
=
fOSC IRMIN  
Figure 15. Boost Converter: The Component Values Given Are  
Typical Values for a 1.5MHz, 5V to 12V Boost  
(VIN(MAX) – 0.4V)DCMIN  
fOSC IRMIN  
LMAX2  
=
The LT8570/LT8570-1 can be configured as a boost con-  
verter as in Figure 15. This topology allows for positive  
output voltages that are higher than the input voltage.  
A single feedback resistor sets the output voltage. For  
output voltages higher than 60V, see the Charge Pump  
Aided Regulators section.  
•ꢀ Solve equations 1 to 4 for a range of L values  
•ꢀ The minimum of the L value range is the higher of L and L  
TYP  
MIN  
•ꢀ The maximum of the L value range is the lower of L  
and L  
MAX1  
MAX2  
Step 4:  
RIPPLE  
(VIN(MIN) – 0.4V)DCMAX  
IRIPPLE(MIN)  
=
I
fOSC L1  
(VIN(MAX) – 0.4V)DCMIN  
fOSC L1  
IRIPPLE(MAX)  
=
For a desired output voltage over a given input voltage  
range, Table 4 is a step-by-step set of equations to cal-  
culate component values for the LT8570/LT8570-1 when  
operating as a boost converter. Refer to the Applications  
Information section for further information on the design  
equations presented in Table 4.  
Step 5:  
OUT  
IRIPPLE(MIN)  
I
OUT(MIN) = ILIM  
(1DCMAX)  
I
2
IRIPPLE(MAX)  
I
OUT(MAX) = ILIM  
(1DCMIN)  
2
V
> V ; I  
> I  
Step 6:  
D1  
R
OUT AVG OUT  
Step 7:  
OUT  
IOUT DCMAX  
fOSC 0.005 VOUT  
COUT  
Variable Definitions:  
C
V = Input Voltage  
IN  
Step 8:  
IN  
C
IN CVIN +CPWR  
C
V
OUT  
= Output Voltage  
IRIPPLE(MAX)  
8 fOSC 0.005 V  
ILIM DCMAX  
+
40 fOSC 0.005 V  
IN(MIN)  
IN(MAX)  
DC = Power Switch Duty Cycle  
•ꢀRefer to the Capacitor Selection Section for definition of C and C  
VIN  
PWR  
f
I
I
I
= Switching Frequency  
OSC  
Step 9:  
VOUT 1.204V  
RFBX  
=
R
FBX  
= Maximum Average Output Current  
83.3µA  
OUT  
Step 10:  
85.5  
fOSC  
= Inductor Ripple Current  
RIPPLE  
RT  
=
1; fOSC in MHz and RT in kΩ  
R
T
= 150mA for LT8570 and 75mA for LT8570-1  
= 0.6A for LT8570 and 0.3A for LT8570-1  
RTYP  
Note 1: This table uses 0.5A and 0.25A for the peak switch current.  
Refer to the Electrical Characteristics Table and Typical Performance  
Characteristics plots for the peak switch current at an operating duty cycle.  
Note 2: The final values for C and C may deviate from the previous  
k
SC  
I
I
= 0.04A for LT8570 and 0.02A for LT8570-1  
RMIN  
OUT  
IN  
equations in order to obtain desired load transient performance.  
= 0.5A for LT8570 and 0.25A for LT8570-1  
LIM  
85701f  
22  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
SEPIC CONVERTER COMPONENT SELECTION  
(COUPLED OR UNCOUPLED INDUCTORS)  
Table 5. SEPIC Design Equations  
PARAMETERS/EQUATIONS  
Pick V , V and f to calculate equations below  
Step 1:  
Inputs  
IN OUT  
OSC  
C1  
0.47µF  
L1  
47µH  
D1  
Step 2:  
DC  
V
OUT + 0.5V  
V
OUT  
V
IN  
DCMAX  
=
12V  
9V TO 16V  
VIN(MIN) + VOUT + 0.5V– 0.4V  
160mA  
L2  
47µH  
487k  
V
OUT + 0.5V  
DCMIN  
=
V
IN(MAX) + VOUT + 0.5V– 0.4V  
V
SW  
FBX  
R
IN  
FBX  
130k  
C
C
OUT  
2.2µF  
IN  
SHDN  
Step 3:  
L
1µF  
(VIN(MIN) – 0.4V)DCMAX  
fOSC IRTYP  
LT8570  
(1)  
(2)  
(3)  
LTYP  
=
=
=
SYNC  
VC  
R
C
26.7k  
(VIN(MIN) – 0.4V)(2 DCMAX 1)  
RT  
GND SS  
C
F
LMIN  
47pF  
kSC (DCMAX 300ns fOSC)fOSC (1DCMAX  
)
C
C
C
2.2nF  
R
SS  
T
0.22µF  
84.5k  
8570 F16  
(VIN(MIN) – 0.4V)DCMAX  
fOSC IRMIN  
LMAX  
•ꢀ Solve equations 1, 2 and 3 for a range of L values  
•ꢀ The minimum of the L value range is the higher of L and L  
Figure 16. SEPIC Converter: The Component Values and Voltages  
Given Are Typical Values for a 1MHz, 9V-16V to 12V SEPIC  
Converter Using Coupled Inductors  
TYP  
MIN  
•ꢀ The maximum of the L value range is L  
•ꢀ L = L1 = L2 for coupled inductors  
•ꢀ L = L1 || L2 for uncoupled inductors  
MAX  
Figure 16 shows the LT8570 configured as a SEPIC. This  
topologyallowsforpositiveoutputvoltagesthatarelower,  
equal or higher than the input voltage. Output disconnect  
is inherent to the SEPIC topology, meaning no DC path  
exists between the input and output due to capacitor C1.  
Step 4:  
RIPPLE  
(VIN(MIN) – 0.4V)DCMAX  
fOSC L  
IRIPPLE(MIN)  
=
I
(VIN(MAX) – 0.4V)DCMIN  
fOSC L  
IRIPPLE(MAX)  
=
Step 5:  
IRIPPLE(MIN)  
For a desired output voltage over a given input voltage  
range, Table 5 is a step-by-step set of equations to calculate  
componentvaluesfortheLT8570/LT8570-1whenoperating  
as a SEPIC converter. Refer to the Applications Information  
section for further information on the design equations  
presented in Table 5.  
I
OUT(MIN) = ILIM  
1DC  
(
MAX  
I
)
OUT  
2
IRIPPLE(MAX)  
I
OUT(MAX) = ILIM  
1DC  
MIN  
(
)
2
V
> V + V ; I  
> I  
Step 6:  
D1  
Step 7:  
C1  
R
IN  
OUT AVG  
OUT  
V
≥ V  
RATING  
IN  
C1 ≥ 0.47µF for LT8570, C1 ≥ 0.22µF for LT8570-1  
Variable Definitions:  
Step 8:  
IOUT(MIN) DCMAX  
COUT  
C
OUT  
fOSC 0.005 VOUT  
V = Input Voltage  
IN  
Step 9:  
IN  
C
IN CVIN +CPWR  
V
= Output Voltage  
OUT  
C
IRIPPLE(MAX)  
ILIM DCMAX  
DC = Power Switch Duty Cycle  
+
40 fOSC 0.005 V  
8 fOSC 0.005 VIN(MAX)  
IN(MIN)  
f
I
I
I
= Switching Frequency  
OSC  
•ꢀRefer to the Capacitor Selection Section for definition of C and C  
VIN  
PWR  
Step 10:  
FBX  
VOUT 1.204V  
= Maximum Average Output Current  
OUT  
RFBX  
=
R
83.3µA  
= Inductor Ripple Current  
RIPPLE  
Step 11:  
85.5  
fOSC  
RT  
=
1; fOSC in MHz and RT in kΩ  
R
T
= 150mA for LT8570 and 75mA for LT8570-1  
= 0.6A for LT8570 and 0.3A for LT8570-1  
RTYP  
Note 1: This table uses 0.5A and 0.25A for the peak switch current.  
k
SC  
Refer to the Electrical Characteristics Table and Typical Performance  
Characteristics plots for the peak switch current at an operating duty cycle.  
I
I
= 0.04A for LT8570 and 0.02A for LT8570-1  
RMIN  
Note 2: The final values for C , C and C1 may deviate from the  
OUT IN  
= 0.5A for LT8570 and 0.25A for LT8570-1  
previous equations in order to obtain desired load transient performance.  
LIM  
85701f  
23  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
applicaTions inForMaTion  
DUAL INDUCTOR INVERTING CONVERTER COMPONENT  
Table 6. Dual Inductor Inverting Design Equations  
PARAMETERS/EQUATIONS  
SELECTION (COUPLED OR UNCOUPLED INDUCTORS)  
Pick V , V  
and f  
to calculate equations below  
Step 1:  
Inputs  
IN OUT  
OSC  
C1  
0.47µF  
L1  
47µH  
L2  
47µH  
Step 2:  
DC  
V
VOUT + 0.5V  
IN(MIN) + VOUT + 0.5V– 0.4V  
OUT  
–15V  
65mA (V = 5V)  
V
IN  
5V TO 35V  
DCMAX  
DCMIN  
=
V
IN  
232k  
D1  
150mA (V = 12V)  
IN  
210mA (V = 24V)  
IN  
VOUT + 0.5V  
IN(MAX) + VOUT + 0.5V– 0.4V  
V
SW  
FBX  
R
=
IN  
FBX  
182k  
V
SHDN  
C
C
2.2µF  
IN  
2.2µF  
OUT  
Step 3:  
L
LT8570  
(VIN(MIN) – 0.4V)DCMAX  
fOSC IRTYP  
(1)  
(2)  
(3)  
LTYP  
=
=
=
SYNC  
RT  
VC  
R
C
20.5k  
GND SS  
C
F
(VIN(MIN) – 0.4V)(2 DCMAX 1)  
47pF  
C
C
C
2.2nF  
R
121k  
LMIN  
SS  
T
kSC (DCMAX 300ns fOSC)fOSC (1DCMAX  
)
0.1µF  
8570 F17  
(VIN(MIN) – 0.4V)DCMAX  
fOSC IRMIN  
LMAX  
Figure 17. Dual Inductor Inverting Converter: The Component  
Values Given Are Typical Values for a 700kHz 5V-35V to –15V  
Inverting Topology Using Coupled Inductors  
•ꢀSolve equations 1, 2 and 3 for a range of L values  
•ꢀThe minimum of the L value range is the higher of L and L  
TYP  
MIN  
•ꢀThe maximum of the L value range is L  
•ꢀL = L1 = L2 for coupled inductors  
•ꢀL = L1||L2 for uncoupled inductors  
MAX  
Due to its unique FBX pin, the LT8570/LT8570-1 can work  
in an inverting configuration as in Figure 17. Changing the  
connectionsofL2andtheSchottkydiodeintheSEPICtopol-  
ogy results in negative output voltages. Output disconnect  
isinherentlybuiltintothistopologyduetothecapacitorC1.  
Step 4:  
RIPPLE  
(VIN(MIN) – 0.4V)DCMAX  
IRIPPLE(MIN)  
=
I
fOSC L  
(VIN(MAX) – 0.4V)DCMIN  
fOSC L  
IRIPPLE(MAX)  
=
Step 5:  
OUT  
IRIPPLE(MIN)  
For a desired output voltage over a given input voltage  
range, Table 6 is a step-by-step set of equations to  
calculate component values for the LT8570/LT8570-1  
when operating as a dual inductor inverting converter.  
Refer to the Applications Information section for further  
information on the design equations presented in Table 6.  
I
OUT(MIN) = ILIM  
1DC  
MAX  
I
(
)
2
IRIPPLE(MAX)  
I
OUT(MAX) = ILIM  
1DC  
(
MIN  
)
2
V
> V + |V |; I  
> I  
Step 6:  
D1  
R
IN  
OUT AVG  
OUT  
V
≥ V  
+ |V  
|
Step 7:  
C1  
RATING  
IN(MAX)  
OUT  
C1 ≥ 0.47µF for LT8570, C1 ≥ 0.22µF for LT8570-1  
Step 8:  
IRIPPLE(MAX)  
Variable Definitions:  
COUT  
C
OUT  
8 fOSC (0.005 VOUT  
)
V = Input Voltage  
IN  
Step 9:  
C
IN CVIN +CPWR  
V
OUT  
= Output Voltage  
C
IN  
IRIPPLE(MAX)  
8 fOSC 0.005 VIN(MAX)  
ILIM DCMAX  
40 fOSC 0.005 V  
+
DC = Power Switch Duty Cycle  
IN(MIN)  
•ꢀRefer to the Capacitor Selection Section for definition of C and C  
VIN  
PWR  
f
I
I
I
= Switching Frequency  
OSC  
OUT  
Step 10:  
FBX  
VOUT + 3mV  
RFBX  
=
= Maximum Average Output Current  
= Inductor Ripple Current  
R
83.3µA  
Step 11:  
85.5  
fOSC  
RIPPLE  
RT  
=
1; fOSC in MHz and RT in kΩ  
R
T
= 150mA for LT8570 and 75mA for LT8570-1  
RTYP  
Note 1: This table uses 0.5A and 0.25A for the peak switch current.  
Refer to the Electrical Characteristics Table and Typical Performance  
k
= 0.6A for LT8570 and 0.3A for LT8570-1  
SC  
Characteristics plots for the peak switch current at an operating duty cycle.  
I
I
= 0.04A for LT8570 and 0.02A for LT8570-1  
RMIN  
Note 2: The final values for C , C and C1 may deviate from the  
OUT IN  
previous equations in order to obtain desired load transient performance.  
= 0.5A for LT8570 and 0.25A for LT8570-1  
LIM  
85701f  
24  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
Typical applicaTions  
1.5MHz, 5V to 12V Output Boost Converter  
L1  
22µH  
L1  
47µH  
D1  
D1  
V
V
OUT  
OUT  
V
V
IN  
5V  
IN  
12V  
12V  
5V  
125mA  
60mA  
10k  
10k  
V
SW  
FBX  
VC  
V
SW  
FBX  
IN  
IN  
130k  
130k  
C
C
OUT  
1µF  
OUT  
SHDN  
SHDN  
2.2µF  
C
C
IN  
0.47µF  
IN  
LT8570  
LT8570-1  
1µF  
SYNC  
RT  
SYNC  
RT  
VC  
6.19k  
2.2nF  
6.19k  
2.2nF  
GND SS  
GND SS  
47pF  
47pF  
56.2k  
0.1µF  
56.2k  
0.1µF  
8570 TA02a  
8570 TA02b  
L1: WÜRTH 22µH WE-LQS 74404042220  
D1: DIODES INC. PD3S140  
L1: WÜRTH 47µH WE-LQS 74404032470  
D1: DIODES INC. PD3S140  
C
C
: 1µF, 16V, 0805, X7R  
C
C
: 0.47µF, 16V, 0805, X7R  
IN  
OUT  
IN  
OUT  
: 2.2µF, 16V, 0805, X7R  
: 1µF, 16V, 0805, X7R  
Efficiency and Power Loss (LT8570)  
Efficiency and Power Loss (LT8570-1)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
360  
320  
280  
240  
200  
160  
120  
80  
100  
180  
90  
80  
70  
60  
50  
40  
30  
20  
160  
140  
120  
100  
80  
60  
EFFICIENCY  
EFFICIENCY  
40  
POWER LOSS  
POWER LOSS  
40  
125  
20  
0
25  
0
60  
50  
75  
100  
15  
30  
45  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8570 TA02c  
8570 TA02d  
30mA to 90mA to 30mA Output Load Step (LT8570)  
15mA to 45mA to 15mA Output Load Step (LT8570-1)  
V
V
OUT  
500mV/DIV  
AC-COUPLED  
OUT  
500mV/DIV  
AC-COUPLED  
I
I
STEP  
20mA/DIV  
STEP  
50mA/DIV  
I
I
L1  
50mA/DIV  
L1  
100mA/DIV  
8570 TA02e  
8570 TA02f  
50µs/DIV  
50µs/DIV  
85701f  
25  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
Typical applicaTions  
700kHz, –15V Output Inverting Converter Accepts 5V to 35V Input  
C1  
0.47µF  
L1  
47µH  
L2  
47µH  
V
OUT  
V
IN  
–15V  
65mA (V = 5V)  
5V TO 35V  
IN  
232k  
D1  
150mA (V = 12V)  
IN  
210mA (V = 24V)  
IN  
V
SW  
FBX  
VC  
IN  
182k  
SHDN  
C
C
2.2µF  
IN  
OUT  
LT8570  
2.2µF  
SYNC  
RT  
20.5k  
2.2nF  
GND SS  
47pF  
0.1µF  
121k  
8570 TA03a  
L1: COILCRAFT 47µH LPD6235-473  
D1: DIODES INC SBR160S23  
C
, C  
: 2.2µF, 50V, 0805, X7R  
IN OUT  
C1: 0.47µF, 100V, 0805, X7S  
C1  
0.22µF  
L1  
100µH  
L2  
100µH  
V
OUT  
V
IN  
–15V  
35mA (V = 5V)  
5V TO 35V  
IN  
232k  
D1  
75mA (V = 12V)  
IN  
105mA (V = 24V)  
IN  
V
SW  
FBX  
IN  
182k  
SHDN  
C
C
1µF  
IN  
OUT  
LT8570-1  
1µF  
SYNC  
RT  
VC  
20.5k  
2.2nF  
GND SS  
47pF  
0.1µF  
121k  
8570 TA03b  
L1: COILCRAFT 100µH LPD5030-104  
D1: DIODES INC SBR160S23  
C
, C  
: 1µF, 50V, 0805, X7R  
IN OUT  
C1: 0.22µF, 100V, 0805, X7S  
Efficiency and Power Loss  
(LT8570, VIN = 12V)  
Efficiency and Power Loss  
(LT8570-1, VIN = 12V)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
560  
490  
420  
350  
280  
210  
140  
70  
90  
80  
70  
60  
50  
40  
30  
20  
10  
280  
245  
210  
175  
140  
105  
70  
EFFICIENCY  
EFFICIENCY  
35  
POWER LOSS  
POWER LOSS  
80  
60  
0
160  
0
0
40  
0
20  
80  
120  
40  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8570 TA03c  
8570 TA03c  
85701f  
26  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
Typical applicaTions  
1MHz Inverting Converter Generates –48V Output From 12V Input  
C1  
0.47µF  
L1  
120µH  
L2  
120µH  
V
OUT  
V
IN  
–48V  
12V  
50mA  
576k  
D1  
V
SW  
FBX  
VC  
IN  
576k  
SHDN  
C
C
IN  
OUT  
LT8570  
0.47µF  
0.47µF  
SYNC  
RT  
16.2k  
GND SS  
47pF  
0.1µF  
2.2nF  
84.5k  
8570 TA04a  
L1, L2: COILCRAFT 120µH MSD7342-124  
D1: DIODES, INC. DFLS1100  
C
, C  
: 0.47µF, 50V, 0805, X7R  
IN OUT  
C1: 0.47µF, 100V, 0805, X7S  
Efficiency and Power Loss  
90  
80  
70  
60  
50  
40  
30  
20  
10  
640  
560  
480  
400  
320  
240  
160  
80  
EFFICIENCY  
POWER LOSS  
0
0
10  
20  
30  
40  
50  
LOAD CURRENT (mA)  
8570 TA04b  
Switching Waveforms  
Start-Up Waveforms  
V
SW  
V
50V/DIV  
SW  
20V/DIV  
V
OUT  
V
OUT  
20V/DIV  
200mV/DIV  
AC-COUPLED  
I
+ I  
L1 L2  
I
+ I  
100mA/DIV  
L1 L2  
100mA/DIV  
8570 TA04c  
8570 TA04d  
500µs/DIV  
500µs/DIV  
85701f  
27  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
Typical applicaTions  
VFD (Vacuum Fluorescent Display) Power Supply Switches at 1MHz  
Danger High Voltage! Operation by High Voltage Trained Personnel Only  
D5  
V
OUT3  
180V  
C5  
0.22µF  
D4  
D2  
13mA*  
30.1Ω  
C4  
0.22µF  
D3  
D1  
V
OUT2  
120V  
C3  
0.22µF  
20mA*  
30.1Ω  
L1  
C2  
0.22µF  
150µH  
V
OUT1  
V
IN  
60V  
9V TO 16V  
40mA*  
487k  
V
SW  
FBX  
VC  
IN  
698k  
SHDN  
C
C1  
0.22µF  
IN  
LT8570  
0.47µF  
SYNC  
RT  
27.4k  
6.8nF  
GND SS  
330pF  
0.47µF  
84.5k  
8570 TA05a  
*MAX TOTAL OUTPUT POWER 2.5W  
L1: WÜRTH 150µH WE-PD2SR 744787151  
D1-D5: CENTRAL SEMI CMOD6263  
C
: 0.47µF, 25V, 0805, X7R  
IN  
C1-C5: 0.22µF, 100V, 0805, X7S  
Efficiency and Power Loss  
(VIN = 12V with Load on VOUT3  
Start-Up Waveforms  
)
V
OUT3  
90  
80  
70  
60  
50  
40  
30  
20  
900  
800  
700  
600  
500  
400  
300  
200  
50V/DIV  
V
OUT2  
50V/DIV  
V
OUT1  
50V/DIV  
I
L1  
100mA/DIV  
8570 TA05c  
1ms/DIV  
EFFICIENCY  
POWER LOSS  
0
0.5  
1
1.5  
2 2.5  
OUTPUT POWER (W)  
8570 TA05b  
85701f  
28  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
Typical applicaTions  
1.2MHz Charge Pump Creates 12V From a Single Lithium Ion Battery  
C2  
V
OUT2  
0.22µF  
D4  
–12V  
20mA* (V = 2.6V)  
10Ω  
D3  
IN  
IN  
IN  
30mA* (V = 3.8V)  
40mA* (V = 5V)  
R1  
C
OUT2  
**32.4k  
C1  
0.22µF  
1µF  
L1  
D2  
68µH  
V
12V  
OUT1  
V
IN  
2.6V TO 5.5V  
20mA* (V = 2.6V)  
IN  
10Ω  
D1  
10k  
30mA* (V = 3.8V)  
IN  
40mA* (V = 5V)  
IN  
V
IN  
SW  
FBX  
130k  
SHDN  
C
C
1µF  
IN  
OUT1  
LT8570-1  
0.47µF  
SYNC  
RT  
VC  
26.1k  
2.2nF  
*MAX TOTAL OUTPUT POWER FOR V = 2.6V: 240mW  
GND SS  
47pF  
0.1µF  
69.8k  
8570 TA06a  
IN  
V
IN  
V
IN  
= 3.8V: 350mW  
= 5V: 480mW  
L1: WÜRTH 68µH WE-LQS 74404054680  
D1-D4: DIODES INC SDM10K45  
C
C
: 0.47µF, 25V, 0805, X7R  
IN  
OUT1 OUT2  
**IF DRIVING ASYMETRICAL LOADS, PLACE A 32.4k RESISTOR  
FROM THE 12V OUTPUT TO THE –12V OUTPUT FOR IMPROVED  
LOAD REGULATION OF THE –12V OUTPUT  
, C  
: 1µF, 16V, 0805, X7R  
C1-C2: 0.22µF, 25V, 0805, X7R  
Efficiency and Power Loss  
(Load Between VOUT1 AND VOUT2  
Transient Response with 5mA to 15mA to  
5mA Output Load Step (VIN = 5V)  
)
90  
80  
70  
60  
50  
40  
30  
20  
10  
140  
125  
110  
95  
V
OUT1  
EFFICIENCY  
200mV/DIV  
AC-COUPLED  
V
OUT2  
200mV/DIV  
AC-COUPLED  
POWER LOSS  
80  
I
STEP  
10mA/DIV  
65  
I
L1  
50mA/DIV  
50  
8570 TA06c  
V
V
= 5V  
35  
IN  
IN  
100µs/DIV  
= 3.8V  
20  
0
4
8
12  
16  
20  
LOAD CURRENT (mA)  
8570 TA06b  
85701f  
29  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
Typical applicaTions  
1MHz Boost Converter Generates 24V from 5V-12V Input  
L1  
47µH  
D1  
V
OUT  
V
IN  
24V  
60mA (V = 5V)  
5V-12V  
IN  
IN  
232k  
200mA (V = 12V)  
V
SW  
FBX  
VC  
IN  
274k  
C
OUT  
SHDN  
1µF  
C
IN  
LT8570  
1µF  
SYNC  
RT  
15k  
2.2nF  
GND SS  
47pF  
84.5k  
0.1µF  
8570 TA07a  
L1: WÜRTH 47µH WE-LQS 74404042470  
D1: MBR0540  
C
C
: 1µF, 16V, 0603, X7R  
OUT  
IN  
: 1µF, 50V, 0805, X7R  
L1  
100µH  
D1  
V
OUT  
V
IN  
24V  
30mA (V = 5V)  
5V-12V  
IN  
IN  
232k  
100mA (V = 12V)  
V
SW  
FBX  
IN  
274k  
C
OUT  
SHDN  
0.47µF  
C
IN  
LT8570-1  
0.47µF  
SYNC  
RT  
VC  
11.3k  
2.2nF  
GND SS  
47pF  
84.5k  
0.1µF  
8570 TA07b  
L1: WÜRTH 100µH WE-LQS 74404054101  
D1: FAIFCHILD BAT42XV2  
C
C
: 0.47µF, 16V, 0603, X7R  
OUT  
IN  
: 0.47µF, 50V, 0805, X7R  
Efficiency and Power Loss  
(LT8570, VIN = 12V)  
Efficiency and Power Loss  
(LT8570-1, VIN = 12V)  
100  
90  
80  
70  
60  
50  
40  
30  
630  
540  
450  
360  
270  
180  
90  
100  
90  
80  
70  
60  
50  
40  
30  
350  
300  
250  
200  
150  
100  
50  
EFFICIENCY  
EFFICIENCY  
POWER LOSS  
POWER LOSS  
0
200  
0
100  
0
40  
80  
120  
160  
0
20  
40  
60  
80  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8570 TA07c  
8570 TA07d  
85701f  
30  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
Typical applicaTions  
12V Battery Stabilizer Survives 40V Transients  
C1  
L1  
0.47µF  
D1  
V
IN  
47µH  
V
OUT  
9V-16V  
UP TO 40V  
TRANSIENT  
12V  
160mA  
L2  
47µH  
10k  
V
IN  
SW  
130k  
C
OUT  
SHDN  
FBX  
VC  
2.2µF  
C
IN  
LT8570  
1µF  
L1, L2: COILCRAFT 47µH LPD6235-473  
D1: DIODES INC. DFLS1100  
SYNC  
RT  
26.7k  
2.2nF  
C
C
: 1µF, 50V, 0805, X7R  
: 2.2µF, 25V, 0805, X7R  
IN  
OUT  
GND SS  
47pF  
C1: 0.47µF, 100V, 0805, X7S  
84.5k  
0.22µF  
8570 TA08a  
C1  
0.22µF  
L1  
68µH  
D1  
V
IN  
V
OUT  
9V-16V  
UP TO 40V  
TRANSIENT  
12V  
70mA  
L2  
68µH  
10k  
V
IN  
SW  
130k  
C
OUT  
SHDN  
FBX  
VC  
1µF  
C
IN  
LT8570-1  
0.47µF  
SYNC  
RT  
L1, L2: COILCRAFT 68µH LPD5030-683  
D1: DIODES INC. DFLS1100  
16.5k  
2.2nF  
C
C
: 0.47µF, 50V, 0805, X7R  
: 1µF, 25V, 0805, X7R  
IN  
OUT  
GND SS  
47pF  
C1: 0.22µF, 100V, 0805, X7S  
84.5k  
0.22µF  
8570 TA08b  
Efficiency and Power Loss  
(LT8570, VIN = 12V)  
Efficiency and Power Loss  
(LT8570-1, VIN = 12V)  
90  
80  
70  
60  
50  
40  
30  
540  
90  
240  
200  
160  
120  
80  
450  
360  
270  
180  
90  
80  
70  
60  
50  
40  
30  
40  
EFFICIENCY  
EFFICIENCY  
POWER LOSS  
POWER LOSS  
0
160  
0
0
40  
80  
120  
0
20  
40  
60  
80  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8570 TA08c  
8570 TA08d  
85701f  
31  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.50  
BSC  
2.38 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.125  
0.40 ±0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 0509 REV C  
4
1
0.25 ±0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
85701f  
32  
For more information www.linear.com/LT8570  
LT8570/LT8570-1  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8E Package  
8-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1662 Rev K)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
1.88  
(.074)  
1
0.29  
REF  
1.88 ±0.102  
(.074 ±.004)  
1.68  
(.066)  
0.889 ±0.127  
(.035 ±.005)  
0.05 REF  
DETAIL “B”  
5.10  
(.201)  
MIN  
3.20 – 3.45  
(.126 – .136)  
1.68 ±0.102  
(.066 ±.004)  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
8
NO MEASUREMENT PURPOSE  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 3)  
0.65  
(.0256)  
BSC  
0.52  
(.0205)  
REF  
0.42 ±0.038  
(.0165 ±.0015)  
8
7 6 5  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
4.90 ±0.152  
(.193 ±.006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ±0.152  
(.021 ±.006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
0.65  
(.0256)  
BSC  
MSOP (MS8E) 0213 REV K  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD  
SHALL NOT EXCEED 0.254mm (.010") PER SIDE.  
85701f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
33  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT8570/LT8570-1  
Typical applicaTion  
1.2MHz Boost Converter Creates 48V from 9V-16V Input  
Efficiency and Power Loss  
(VIN = 12V)  
L1  
D1  
V
OUT  
48V  
220µH  
90  
80  
70  
60  
50  
40  
30  
540  
450  
360  
270  
180  
90  
V
IN  
35mA (V = 9V)  
50mA (V = 12V)  
IN  
9V TO 16V  
IN  
576k  
V
SW  
FBX  
IN  
562k  
SHDN  
C
C
IN  
OUT  
LT8570-1  
0.22µF  
0.22µF  
SYNC  
RT  
VC  
8.87k  
3.3nF  
GND SS  
47pF  
EFFICIENCY  
POWER LOSS  
0.1µF  
69.8k  
8570 TA09a  
0
0
10  
20  
30  
40  
50  
LOAD CURRENT (mA)  
L1: COILCRAFT 220µH LPS6235-224  
D1: DIODES INC. ZHCS506  
8570 TA09b  
C
C
: 0.22µF, 25V, 0603, X7R  
IN  
OUT  
: 0.22µF, 50V, 0805, X7R  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1613  
550mA (I ), 1.4MHz High Efficiency Step-Up DC/DC Converter V : 0.9V to 10V, V  
= 34V, I = 3mA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
ThinSOT Package  
LT1618  
1.5A (I ), 1.4MHz High Efficiency Step-Up DC/DC Converter  
V : 1.6V to 18V, V  
= 35V, I = 1.8mA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
MS10, 3mm × 3mm DFN Packages  
LT1930/LT1930A 1A (I ), 1.2MHz/2.2MHz High Efficiency Step-Up DC/DC  
V : 2.6V to 16V, V  
= 34V, I = 4.2mA/5.5mA, I < 1µA,  
Q SD  
SW  
Converter  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
ThinSOT Package  
LT1935  
2A (I ), 40V, 1.2MHz High Efficiency Step-Up DC/DC Converter V : 2.3V to 16V, V  
= 38V, I = 3mA, I < 1µA,  
Q SD  
SW  
IN  
ThinSOT Package  
LT1944/LT1944-1 Dual Output 350mA (I ), Constant Off-Time, High Efficiency  
V : 1.2V to 15V, V  
= 34V, I = 20µA, I < 1µA,  
Q SD  
SW  
IN  
Step-Up DC/DC Converter  
MS10 Package  
LT1946/LT1946A 1.5A (I ), 1.2MHz/2.7MHz High Efficiency Step-Up DC/DC  
V : 2.6V to 16V, V  
= 34V, I = 3.2mA, I < 1µA,  
Q SD  
SW  
IN  
Converter  
MS8E Package  
LT3467  
LT3479  
LT3580  
LT3581  
LT3579  
LT8582  
LT8580  
1.1A (I ), 1.3MHz High Efficiency Step-Up DC/DC Converter  
V : 2.4V to 16V, V  
= 40V, I = 1.2mA, I < 1µA,  
Q SD  
SW  
IN  
ThinSOT, 2mm × 3mm DFN Packages  
3A Full-Featured DC/DC Converter with Soft-Start and Inrush  
Current Protection  
V : 2.5V to 24V, V = 40V, I = 5mA, I < 1µA,  
IN  
OUT(MAX)  
Q
SD  
DFN, TSSOP Packages  
2A (I ), 42V, 2.5MHz, High Efficiency Step-Up DC/DC  
V : 2.5V to 32V, V  
= 42V, I = 1mA, I = <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
Converter  
3mm × 3mm DFN-8, MSOP-8E  
3.3A (I ), 42V, 2.5MHz, High Efficiency Step-Up DC/DC  
V : 2.5V to 22V, V = 42V, I = 1.9mA, I = <1µA,  
SW  
IN  
OUT(MAX)  
Q
SD  
Converter  
4mm × 3mm DFN-14, MSOP-16E  
6A (I ), 42V, 2.5MHz, High Efficiency, Step-Up DC/DC  
V : 2.5V to 16V, V = 42V, I = 1.9mA, I = <1µA,  
SW  
IN  
OUT(MAX)  
Q
SD  
Converter  
4mm × 5mm DFN-20, TSSOP-20  
Dual Channel, 3A (I ), 42V, 2.5MHz, High Efficiency Step-Up  
V : 2.5V to 22V, V = 42V, I = 2.1mA, I = <1µA,  
SW  
IN  
OUT(MAX)  
Q
SD  
DC/DC Converter  
4mm × 7mm DFN-24  
1A (I ), 65V 1.5MHz, High Efficiency Step-Up DC/DC Converter V : 2.55V to 40V, V  
= 65V, I = 1.2mA, I = <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
3mm × 3mm DFN-8, MSOP-8E  
85701f  
LT 0215 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
34  
LINEAR TECHNOLOGY CORPORATION 2015  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT8570  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY