LT8640 [Linear]

60V, 1.2A Synchronous Monolithic Buck Regulator with 6μA Quiescent Current;
LT8640
型号: LT8640
厂家: Linear    Linear
描述:

60V, 1.2A Synchronous Monolithic Buck Regulator with 6μA Quiescent Current

文件: 总26页 (文件大小:2036K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8619/LT8619-5  
60V, 1.2A Synchronous Monolithic Buck  
Regulator with 6µA Quiescent Current  
FEATURES  
DESCRIPTION  
The LT®8619 is a compact, high efficiency, high speed  
n
Wide Input Voltage Range: 3V to 60V  
Fast Minimum Switch-On Time: 30ns  
n
n
synchronous monolithic step-down switching regulator  
that consumes only 6μA of quiescent current. The LT8619  
can deliver 1.2A of continuous current. Top and bottom  
power switches are included with all necessary circuitry  
to minimize the need for external components. Low ripple  
Burst Mode® operation enables high efficiency down to  
very low output currents while keeping the output ripple  
Ultralow Quiescent Current Burst Mode Operation:  
n
6μA I Regulating 12V to 3.3V  
Q
IN  
OUT  
n
10mV Output Ripple at No Load  
P-P  
n
n
Synchronizable/Programmable Fixed Frequency  
Forced Continuous Mode Operation: 300kHz  
to 2.2MHz  
to 10mV . A SYNC pin allows forced continuous mode  
High Efficiency Synchronous Operation:  
P-P  
n
operation synchronized to an external clock. Internal com  
-
92% Efficiency at 0.5A, 5V  
90% Efficiency at 0.5A, 3.3V  
from 12V  
OUT  
IN  
n
pensation with peak current mode topology allows the use  
of small inductors and results in fast transient response  
and good loop stability. The EN/UV pin has an accurate 1V  
from 12V  
IN  
OUT  
n
n
n
n
n
n
Low Dropout: 360mV at 0.5A  
Low EMI  
threshold and can be used to program V undervoltage  
lockout or to shut down the LT8619, reducing the input  
supply current to below 0.6μA. The PG flag signals when  
Accurate 1V Enable Pin Threshold  
IN  
Internal Soft-Start and Compensation  
Power Good Flag  
Small Thermally Enhanced 16-Lead MSOP Package  
and 10-Lead (3mm × 3mm) DFN Packages  
V
is within 7.5% of the programmed output voltage.  
OUT  
The LT8619 is available in a small 16-lead MSOP and  
10-lead 3mm × 3mm DFN packages with exposed pad  
for low thermal resistance.  
APPLICATIONS  
All registered trademarks and trademarks are the property of their respective owners.  
n
12V Automotive Systems  
n
12V and 24V Commercial Vehicles  
n
48V Electric and Hybrid Vehicles  
Industrial Supplies  
n
TYPICAL APPLICATION  
5V, 1.2A Step-Down Converter  
Efficiency at VOUT = 5V  
1ꢀꢀ  
9ꢀ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
1ꢀ  
1ꢀ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢐꢋ  
6ꢏ ꢁꢉ 6ꢄꢏ  
ꢒꢓꢁ  
ꢓꢔ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ  
ꢉꢊꢋꢌꢍꢎꢏꢉꢐ  
ꢐꢋ  
ꢌꢇꢌꢅꢊ  
ꢄꢇ1ꢅꢊ  
8619ꢂꢃ  
1ꢄꢅꢆ  
1
ꢉꢑꢁ  
ꢃꢏ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
1ꢇꢌꢍ  
ꢉꢊꢊ ꢉꢋ  
ꢝꢋꢞꢑꢏ  
ꢐꢋꢁꢏ  
1ꢄꢄꢈ  
ꢕꢖ  
ꢀꢁ1  
ꢕꢖ  
ꢒꢐꢍꢓ  
ꢉꢑꢁ  
ꢗꢗ  
1ꢅꢊ  
ꢀꢁꢂꢃꢄ ꢅꢁꢆꢆ  
ꢀꢁꢀ1  
ꢀꢁꢀꢀ1  
ꢀꢁꢀꢀꢀ1  
ꢟꢁ  
ꢓꢙꢋꢗ  
ꢖꢋꢘ  
ꢀ ꢁ8ꢂ  
ꢀ ꢁꢂꢃ  
ꢀ 1ꢁꢂ  
ꢌꢌꢅꢊ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
66ꢇꢃꢈ  
8619 ꢁꢍꢄ1ꢎ  
f
ꢚ ꢛꢄꢄꢈꢆꢜ  
ꢉꢓꢗ  
ꢀ ꢁ 1ꢂꢃꢄꢅ ꢆꢄꢀꢇꢈꢉꢂꢉꢂꢊꢋꢈꢂ1  
1ꢀ 1ꢀꢀ 1ꢀ 1ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢀ ꢚ ꢏꢐꢓꢆꢍꢙ ꢐꢆꢀꢕꢂꢌꢄꢌꢄꢒꢠꢂꢄ1  
ꢚ ꢁꢘꢡ ꢗꢢꢌꢌꢃꢣꢛꢟ1ꢗꢌꢌ6ꢡꢌꢃꢄ  
ꢀꢁꢀꢀ1 ꢀꢁꢀ1 ꢀꢁ1  
1
ꢉꢑꢁ  
8619 ꢀꢁꢂ1ꢃ  
8619f  
1
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, 2)  
V , EN/UV................................................................60V  
Operating Junction Temperature (Note 3)  
IN  
BIAS..........................................................................30V  
BST Pin Above SW Pin................................................4V  
PG, SYNC, OUT. ..........................................................6V  
FB ...............................................................................2V  
LT8619E, LT8619E-5.......................... –40°C to 125°C  
LT8619I, LT8619I-5............................ –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
PIN CONFIGURATION  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢍꢘꢎ ꢇꢈꢉꢔ  
1
6
8
ꢅꢆ  
ꢈꢅ  
ꢅꢆ  
16 ꢐꢔ  
1ꢃ ꢐꢔ  
1ꢂ ꢕꢐꢍ  
1ꢁ ꢅꢆ  
1
1ꢍ ꢔꢆ  
ꢄꢈ  
ꢅꢈꢜꢝꢃ  
ꢞꢀ  
9
8
6
ꢚꢔꢀ  
ꢄꢈꢀꢃ  
ꢚꢄꢊꢔ  
ꢕꢚꢛ  
11  
ꢇꢈꢉ  
ꢉꢅꢊꢋꢇ  
ꢌꢍ  
1ꢄ  
ꢏꢅꢒ  
ꢋꢋ  
1ꢀ ꢈꢅꢍꢇ  
11 ꢕꢈꢖꢐ  
ꢆꢆ  
ꢎꢏ  
ꢂꢇ  
ꢐꢑꢅꢆ  
ꢏꢅꢒ  
1ꢓ ꢗꢕꢊꢘꢋꢍꢙ  
ꢔꢟꢈꢋ  
9
ꢗꢕꢊꢘꢋꢍꢙ  
ꢚꢐꢉ ꢎꢖꢆꢛꢖꢏꢉ  
ꢉꢉ ꢂꢊꢋꢌꢊꢇꢅ  
16ꢜꢝꢉꢖꢒ ꢎꢝꢖꢐꢍꢈꢆ ꢚꢐꢘꢎ  
1ꢍꢎꢏꢅꢊꢉ ꢐꢑꢒꢒ × ꢑꢒꢒꢓ ꢂꢏꢊꢔꢀꢄꢋ ꢉꢕꢈ  
θ
= 40°C/W, θ = 10°C/W  
JC  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
JA  
θ
JA  
= 43°C/W, θ = 10°C/W  
JC  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
*FB FOR LT8619, OUT FOR LT8619-5  
http://www.linear.com/product/LT8619#orderinfo  
ORDER INFORMATION  
LEAD FREE FINISH  
LT8619EDD#PBF  
LT8619IDD#PBF  
TAPE AND REEL  
PART MARKING*  
LGNP  
PACKAGE DESCRIPTION  
10-Lead (3mm × 3mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 125°C  
LT8619EDD#TRPBF  
LT8619IDD#TRPBF  
LT8619EMSE#TRPBF  
LT8619IMSE#TRPBF  
LT8619EMSE-5#TRPBF  
LT8619IMSE-5#TRPBF  
LGNP  
10-Lead (3mm × 3mm) Plastic DFN  
16-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LT8619EMSE#PBF  
LT8619IMSE#PBF  
LT8619EMSE-5#PBF  
LT8619IMSE-5#PBF  
8619  
8619  
16-Lead Plastic MSOP  
86195  
16-Lead Plastic MSOP  
86195  
16-Lead Plastic MSOP  
Consult ADI Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
8619f  
2
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VEN/UV = 2V unless otherwise noted (Notes 2, 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Switching Loop  
V
IN  
V
IN  
Minimum Input Voltage  
3.0  
V
Quiescent Current at No Load  
V
V
= 12V, V  
= 0V  
EN/UV  
0.6  
0.6  
1.0  
3.0  
µA  
µA  
IN  
l
l
= 12V, V  
= 3.3V, R = 66.5k, V  
= 2V, V = 0V  
SYNC  
6
6
10  
18  
µA  
µA  
IN  
OUT  
T
EN/UV  
V
V
V
LOAD  
LOAD  
= 12V, V  
= 12V, V  
= 12V, V  
= 3.3V, R = 66.5k, V  
= 2V, Floats SYNC  
10  
3
µA  
IN  
OUT  
OUT  
OUT  
T
EN/UV  
EN/UV  
EN/UV  
= 3.3V, R = 66.5k, V  
= 2V, V  
= 2V, V  
= INTV  
= 0V  
mA  
IN  
T
SYNC  
SYNC  
CC  
V
Current in Regulation  
= 3.3V, R = 66.5k, V  
T
IN  
IN  
I
I
= 100µA  
= 1mA  
l
l
38  
320  
65  
400  
µA  
µA  
BIAS Pin Current Consumption  
Regulated Output Voltage  
V
= 12V, V  
= 3.3V, I  
= 0.5A, f = 700kHz  
OSC  
2.2  
mA  
V
IN  
BIAS  
LOAD  
LT8619-5, V = 12V, V  
= INTV , No Load  
4.975  
4.925  
5.0  
5.0  
5.025  
5.075  
IN  
SYNC  
CC  
l
Feedback Voltage  
LT8619, V = 12V, V  
= INTV , No Load  
0.796  
0.788  
0.8  
0.8  
0.804  
0.812  
V
V
IN  
SYNC  
CC  
l
l
Feedback Voltage Line Regulation  
Feedback Pin Input Current  
Minimum On-Time  
V
= 4V to 50V, V  
= INTV  
0.004  
0.03  
20  
%/V  
nA  
ns  
ns  
A
IN  
SYNC  
CC  
LT8619, V = 0.8V  
FB  
l
l
LT8619, I  
= 0.5A, V  
= INTV  
30  
150  
1.75  
1.8  
60  
LOAD  
SYNC  
CC  
Minimum Off-Time  
100  
1.5  
180  
2.0  
Top Switch Peak Current Limit  
Bottom Switch Current Limit  
Bottom Switch Reverse Current Limit  
Soft-Start Duration  
A
V
V
C
= INTV  
0.55  
0.2  
A
SYNC  
CC  
= 12V, V  
= 3.3V, No Load, C  
= 22µF  
ms  
ms  
µs  
IN  
OUT  
OUT  
EN/UV to PG High Delay  
EN/UV to PG Low Delay  
Oscillator and SYNC  
= 1µF, V  
= 3.3V, No Load, C = 22µF  
OUT  
0.66  
10  
INTVCC  
OUT  
l
l
l
l
Operating Frequency  
R = 162k  
260  
630  
1.9  
0.3  
300  
700  
2.0  
340  
770  
2.1  
kHz  
kHz  
T
R = 66.5k  
T
R = 20k  
T
MHz  
MHz  
Synchronization Frequency  
SYNC Threshold  
f
≥ f  
OSC  
2.2  
SYNC  
Frequency Synchronization  
Burst Mode Operation  
Floats SYNC Pin, Pulse-Skipping Mode  
Forced Continuous Mode  
1
V
V
V
B
0.35  
1.6  
0.6  
1.2  
2.0  
0.95  
2.4  
SYNC Pin Current  
Built-In Sourcing Current, V  
= 0V  
–0.2  
3.0  
µA  
µA  
SYNC  
Built-In Sinking Current, V  
= 3.3V  
SYNC  
8619f  
3
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VEN/UV = 2V unless otherwise noted (Notes 2, 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Switch, Logic and Power Good  
Top Switch On-Resistance  
Bottom Switch On-Resistance  
EN/UV Power-On Threshold  
EN/UV Power-On Hysteresis  
EN/UV Shutdown Threshold  
EN/UV Pin Current  
I
I
= 0.1A  
= 0.1A  
0.45  
0.22  
1.0  
LOAD  
LOAD  
l
l
EN/UV Rising  
0.94  
1.1  
V
40  
mV  
V
EN/UV Falling  
0.34  
0.56  
0.92  
100  
V
V
V
V
= 2V  
–100  
nA  
%
%
%
EN/UV  
Overvoltage Threshold  
Rising Wrt. Regulated V  
Rising Wrt. Regulated V  
3.75  
7.5  
FB  
FB  
FB  
FB  
l
l
Positive Power Good Threshold  
Negative Power Good Threshold  
Positive Power Good Delay  
5
10  
FB  
Falling Wrt. Regulated V  
–5  
–7.5  
–10  
FB  
V
V
= 0.8V 0.9V to PG Low  
= 0.9V 0.8V to PG High  
60  
35  
µs  
µs  
FB  
FB  
Negative Power Good Delay  
V
V
= 0.8V 0.7V to PG Low  
= 0.7V 0.8V to PG High  
60  
35  
µs  
µs  
FB  
FB  
PG Leakage  
V
= 3.3V, Power Good  
= 100µA  
100  
0.3  
nA  
V
PG  
l
PG V  
I
0.01  
OL  
PG  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All Voltages are referenced to ground unless otherwise  
specified.  
characterization, and correlation with statistical process controls. The  
LT8619I is guaranteed over the full –40°C to 125°C operating junction  
temperature range. High junction temperatures degrade operating  
lifetimes. Operating lifetime is derated at junction temperatures greater  
than 125°C.  
Note 4: This IC includes overtemperature protection that is intended to  
protect the device during overload conditions. Junction temperature will  
exceed 150°C when overtemperature protection is active. Continuous  
operation above the specified maximum operating junction temperature  
will reduce lifetime.  
Note 3: The LT8619 is tested under pulse load conditions such that  
T ≈ T . The LT8619E is guaranteed to meet performance specifications  
J
A
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
8619f  
4
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
700kHz Efficiency at VOUT = 5V  
700kHz Efficiency at VOUT = 3.3V  
2MHz Efficiency at VOUT = 5V  
1ꢀꢀ  
9ꢀ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
1ꢀ  
1ꢀꢀ  
9ꢀ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
1ꢀ  
1ꢀꢀ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ  
ꢉꢊꢋꢌꢍꢎꢏꢉꢐ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ  
ꢉꢊꢋꢌꢍꢎꢏꢉꢐ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ  
ꢉꢊꢋꢌꢍꢎꢏꢉꢐ  
9ꢀ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
1ꢀ  
ꢀꢁꢂꢃꢄꢅ  
ꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢊꢋꢌꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢊꢋꢌꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢊꢋꢌꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ  
ꢋꢁꢅꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ  
ꢋꢁꢅꢄ  
ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ  
ꢋꢁꢅꢄ  
ꢀꢁꢂ  
ꢀ 1ꢁꢂ  
ꢀꢁꢂ  
ꢀ 1ꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ 1ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
f
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ 1ꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢅꢆꢇꢈꢄꢆ1  
ꢀ ꢁ 1ꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢅꢆꢇꢈꢄꢆ1  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆꢅꢆꢇꢈꢄꢆ1  
ꢀꢁꢀꢀ1 ꢀꢁꢀ1 ꢀꢁ1  
1
1ꢀ 1ꢀꢀ 1ꢀ 1ꢀꢁ  
ꢀꢁꢀꢀ1 ꢀꢁꢀ1 ꢀꢁ1  
1
1ꢀ 1ꢀꢀ 1ꢀ 1ꢀꢁ  
ꢀꢁꢀꢀ1 ꢀꢁꢀ1 ꢀꢁ1  
1
1ꢀ 1ꢀꢀ 1ꢀ 1ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
8619 ꢀꢁꢂ  
8619 ꢀꢁ1  
8619 ꢀꢁꢂ  
2MHz Efficiency at VOUT = 3.3V  
Efficiency at VOUT = 5V  
Efficiency at VOUT = 3.3V  
1ꢀꢀ  
9ꢀ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
1ꢀ  
1ꢀꢀ  
9ꢀ  
9ꢀ  
8ꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
1ꢀꢀ  
9ꢀ  
8ꢀ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
1ꢀ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ ꢉꢊꢋꢌꢍꢎꢏꢉꢐ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ  
ꢉꢊꢋꢌꢍꢎꢏꢉꢐ  
ꢀ8ꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢊꢋꢌꢄ  
ꢀꢁꢂ  
1ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ  
ꢋꢁꢅꢄ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ ꢉꢊꢋꢌꢍꢎꢏꢉꢐ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢀ ꢁ8ꢂ  
ꢀ ꢁꢂꢃ  
ꢀ 1ꢁꢂ  
ꢀꢁꢂ  
ꢀ 1ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
f
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ ꢂꢃꢂꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢅꢆꢇꢈꢄꢆ1  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀ ꢁ 1ꢂꢃꢄꢅ ꢆꢄꢀꢇꢈꢉꢂꢉꢂꢊꢋꢈꢂ1  
ꢀ ꢁ 1ꢂꢃꢄꢅ ꢆꢄꢀꢇꢈꢉꢂꢉꢂꢊꢋꢈꢂ1  
ꢀꢁꢀꢀ1 ꢀꢁꢀ1 ꢀꢁ1  
1
1ꢀ 1ꢀꢀ 1ꢀ 1ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ6  
ꢀꢁ8  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁꢀꢀ1 ꢀꢁꢀ1 ꢀꢁ1  
1
1ꢀ 1ꢀꢀ 1ꢀ 1ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
8619 ꢀꢁꢂ  
8619 ꢀꢁꢂ  
8619 ꢀꢁ6  
Efficiency vs VIN  
No Load IVIN at 700kHz  
No Load IVIN vs Temperature  
1ꢀꢁ  
1ꢀ  
ꢀꢁ  
1ꢀꢀ  
ꢀꢁ  
ꢀ ꢁꢂꢁꢃ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
9ꢀ ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
1ꢀ  
ꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢊꢋꢌꢄ  
ꢀ ꢁ 1ꢂꢃꢄ ꢅꢄꢀꢆꢇꢈꢂꢈꢂꢉꢊꢇꢂ1  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ ꢉꢊꢋꢌꢍꢎꢏꢉꢐ  
ꢀꢁꢀꢂ  
ꢀꢁ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢂ  
1ꢀꢁ  
9ꢀ  
1ꢀꢀ  
1ꢀ  
6ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢃꢆ  
8ꢀ  
8ꢀ  
ꢀꢁ  
ꢀꢁ  
1ꢀꢁꢂ ꢃꢄꢂꢅ  
6ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
1ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ ꢉꢊꢋꢌꢍꢎꢏꢉꢐ  
1
1
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁ ꢂꢁꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁ1  
ꢀꢁꢂ  
1
1ꢀ  
1ꢀꢀ  
1ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
8619 ꢀꢁ8  
8619 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
8619 ꢀꢁ9  
8619f  
5
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
VOUT = 3.3V  
Load Regulation  
Line Regulation  
1ꢀꢁꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢀ  
ꢀꢁꢂꢃ  
ꢀꢁ1ꢀ  
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢀꢁ1  
ꢀ 1ꢁꢂ  
ꢀ ꢁꢂꢃ ꢅ ꢆꢇ ꢈꢇꢉꢊ  
ꢀ 1ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
ꢀꢁ ꢂꢁꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
f
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢁ  
ꢀꢁꢂꢃꢄ  
ꢀ1ꢁꢂꢂ  
ꢀꢁꢂꢁꢃ  
ꢀꢁꢂ1ꢁ  
ꢀꢁꢂ1  
ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
1
1ꢀ  
1ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ6  
ꢀꢁ8  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁ  
8619 ꢀ1ꢁ  
8619 ꢀ1ꢁ  
8619 ꢀ11  
Top FET Current Limit vs  
Duty Cycle  
Switch Resistance  
EN/UV Threshold  
ꢀꢁꢂ  
1ꢀ9  
1ꢀ8  
1ꢀꢁ  
1ꢀ6  
1ꢀꢁ  
1ꢀꢀꢀ  
9ꢀꢀ  
8ꢀꢀ  
ꢀꢁꢁ  
6ꢀꢀ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
1ꢀꢀ  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁ8  
ꢀꢁ6  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊ 1ꢋꢋꢌꢂ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢆꢁꢈ  
ꢀꢁꢂꢃꢄꢅꢁꢆ ꢇꢈꢄꢃꢉꢈꢁꢊꢋ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢇꢈꢁꢉ  
ꢀꢁꢂ ꢃꢄꢅꢀꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆꢇ ꢃꢁꢈꢉꢀꢁꢅꢊꢄ  
ꢀ 1ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂꢂꢁꢃ ꢄꢅꢆꢂꢇꢈ  
f
ꢀꢁ  
ꢀ ꢁ 1ꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢅꢆꢇꢈꢄꢆ1  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
8ꢀ  
1ꢀꢀ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢃꢄꢅꢆ ꢇꢈꢉ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
8619 ꢀ1ꢁ  
8619 ꢀ1ꢁ  
8619 ꢀ1ꢁ  
fSW  
Dropout  
Dropout vs Temperature  
1ꢀꢁ  
ꢀꢁ8  
ꢀꢁ6  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
1ꢀꢁꢂ  
1ꢀꢁꢂ  
1ꢀꢁꢂ  
1ꢀꢁꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢀ  
ꢀꢁꢂꢃ  
ꢀ 1ꢁꢂ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ 1ꢂꢃꢄꢅ ꢆꢄꢀꢇꢈꢉꢂꢉꢂꢊꢋꢈꢂ1  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
= 3.3V, V  
ꢀ ꢁ1ꢂ  
ꢀ ꢁꢂꢁ ꢄ ꢅꢆ ꢇꢆꢈꢉ  
∆V  
ꢀ ꢁ1ꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
f
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢀꢁ  
ꢀ ꢁ ꢂꢃꢂꢄꢅꢆ ꢇꢅꢀꢈꢉꢊꢋꢊꢋꢌꢍꢉꢋ1  
ꢎꢏꢐꢑꢒꢓ ꢑꢏꢔꢕꢇꢔꢖꢏꢖꢗ ꢘꢏꢓꢒ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢌꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢁꢍꢄꢂꢎꢇꢈꢁꢆ  
ꢎꢏꢁꢐꢄ ꢋꢎꢑ ꢒꢉꢆꢃꢇꢈꢁꢆ  
ꢇꢄꢋꢍꢄꢂꢎꢇꢉꢂꢄ ꢋꢎꢓ  
ꢍꢄꢂꢋꢎꢆꢄꢆꢇꢓ  
ꢅꢎꢋꢎꢕꢄ ꢇꢖꢄ  
ꢅꢄꢐꢈꢃꢄꢗ  
1ꢀꢁꢂ ꢃꢄꢂꢅ  
1ꢀꢁꢂ ꢃꢄꢂꢅ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
1
f
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ1  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢃꢆ  
ꢀꢁ ꢂꢁꢃꢄ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ6  
ꢀꢁ8  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
8619 ꢀ18  
8619 ꢀ16  
8619 ꢀ1ꢁ  
8619f  
6
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
Power Good, Overvoltage  
Threshold  
Minimum On-Time  
Minimum Off-Time  
1ꢀꢁ  
1ꢀꢀ  
8ꢀ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
1ꢀꢁꢀ  
18ꢀ  
1ꢀꢁ  
16ꢀ  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
ꢀꢀꢁ ꢂ ꢀꢁꢂꢁꢃꢄ  
ꢀꢁ  
f
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢀꢀꢁ ꢂ ꢀꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁ ꢂꢁꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢃꢆ  
ꢀꢁꢂꢃ ꢄꢅꢃꢆ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ1ꢁꢂꢁ  
ꢀꢁ ꢂꢁꢃꢄ  
ꢀꢁꢂ ꢃ ꢀꢁꢂꢁꢃꢄ  
ꢀꢁꢂꢃ ꢄꢅꢃꢆ  
ꢀꢁ  
ꢀꢁꢂ ꢃ ꢀꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
8619 ꢀ19  
8619 ꢀꢁ1  
8619 ꢀꢁꢂ  
Power Good Delay  
VIN UVLO  
IBIAS vs Load  
1ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
1ꢀ  
1ꢀ  
8
ꢀꢁꢂ  
ꢀꢁ9  
ꢀꢁ8  
ꢀꢁꢂ  
ꢀꢁ6  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ 1ꢁ6 ꢃ ꢄꢅ ꢆꢅꢇꢈ  
ꢀ 1ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢀꢁ  
ꢀꢁꢂꢁꢃꢄ  
6
f
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢂꢃꢄꢅ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ  
6ꢀ  
8ꢀ  
1ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ6  
ꢀꢁ8  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁ  
8619 ꢀꢁꢁ  
8619 ꢀꢁꢂ  
8619 ꢀꢁꢂ  
IBIAS vs fSW  
IBIAS at 700kHz vs Temperature  
IBIAS at 2MHz vs Temperature  
1ꢀ  
8
ꢀꢁ  
ꢀꢁ  
16  
1ꢀ  
8
1ꢀ  
8
ꢀ 1ꢁꢂ  
ꢀꢁꢂ  
ꢀ 1ꢁꢂ  
1ꢀꢁꢂ ꢃꢄꢂꢅ  
ꢀꢁ  
ꢀ 1ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢁꢃ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢁꢃ  
1ꢀꢁꢂ ꢃꢄꢂꢅ  
ꢀ ꢁ 1ꢂꢃꢄ  
ꢀꢁꢂꢃ ꢄ ꢅ  
ꢀꢁꢂꢃ ꢄ ꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢌꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢁꢍꢄꢂꢎꢇꢈꢁꢆ  
ꢎꢏꢁꢐꢄ ꢋꢎꢑ ꢒꢉꢆꢃꢇꢈꢁꢆ  
ꢇꢄꢋꢍꢄꢂꢎꢇꢉꢂꢄ ꢋꢎꢓ  
ꢍꢄꢂꢋꢎꢆꢄꢆꢇꢓ  
1ꢀ ꢁꢂꢀꢃ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢌꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢁꢍꢄꢂꢎꢇꢈꢁꢆ  
ꢎꢏꢁꢐꢄ ꢋꢎꢑ ꢒꢉꢆꢃꢇꢈꢁꢆ  
ꢇꢄꢋꢍꢄꢂꢎꢇꢉꢂꢄ ꢋꢎꢓ  
ꢍꢄꢂꢋꢎꢆꢄꢆꢇꢓ  
ꢅꢎꢋꢎꢕꢄ ꢇꢖꢄ  
ꢅꢄꢐꢈꢃꢄꢗ  
1ꢀ ꢁꢂꢀꢃ  
6
6
1ꢀ ꢁꢂꢀꢃ  
ꢅꢎꢋꢎꢕꢄ ꢇꢖꢄ  
ꢅꢄꢐꢈꢃꢄꢗ  
ꢀꢁ ꢂꢁꢃꢄ  
ꢀꢁꢂꢃ ꢄꢅꢃꢆ  
ꢀꢁꢂꢃ ꢄꢅꢃꢆ  
ꢀꢁ ꢂꢁꢃꢄ  
ꢀꢁ ꢂꢁꢃꢄ  
ꢀꢁꢂ  
ꢀꢁ6  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁꢂꢃꢄ  
1ꢀ8  
ꢀꢁꢀ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ  
f
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁ  
8619 ꢀꢁꢂ  
8619 ꢀꢁ6  
8619 ꢀꢁꢂ  
8619f  
7
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
Forced Continuous Mode No Load  
Switching Waveform  
Forced Continuous Mode Switching  
Waveform at Minimum On-time  
I
L
V
(AC)  
200mA/DIV  
OUT  
2mV/DIV  
SW  
20V/DIV  
I
L
200mA/DIV  
SW  
(ZOOM IN)  
10V/DIV  
SW  
10V/DIV  
8619 G29  
8619 G28  
200ns/DIV  
= 3.3V  
TOP = 200ns/DIV, BOT = 5ns/DIV,  
PERSISTENCE MODE  
V
f
= 12V, V  
OUT  
= 2MHz, L = 3.3μH, C  
IN  
SW  
= 22μF  
V
= 53.7V, V  
= 2MHz, L = 3.3μH, C  
= 3.3V, 0.5A LOAD  
OUT  
OUT  
IN  
f
= 22μF  
SW  
OUT  
Forced Continuous Mode Transient  
Load Step from 10mA to 1A  
Pulse-Skipping Mode Transient  
Load Step from 10mA to 1A  
V
V
OUT  
OUT  
200mV/DIV  
200mV/DIV  
I
LOAD  
I
LOAD  
1A/DIV  
1A/DIV  
SW  
10V/DIV  
SW  
10V/DIV  
8619 G31  
8619 G30  
20μs/DIV  
= 3.3V  
20μs/DIV  
V
f
= 12V, V  
OUT  
OSC  
V
f
= 12V, V  
OSC  
= 3.3V  
OUT  
IN  
IN  
= 2MHz, L = 3.3μH, C  
= 22μF  
= 2MHz, L = 3.3μH, C  
= 22μF  
OUT  
OUT  
Bust Mode Transient Load Step  
from 10mA to 1A  
Forced Continuous Mode  
Frequency Synchronization  
V
(AC)  
OUT  
20mV/DIV  
V
OUT  
SYNC  
2V/DIV  
200mV/DIV  
SW  
10V/DIV  
I
LOAD  
1A/DIV  
V
(AC, ZOOM IN)  
20mV/DIV  
OUT  
SYNC (ZOOM IN)  
2V/DIV  
SW (ZOOM IN)  
10V/DIV  
SW  
10V/DIV  
8619 G33  
8619 G32  
20μs/DIV  
= 3.3V  
TOP = 10μs/DIV, BOT = 200ns/DIV  
V
f
f
= 12V, V  
= 3.3V, NO LOAD  
OUT  
V
f
= 12V, V  
OUT  
OSC  
IN  
IN  
= 700kHz, L = 10μH, C  
= 22μF  
SYNC  
= 2MHz, L = 3.3μH, C  
= 22μF  
OSC  
SW  
OUT  
OUT  
(FREE RUNNING) = 700kHZ, f  
= 1.2MHz  
8619f  
8
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
VOUT = 2.4V Start-Up Dropout  
Performance  
VOUT = 5V Start-Up Dropout  
Performance  
V
IN  
1V/DIV  
V
V
IN  
IN  
V
IN  
V
OUT  
1V/DIV  
1V/DIV  
V
V
OUT  
OUT  
V
OUT  
1V/DIV  
PG  
PG  
2V/DIV  
2V/DIV  
SW  
5V/DIV  
SW  
5V/DIV  
8619 G34  
8619 G35  
1s/DIV  
1s/DIV  
= 5V, 10Ω LOAD  
V
f
= 2.4V, 10Ω LOAD  
= 400kHz, L = 15μH, C  
V
f
OUT  
SW  
OUT  
SW  
= 47μF  
= 700kHz, L = 10μH, C  
= 22μF  
OUT  
CC  
OUT  
CC  
PG 100k PULL-UP BY INTV  
FORCED CONTINUOUS MODE  
PG 100k PULL-UP BY INTV  
FORCED CONTINUOUS MODE  
EN/UV Start-Up  
EN/UV Shut Down  
EN/UV  
2V/DIV  
EN/UV  
2V/DIV  
V
OUT  
V
1V/DIV  
OUT  
1V/DIV  
PG  
2V/DIV  
PG  
2V/DIV  
SW  
SW  
10V/DIV  
10V/DIV  
8619 G36  
8619 G37  
100μs/DIV  
2μs/DIV  
V
f
= 12V, V  
= 3.3V, NO LOAD  
OUT  
V
f
= 12V, V  
= 3.3V, NO LOAD  
OUT  
IN  
IN  
= 2MHz, L = 3.3μH, C  
= 22μF  
= 2MHz, L = 3.3μH, C  
= 22μF  
OSC  
OUT  
OSC  
OUT  
FORCED CONTINUOUS MODE  
FORCED CONTINUOUS MODE  
8619f  
9
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
PIN FUNCTIONS (DFN/MSOP)  
NC (Pin 1, 3, 13, MSOP Only): No Connect. These pins  
are not connected to the internal circuitry.  
FB (Pin 6/Pin 9, 10, LT8619 Only): The LT8619 regulates  
the FB pin to 0.8V. Connect the feedback resistor divider  
tap to this pin. Also, connect a phase lead capacitor  
VIN (Pin 1/Pin 2): The VIN pin supplies current to the  
LT8619 internal circuitry and to the internal topside power  
switch. Be sure to place the positive terminal of the input  
between FB and V . Typically, this capacitor is between  
OUT  
4.7pF to 10pF. Do not apply an external voltage to this pin.  
bypass capacitor as close as possible to the V pin, and  
OUT (Pin 9, 10, LT8619-5 MSOP Only): Connect to the  
IN  
the negative capacitor terminal as close as possible to  
regulator output V . The LT8619-5 regulates the OUT  
OUT  
the GND pin.  
pin to 5V. This pin connects to the internal 10MΩ feed-  
back divider that programs the fixed output voltage.  
EN/UV (Pin 2/Pin 4): The LT8619 is shut down when this  
pin is low and active when this pin is high. The EN/UV pin  
power-on threshold is 1V. When forced below 0.56V, the  
BIAS (Pin 7/Pin 11): The internal regulator will draw cur-  
rent from BIAS instead of V when the BIAS pin is tied  
IN  
IC is put into a low current shutdown mode. Tie to V if  
to a voltage higher than 3.1V. For switching regulator  
IN  
shutdown feature is not used. An external resistor divider  
output voltages of 3.3V and above, this pin should be tied  
from V can be used to program the V UVLO.  
to V . If this pin is tied to a supply other than V , use  
OUT OUT  
IN  
IN  
a 1μF local bypass capacitor on this pin.  
RT (Pin 3/Pin 5): A resistor is tied between RT and ground  
to set the switching frequency. When synchronizing, the  
INTV (Pin 8/Pin 12): Internal 3.3V Regulator Output.  
CC  
R resistor should be chosen to set the LT8619 switch-  
The internal power drivers and control circuits are pow-  
T
ing frequency equal to or below the synchronization fre-  
ered from this voltage. INTV maximum output current  
CC  
quency. Do not apply external voltage to this pin.  
is 20mA. INTVCC current will be supplied from BIAS if  
V
> 3.1V, otherwise current will be drawn from V .  
BIAS  
IN  
PG (Pin 4/Pin 6): Open-Drain Power Good Output. PG  
remains low until the FB pin is within 7.5% of the final  
regulation voltage. The PG pull-up resistor can be con-  
Voltage on INTV will vary between 2.8V and 3.3V when  
CC  
V
is between 3.0V and 3.5V. Decouple this pin to GND  
wBitIhASat least a 1μF low ESR ceramic capacitor. Do not load  
nected to the INTV , V  
or an external supply voltage  
CC OUT  
that is lower than 6V.  
the INTV pin with external circuitry.  
CC  
BST (Pin 9/Pin 14): This pin is used to provide a drive  
voltage, higher than the input voltage, to the topside  
power switch. Place a 0.1μF boost capacitor as close as  
possible to the IC.  
SYNC (Pin 5/Pin 7): External Clock Synchronization Input.  
Tie to a clock source for synchronization to an external  
frequency. During clock synchronization, the controller  
enters forced continuous mode. Ground the SYNC pin for  
Burst Mode operation. Connect to INTV to enable forced  
continuous mode operation. Floating tChCis pin will enable  
pulse-skipping mode operation. During start-up, the con-  
troller is forced to run in pulse-skipping mode. When in  
pulse-skipping or forced continuous mode operation, the  
IQ will be much higher compared to Burst Mode operation.  
SW (Pin 10/Pin 15, 16): The SW pin is the output of the  
internal power switches. Connect this pin to the inductor  
and boost capacitor. This node should be kept small on  
the PCB for good performance.  
GND (Exposed Pad Pin 11/Pin 8, Exposed Pad Pin 17):  
Ground. The exposed pad must be connected to the nega-  
tive terminal of the input capacitor and soldered to the  
PCB in order to lower the thermal resistance.  
8619f  
10  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
BLOCK DIAGRAM  
ꢅꢋ  
ꢅꢋ  
ꢅꢋ  
ꢇꢗ  
ꢃꢖꢑ  
ꢙꢋꢏꢐꢈ  
ꢇꢕ  
ꢃꢖꢑ  
1ꢈ  
ꢙꢋꢚꢎꢂꢙ  
ꢅꢋ  
ꢅꢆꢞꢖ  
ꢎꢅꢚꢉ  
ꢗꢓꢗꢈ  
ꢂꢌꢃ  
ꢐꢈꢂꢃ  
ꢉꢘꢋꢆ  
ꢃꢉꢆ  
ꢆꢂꢢ  
ꢅꢋꢑꢈ  
ꢒꢓꢗꢞꢟꢠꢀꢝꢓꢝꢞꢟꢠ  
ꢆꢆ  
ꢅꢋꢑꢈ  
ꢆꢆ  
ꢉꢂꢃꢖꢙ  
ꢆꢃꢞꢖ  
ꢇꢑ  
ꢅꢋꢑꢈꢆꢆ  
ꢎꢉꢑ  
ꢎꢐꢇꢉꢑ  
ꢌꢙꢑꢙꢆꢑ  
ꢉꢊ  
ꢃꢐꢑ  
ꢃꢈ  
ꢂꢃꢄꢅꢆ  
ꢃꢐꢑ  
ꢆ1  
ꢇ1  
ꢇꢝ  
ꢀ ꢁ  
ꢄꢋꢌ  
ꢉꢉ  
ꢒꢓ8ꢈ ꢈ  
ꢋꢖꢄ  
ꢇꢙꢍ  
ꢍꢎꢏꢃꢐꢑ  
ꢉꢉ  
ꢃꢐꢑ  
ꢛ ꢜꢈ  
ꢖꢄ  
ꢒꢓꢔꢕꢈ  
ꢒꢓ86ꢈ  
ꢖꢄ  
ꢄꢂꢅꢑꢆꢟ  
ꢍꢅꢙꢇ  
ꢖꢖꢄ  
ꢒꢓ8ꢗꢈ  
ꢃꢈ  
ꢃꢈ  
8619 ꢎꢌ  
8619f  
11  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
OPERATION  
The LT8619 is a monolithic, constant frequency current  
mode step-down DC/DC converter. An oscillator, with fre-  
quency set using a resistor on the RT pin, turns on the  
internal top power switch at the beginning of each clock  
cycle. Current in the inductor then increases until the cur-  
rent comparator trips and turns off the top power switch.  
The peak inductor current at which the top switch turns off  
is controlled by the voltage on the internal VC node. The  
error amplifier servos the VC node by comparing the volt-  
age on the FB pin with an internal 0.8V reference. When  
the load current increases, it causes a reduction in the  
feedback voltage relative to the reference leading the error  
amplifier to raise the VC voltage until the average induc-  
tor current matches the new load current. When the top  
power switch turns off, the bottom power switch turns on  
until the next clock cycle begins or inductor current falls  
to zero (Burst Mode operation or pulse-skipping mode).  
If overload conditions result in more than 1.8A flowing  
through the bottom switch, the next clock cycle will be  
delayed until the switch current returns to a safe level.  
the input supply current. In a typical application, 6μA will  
be consumed from the supply when regulating with no  
load. Float the SYNC pin to enable pulse-skipping mode  
operation. While in pulse-skipping mode, the oscillator  
operates continuously and the bottom power switch turns  
off when the inductor current falls to zero. During light  
loads, switch pulses are skipped to regulate the output  
and the quiescent current will be higher than Burst Mode  
operation. Connecting the SYNC pin to INTV enables  
CC  
forced continuous mode operation. In forced continuous  
mode, the inductor current is allowed to reverse and the  
switcher operates at a fixed frequency. If a clock is applied  
to the SYNC pin, the part operates in forced continuous  
mode and synchronizes to the external clock frequency;  
with the rising SW signal synchronized to the external  
clock positive edge.  
To improve efficiency across all loads, supply current  
to internal circuitry can be sourced from the BIAS pin  
when biased above 3.1V. Else, the internal circuitry will  
draw current from V . The BIAS pin should be connected  
IN  
If the EN/UV pin is low, the LT8619 is shut down and  
draws less than 0.6µA from the input. When the EN/UV  
pin is above 1V, the switching regulator starts operation.  
First, the internal LDO powers up, followed by the switch-  
ing regulator 200μs soft-start ramp. During the soft-start  
phase, the switcher operates in pulse-skipping mode and  
gradually switches to forced continuous mode when VOUT  
approaches the set point (if SYNC pin is forced high or  
connected to an external clock). Typically, upon EN/UV  
rising edge, it takes about 660μs for the switcher output  
voltage to reach regulation and PG to be asserted.  
to V  
if the LT8619 output is programmed to 3.3V or  
OUT  
above.  
An overvoltage comparator, OV, guards against transient  
overshoots. If V is higher than 0.83V, the OV compara-  
FB  
tor trips, disables the top MOSFET and turns on the bot-  
tom power switch until the next clock cycle begins or the  
inductor reverse current reaches 0.55A. With high reverse  
current, both top and bottom MOSFETs shut off till the  
next cycle. Positive and negative power good compara-  
tors pull the PG pin low if the FB voltage varies more than  
7.5% (typical) from the set point.  
To optimize efficiency at light loads, configure the LT8619  
to operate in Burst Mode by grounding the SYNC pin.  
At light load, in between bursts, all circuitry associated  
with controlling the output switch is shut down, reducing  
The oscillator reduces the LT8619’s operating frequency  
when the voltage at the FB pin is low. This frequency  
foldback helps to control the inductor current when the  
output voltage is lower than the programmed value which  
occurs during overcurrent conditions.  
8619f  
12  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
APPLICATIONS INFORMATION  
Achieving Ultralow Quiescent Current  
1ꢀ  
1ꢀꢀ  
1ꢀ  
ꢀ 1ꢁꢂ  
ꢀꢁ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁꢂ  
To enhance efficiency at light loads, the LT8619 enters into  
Burst Mode operation, which keeps the output capacitor  
charged to the desired output voltage while minimizing the  
input quiescent current and output ripple voltage. In Burst  
Mode operation the LT8619 delivers single small pulses of  
current to the output capacitor followed by sleep periods  
where the output power is supplied by the output capacitor.  
While in sleep mode the LT8619 consumes less than 6μA.  
ꢀ ꢁ 1ꢂꢃꢄ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ ꢉꢊꢋꢌꢍꢎꢏꢉꢐ  
1
ꢀꢁ1  
ꢀꢁꢀ1  
ꢀꢁꢀꢀ1 ꢀꢁꢀ1  
ꢀꢁ1  
1
1ꢀ  
1ꢀꢀ  
1ꢀ  
As the output load decreases, the frequency of single cur-  
rent pulses decreases (see Figure 1) and the percentage  
of time the LT8619 is in sleep mode increases, result-  
ing in much higher light load efficiency than for typical  
converters. For a typical application, when the output is  
not loaded, by maximizing the time between pulses, the  
regulator quiescent approaches 6µA. Therefore, to opti-  
mize the quiescent current performance at light loads,  
the current in the feedback resistor divider must be mini-  
mized as it appears to the output as load current (See FB  
Resistor Network section).  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
8619 ꢀꢁ1  
Figure 1. Burst Frequency vs Load Current  
V
(AC)  
10mV/DIV  
OUT  
I
L
200mA/DIV  
SW  
10V/DIV  
V
OUT  
(AC, ZOOM IN)  
10mV/DIV  
I (ZOOM IN)  
L
200mA/DIV  
SW (ZOOM IN)  
10V/DIV  
While in Burst Mode operation, the current limit of the  
top switch is approximately 380mA resulting in output  
voltage ripple shown in Figure 2. Increasing the output  
capacitance will decrease the output ripple proportionally.  
As load ramps upward from zero, the switching frequency  
will increase but only up to the switching frequency  
programmed by the resistor at the RT pin as shown in  
Figure 1. The output load at which the LT8619 reaches  
the programmed frequency varies based on input voltage,  
output voltage, and inductor choice.  
8619 F02  
TOP = 20ms/DIV, BOT = 1μs/DIV  
Figure 2. Burst Mode Operation Waveform with  
VIN = 12V, VOUT = 3.3V at No Load, RT = 66.5k,  
L = 10μH, COUT = 22μF  
ꢀꢁꢁ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀ ꢁ 1ꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
1ꢀꢁ  
1ꢀꢀ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈ ꢉꢊꢋꢌꢍꢎꢏꢉꢐ  
For some applications it is desirable for the LT8619 to  
operate in pulse-skipping mode, offering two major dif-  
ferences from Burst Mode operation. First, the minimum  
inductor current clamp present in Burst Mode operation  
is removed, providing a smaller packet of charge to the  
output capacitor and reduce the output ripple voltage.  
For a given load, the chip awake more often, resulting in  
higher supply current compared to Burst Mode opera-  
tion. Second is that full switching frequency is reached  
at lower output load than in Burst Mode operation (see  
Figure 3). To enable pulse-skipping mode, leave the SYNC  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ ꢊꢋꢌꢄ  
1ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
8619 ꢀꢁꢂ  
Figure 3. Minimum Load for Full Frequency Operation  
vs VIN in Burst Mode Operation and Pulse-Skipping  
Mode Setting  
pin floating. Tying the SYNC pin to INTV node enables  
CC  
the programmed switching frequency at no load.  
8619f  
13  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
APPLICATIONS INFORMATION  
FB Resistor Network  
Table 1 and Figure 4 show the typical RT value for a  
desired oscillator frequency.  
The output voltage is programmed with a resistor divider  
between V  
and the FB pin. Choose the resistor values  
Table 1. Oscillator Frequency vs RT Value (1% Standard Value)  
OUT  
according to:  
f
(MHz)  
R (kΩ)  
T
f
(MHz)  
R (kΩ)  
T
OSC  
OSC  
0.3  
162  
121  
1.4  
30.9  
26.1  
22.6  
20.0  
17.8  
V
OUT  
R1= R2  
– 1  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.6  
1.8  
2.0  
2.2  
0.8V  
95.3  
78.7  
66.5  
57.6  
51.1  
45.3  
36.5  
Reference designators refer to the Block Diagram. 1%  
resistors are recommended to maintain output voltage  
accuracy.  
If low input quiescent current and good light-load effi-  
ciency are desired, use a large resistor value for the FB  
resistor divider. The current flowing in the divider acts as  
a load current, and will increase the no-load input current  
to the converter, which is approximately:  
ꢀꢁꢀ  
1ꢀ8  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁ6  
ꢀꢁꢂ  
V
V
1
OUT  
R1+R2  
OUT ⎟  
I = 5.2µA +  
Q
V
η
IN  
where 5.2μA is the quiescent current of the LT8619 and  
the second term is the current in the feedback divider  
reflected to the input of the buck operating at its light load  
efficiency, η. For a 3.3V application with R1 = 1M and  
R2 = 316k, the feedback divider draws 2.5μA from V  
.
OUT  
ꢀꢁ ꢀꢁ 6ꢀ 8ꢀ 1ꢀꢀ 1ꢀꢁ 1ꢀꢁ 16ꢀ  
(kΩ)  
With V = 12V and η = 85%, this adds 0.8μA to the 5.2μA  
IN  
8619 ꢀꢁꢂ  
quiescent current resulting in 6μA quiescent current from  
Figure 4. Oscillator Frequency vs RT Value  
the 12V supply. Note that this equation implies that the  
no-load current is a function of V ; this is plotted in the  
IN  
Operating Frequency Selection and Trade-Offs  
Typical Performance Characteristics section.  
Selection of the operating frequency is a trade-off between  
efficiency, component size, and input voltage range. The  
advantage of high frequency operation is that smaller  
inductor and capacitor values may be used. The disadvan-  
tages are lower efficiency and a smaller input voltage range.  
When using large FB resistors, a 4.7pF to 10pF phase  
lead capacitor, C1, should be connected from V  
to FB.  
OUT  
Setting the Switching Frequency  
The LT8619 uses a constant frequency PWM architec-  
ture that can be programmed to switch from 300kHz to  
2.2MHz by using a resistor tied from the RT pin to ground.  
For force continuous mode operation, the highest oscil-  
lator frequency (f  
) for a given application can be  
OSC(MAX)  
approximately given by the 1st order equation:  
The R resistor required for a desired oscillator frequency  
T
I
R
+ V  
LOAD SW(BOT) OUT  
can be roughly obtain using:  
f
=
OSC(MAX)  
t
V
–I  
R +I R  
(
)
IN  
ON(MIN)  
LOAD SW(TOP) LOAD SW(BOT)  
50.07  
R =  
– 5  
T
f
Where V is the input voltage, V  
is the output volt-  
OSC  
IN  
age, R  
and R  
are OthUeT internal switch on  
SW(TOP)  
SW(BOT)  
where R is in kΩ and f  
is the desired switching fre-  
T
OSC  
resistance (~0.45Ω, ~0.22Ω, respectively) and t  
ON(MIN)  
quency in MHz.  
8619f  
14  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
APPLICATIONS INFORMATION  
is the minimum top switch on-time at the loading condi-  
tion as shown in Figure 5. Figure 6 shows the relation-  
ship between the maximum input voltage vs the switching  
For forced continuous mode, if there is a momentarily VIN  
voltage surge higher than the voltage shown in Figure 6,  
resulting in minimum on-time operation, an overvoltage  
comparator guards against transient overshoots as well  
as other more serious conditions that may overvoltage the  
frequency. If a smaller R is selected, to ensure that the  
T
regulator is switching at the higher frequency as illus-  
trated in Figure 4, the maximum input supply voltage has  
to be lowered; and it needs to be further reduced if the  
load is decreased or removed.  
output. When the V voltage rises by more than 3.75%  
FB  
above its nominal value, the top MOSFET is turned off  
and the bottom MOSFET is turned on. At this moment,  
the output voltage continues to increase until the inductor  
current reverses. The actual peak output voltage will be  
higher than 3.75%, depending on external components  
value, loading condition and output voltage setting. The  
bottom MOSFET remains on continuously until the induc-  
tor current exceeds the bottom MOSFET reverse current  
or overvoltage condition is cleared. With high reverse cur-  
rent, both top and bottom MOSFETs shut off till the next  
clock cycle.  
8ꢀ  
ꢀꢁ  
ꢀ ꢁ ꢂꢃꢂꢄꢅ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
f
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
1ꢀ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
Low Supply Operation  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ6  
ꢀꢁ8  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
The LT8619 is designed to remain operational during  
short line transients when the input voltage may briefly  
8619 ꢀꢁꢂ  
Figure 5. Minimum On-Time vs Load Current  
dip below 3.0V. Below this voltage, the INTV voltage  
CC  
6ꢀ  
might drop to a point that is not able to provide adequate  
gate drive voltage to turn on the MOSFET. The LT8619 has  
two circuits to detect this undervoltage condition. A UVLO  
ꢀꢁꢂꢃ  
ꢄꢅꢃꢆ  
ꢀꢁ  
comparator monitors the INTV voltage to ensure that it  
ꢀꢁ  
CC  
ꢀꢁꢂꢃ ꢄꢅꢃꢆ  
is above 2.8V during startup; once in regulation, the chip  
ꢀꢁ  
continues to operate as long as INTV stays above 2.65V.  
CC  
ꢀꢁ ꢂꢁꢃꢄ  
If this UVLO comparator trips, the chip is shut down until  
ꢀꢁ  
INTV recovers. Another comparator monitors the V  
CC  
IN  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢀ ꢁꢂꢁꢃ  
1ꢀ  
supply voltage, add a resistor divider from V to EN/UV  
ꢀꢁꢂ  
ꢀ ꢁ 1ꢂꢃꢄ  
IN  
to turn off the regulator if V dips below the undesirable  
IN  
ꢀꢁꢂ ꢀꢁ6  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁꢂꢃꢄ  
1ꢀ8  
ꢀꢁꢀ  
voltage.  
f
ꢀꢁ  
8619 ꢀꢁ6  
The LT8619 is capable of a maximum duty cycle of greater  
Figure 6. Forced Continuous Mode Maximum Input  
Voltage vs Switching Frequency  
than 99%, and the V -to-V  
dropout is limited by the  
IN  
OUT  
RDS(ON) of the top switch. In deep dropout, the loop  
attempt to turn on the top switch continuously. However,  
the top switch gate drive is biased from the floating boot-  
High Supply Operation  
strap capacitor C , which normally recharges during each  
For Burst Mode operation or pulse-skipping mode, VIN  
voltage may go as high as the absolute maximum rating  
of 60V regardless of the frequency setting; however, the  
LT8619 will reduce the switching frequency as necessary  
to regulate the output voltage.  
B
off cycle; in dropout, this capacitor loses its refresh cycle  
and charge depleted. A comparator detects the drop in  
boot-strap capacitor voltage, forces the top switch off and  
recharges the capacitor.  
8619f  
15  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
APPLICATIONS INFORMATION  
For low V applications that cannot allow deviation from  
where I  
is the maximum output load for a given  
L(MAX)  
IN  
LOAD(MAX)  
application and ∆I  
the programmed oscillator frequency, use the following  
is the inductor ripple current as  
formula to set the switching frequency:  
calculated in the following equation:  
V
+ V  
OUT  
SW(BOT)  
1
V
OUT  
V
=
+ V  
– V  
IN(MIN)  
ΔI  
=
V
1–  
SW(TOP) SW(BOT)  
L(MAX)  
OUT  
1– t  
• f  
f
•L  
V
OFF(MIN) OSC  
IN(MAX) ⎥  
OSC  
where VIN(MIN) is the minimum input voltage without  
skipped cycles, V is the output voltage, V and  
SW(BOT)  
As a quick example, an application requiring 1A output  
current should use an inductor with an RMS rating of  
OUT  
SW(TOP)  
V
are the internal switch drops (~0.54V, ~0.264V,  
greater than 1A and an I  
of greater than 1.5A. During  
long duration overload SoArTshort-circuit conditions, the  
inductor RMS rating requirement is greater to avoid over-  
heating of the inductor. To push for high efficiency, select  
an inductor with low series resistance (DCR), preferably  
below 0.04Ω, and the core material should be intended  
for high frequency application. However, achieving this  
requires a large size inductor. An inductor with DCR  
around 0.1Ω is generally a good compromise for both  
efficiency and board area, at the expense of trimming 1%  
to 2% from the efficiency number.  
respectively at maximum load), fOSC is the oscillating fre-  
quency (set by R ), and t is the minimum switch-  
T
OFF(MIN)  
ing off-time. Note that higher switching frequency will  
increase the minimum input voltage below which cycles  
will be dropped to achieve higher duty cycle.  
Inductor Selection and Maximum Output Current  
The LT8619 is designed to minimize solution size by  
allowing the inductor to be chosen based on the output  
load requirements of the application. During overload or  
short-circuit conditions the LT8619 safely tolerates opera-  
tion with a saturated inductor through the use of a high  
speed peak-current mode architecture.  
The LT8619 limits the peak switch current in order to pro-  
tect the switches and the system from overload faults. The  
top switch current limit (I ) is at least 1.5A. The induc-  
tor value must then be sLuIfMficient to supply the desired  
A good first choice for the inductor value is:  
maximum output current (I  
), which is a function  
LOAD(MAX)  
V
+ V  
SW(BOT)  
OUT  
of the switch current limit (I ) and the ripple current:  
L = 2  
LIM  
f
OSC  
ΔI  
L
I
= I  
LIM  
LOAD(MAX)  
2
where fOSC is the switching frequency in MHz, VOUT is  
the output voltage, V  
is the bottom switch drop  
SW(BOT)  
Therefore, the maximum output current that the LT8619  
will deliver depends on the switch current limit, the induc-  
tor value, and the input and output voltages. The inductor  
value may have to be increased if the inductor ripple cur-  
rent does not allow sufficient maximum output current  
(~0.264V) and L is the inductor value in μH.  
To avoid overheating and poor efficiency, an inductor  
must be chosen with an RMS current rating that is greater  
than the maximum expected output load of the applica-  
tion. In addition, the saturation current (typically labeled  
(I  
) given the switching frequency, and maximum  
LOAD(MAX)  
I
) rating of the inductor must be higher than the load  
input voltage used in the desired application.  
SAT  
current plus one-half of inductor ripple current:  
In order to achieve higher light load efficiency, more  
energy must be delivered to the output during single small  
pulses in Burst Mode operation such that the LT8619 can  
ΔI  
L(MAX)  
I
>I  
+
SAT LOAD(MAX)  
2
8619f  
16  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
APPLICATIONS INFORMATION  
stay in sleep mode longer between each pulse. This can  
be achieved by using a larger value inductor, and should  
be considered independent of switching frequency when  
choosing an inductor. For example, while a lower inductor  
value would typically be used for a high switching fre-  
quency application, if high light load efficiency is desired,  
a higher inductor value should be chosen.  
If the input power source has high impedance, or there  
is significant inductance due to long wires or cables, a  
ceramic input capacitor combined with the trace or cable  
inductance forms a high quality (underdamped) tank cir-  
cuit. If the LT8619 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possibly  
exceeding the LT8619’s voltage rating. This situation is  
easily avoided (see Analog Devices Application Note 88),  
by adding a lossy electrolytic capacitor in parallel with the  
ceramic capacitor.  
The optimum inductor for a given application may differ  
from the one indicated by this design guide. A larger value  
inductor provides a higher maximum load current and  
reduces the output voltage ripple. For applications requir-  
ing smaller load currents, the value of the inductor may  
be lower and the LT8619 may operate with higher ripple  
current. This allows you to use a physically smaller induc-  
tor, or one with a lower DCR resulting in higher efficiency.  
Be aware that low inductance may result in discontinuous  
mode operation, which further reduces maximum load  
current.  
Output Capacitor and Output Ripple  
The output capacitor has two essential functions. Along  
with the inductor, it filters the square wave generated  
by the LT8619 to produce the DC output. In this role it  
determines the output ripple, thus low impedance at the  
switching frequency is important. The second function  
is to store energy in order to satisfy transient loads and  
stabilize the LT8619’s control loop. The current slew rate  
of a regulator is limited by the inductor and feedback loop.  
When the amount of current required by the load changes,  
the initial current deficit must be supplied by the output  
capacitor until the feedback loop reacts and compensates  
for the load changes. Ceramic capacitors have very low  
equivalent series resistance (ESR) and provide the best  
ripple performance. For good starting values, see the  
Typical Applications section.  
For details of maximum output current and discontinuous  
operation, see Analog Devices’s Application Note 44.  
Input Capacitor  
Step-down regulators draw current from the input sup-  
ply in pulses with very fast rise and fall times. The input  
capacitor is required to reduce the resulting voltage rip-  
ple at the LT8619 and to force this very high frequency  
switching current into a tight local loop, minimizing EMI.  
In continuous mode, the input capacitor RMS current is  
given by:  
Transient performance can be improved with a higher  
value capacitor and the addition of a feedforward capaci-  
tor placed between V  
and FB. Increasing the output  
OUT  
capacitance will also decrease the output voltage ripple. A  
lower value of output capacitor can be used to save space  
and cost but transient performance will suffer and may  
cause loop instability. See the Typical Applications in this  
data sheet for suggested capacitor values.  
V
V – V  
IN  
OUT  
(
)
OUT  
I
I  
RMS(MAX) LOAD(MAX)  
V
IN  
This equation has a maximum RMS current at VIN  
2V , where I = I /2.  
=
OUT  
RMS(MAX)  
LOAD(MAX)  
Bypass the input of the LT8619 circuit with a 2.2μF to  
10μF ceramic capacitor of X7R or X5R type placed as  
Ceramic Capacitors  
When choosing a capacitor, special attention should be  
given to the manufacturer’s data sheet in order to accu-  
rately calculate the effective capacitance under the rel-  
evant bias voltage and operating temperature conditions.  
Ceramic dielectrics can offer near ideal performance as  
close as possible to the V and GND pin. Y5V types have  
IN  
poor performance over temperature and applied voltage,  
and should not be used. Note that larger input capacitance  
is required when a lower switching frequency is used.  
8619f  
17  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
APPLICATIONS INFORMATION  
Ceramic capacitors can also cause problems due to their  
piezoelectric nature. During Burst Mode operation, the  
switching frequency depends on the load current, and at  
very light loads the LT8619 can excite the ceramic capaci-  
tor at frequencies that may generate audible noise. Since  
the LT8619 operates at a lower inductor current during  
Burst Mode operation, the noise is typically very quiet  
to a casual ear. If this is unacceptable, consider using  
a high performance tantalum or electrolytic capacitor at  
the output instead. Low noise ceramic capacitors are also  
available.  
an output capacitor, i.e. high volumetric efficiency with  
extremely low equivalent resistance. There is a downside  
however; the high K dielectric material exhibits a substan-  
tial temperature and voltage coefficient, meaning that its  
capacitance varies depending on the operating tempera-  
ture and applied voltage. X7R capacitors provide a range  
intermediate capacitance values which varies only 15%  
over the temperature range of –55°C to 125°C. The Y5V  
capacitance can vary from 22% to –82% over the –30°C  
to 85°C temperature range and should not be used for the  
LT8619 application.  
Ceramic capacitors are also susceptible to mechanical  
stress which can result in significant loss of capacitance.  
The most common sources of mechanical stress includes  
bending or flexure of the PCB, contact pressure during in  
circuit parameter testing, and direct contact by a solder-  
ing iron tip. Consult the manufacturer’s application notes  
for additional information regarding ceramic capacitor  
handling.  
Figure 7 shows the voltage coefficient of four different  
ceramic 22μF capacitors, all of which are rated for 16V  
operation. Note that with the exception of the X7R in the  
1210 and 1812 package, the capacitors lose more than  
30% of their capacitance when biased at more than half of  
the rated voltage. Typically, as the package size increases,  
the bias voltage coefficient decreases. If the voltage coef-  
ficient of a big ceramic capacitor in a particular pack-  
age size is not acceptable; multiple smaller capacitors  
with less voltage coefficient can be placed in parallel as  
an effective means of meeting the capacitance require-  
ment. Not All Capacitors are Interchangeable. A wrong  
capacitor selection can degrade the circuit performance  
considerably.  
Enable Pin  
The LT8619 is in shutdown when the EN/UV pin is low  
and active when the pin is high. The power-on threshold  
of the EN comparator is 1.0V, with 40mV of hysteresis,  
once EN/UV drops below this power-on threshold, the  
MOSFETs are disabled, but the internal biasing circuit  
stays alive. When forced below 0.56V, all the internal  
blocks are disabled and the IC is put into a low current  
ꢀꢁ  
shutdown mode. The EN/UV pin can be tied to V if the  
IN  
ꢀꢁꢂ  
shutdown feature is not used.  
ꢀꢁꢂꢃ 1ꢄ1ꢅ  
ꢀꢁꢂꢃ 1ꢄꢅ6  
ꢀꢁꢂ  
ꢀ6ꢁ  
Adding a resistor divider from VIN to EN/UV programs the  
LT8619 to regulate the output only when V is above a  
IN  
ꢀꢁꢂꢃ 181ꢄ  
desired voltage (see the Block Diagram). Typically, this  
threshold, VIN(EN/UV), is used in situations where the input  
supply is current limited, or has a relatively high source  
resistance. A switching regulator draws constant power  
from the source, so source current increases as source  
voltage drops. This looks like a negative resistance load  
to the source and can cause the source to current limit  
or latch low under low source voltage conditions. The  
ꢀ8ꢁ  
ꢀꢁꢂꢃ ꢄ8ꢄꢁ  
ꢀ1ꢁꢁ  
6
8
1ꢀ 1ꢀ 1ꢀ 16  
ꢀꢁ ꢂꢃꢄꢅ ꢆꢇꢊꢋ ꢌꢆꢍ  
8619 ꢀꢁ9  
ꢀꢁꢂꢂꢃꢄꢅꢆ1ꢀꢂꢂ6ꢇꢂꢃꢈ  
ꢀꢁꢂꢃꢄꢅꢆꢇ1ꢀꢄꢄ6ꢈꢄꢉꢉ  
ꢀꢁꢂ16ꢃꢄꢅ1ꢀꢂꢂ6ꢆ16ꢇ  
ꢀꢁꢂ1ꢁꢃꢄꢅ1ꢀꢁꢁ6ꢆ1ꢁꢄ  
Figure 7. Ceramic Capacitor Voltage Coefficient  
V
threshold prevents the regulator from operating  
IN(EN/UV)  
at source voltages where the problems might occur. This  
8619f  
18  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
APPLICATIONS INFORMATION  
threshold can be adjusted by setting the values R3 and  
R4 such that they satisfy the following equation:  
external resistor. Otherwise, the internal open-drain tran-  
sistor will pull the PG pin low. The PG pin is also actively  
pulled low during several fault conditions: EN/UV pin is  
below 1V, INTV drops below its UVLO threshold, V is  
R3  
R4  
V
= 1+  
1V  
CC  
IN  
IN(EN/UV)  
too low, or thermal shutdown.  
where the LT8619 will remain off until VIN is above  
. Due to the comparator’s hysteresis, switching  
Synchronization  
V
IN(EN/UV)  
Synchronizing the LT8619 oscillator to an external fre-  
quency can be done by connecting a square wave (with  
20% to 80% duty cycle) to the SYNC pin. The square wave  
amplitude should have valleys that are below 0.4V and  
peaks above 2V (up to 6V). During frequency synchroni-  
zation, the part operates in forced continuous mode with  
the SW rising edge synchronized to the SYNC positive  
edge. The LT8619 may be synchronized over a 300kHz  
will not stop until the input falls slightly below V  
.
IN(EN/UV)  
When in Burst Mode operation for light load currents,  
the current through the V  
resistor network can  
easily be greater than theINs(uEpNp/UlyV)current consumed by  
the LT8619. Therefore, the V  
resistors should  
IN(EN/UV)  
be large enough to minimize their impact on efficiency  
at low loads.  
to 2.2MHz range. The R resistor must be chosen to set  
T
INTV Regulator  
CC  
the LT8619 switching frequency equal or below the lowest  
An internal low dropout (LDO) regulator produces the 3.3V  
synchronization input. For example, if the synchroniza-  
supply from V that powers the drivers and the internal  
tion signal will be 500kHz and higher, the R should be  
IN  
T
bias circuitry. The INTV can supply enough current for  
selected for 500kHz.  
CC  
the LT8619’s circuitry and must be bypassed to ground  
with at least a 1μF ceramic capacitor. Good bypassing is  
necessary to supply the high transient currents required  
by the power MOSFET gate drivers. To improve efficiency  
the internal LDO can draw current from the BIAS pin when  
the BIAS pin is at 3.1V or higher. Typically the BIAS pin can  
be tied to the output of the switching regulator, or can be  
tied to an external supply which must also be at 3.3V or  
Start-Up Inrush Current, Short-Circuit Protection  
Upon start-up, the internal soft-start action regulates  
the V  
slew rate; the LT8619 provides the maximum  
ratedOoUuTtput current to charge up the output capacitor  
as quickly as possible. During start-up, if the output is  
overloaded, the regulator continues to provide the maxi-  
mum sourcing current to overcome the output load, but  
at the same time, the bottom switch current is monitored  
such that if the inductor current is beyond the safe levels,  
switching of the top switch will be delay until such time  
as the inductor current falls to safe levels.  
above. If BIAS is connected to a supply other than V  
,
be sure to bypass with a local ceramic capacitor. IfOtUhTe  
BIAS pin is below 3.0V, the internal LDO will consume  
current from V . Applications with high input voltage and  
IN  
high switching frequency where the internal LDO pulls  
current from VIN will increase die temperature because  
of the higher power dissipation across the LDO. Do not  
Once the soft-start period has expired and the FB voltage  
is higher than 0.74V, the LT8619 switching frequency will  
be folded back if the external load pulls down the output.  
At the same time, the bottom switch current will continue  
to be monitored to limit the short-circuit current. Figure 8  
shows the frequency foldback transfer curve and Figure 9  
shows the short circuit waveform. During this overcurrent  
condition, if the SYNC pin is connected to a clock source,  
the LT8619 will get out from the synchronization mode.  
connect an external load to the INTV pin.  
CC  
Output Power Good  
When the LT8619’s output voltage is within the 7.5%  
window of the regulation point, the open-drain PG pin  
goes high impedance and is typically pulled high with an  
8619f  
19  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
APPLICATIONS INFORMATION  
ꢀꢁꢂ  
= 20kΩ  
ꢁꢂ  
ꢁꢂ  
8619  
ꢅꢂꢆꢇꢀ  
ꢈꢂꢉ  
ꢀꢁꢂ  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁꢂ  
8619 ꢊ1ꢋ  
Figure 10. Reverse VIN Protection  
PCB Layout  
For proper operation and minimum EMI, care must be  
taken during printed circuit board (PCB) layout. Figure 11  
and Figure 12 show the recommended component place-  
ment with trace, ground plane and via locations. Note that  
ꢀꢁ1 ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ6 ꢀꢁꢂ ꢀꢁ8  
ꢀꢁꢂ  
ꢀꢁ  
8619 ꢀꢁ8  
Figure 8. Frequency Foldback Transfer Function  
large, switched currents flow in the LT8619’s V , SW,  
IN  
V
OUT  
GND pins, and the input capacitor. The loop formed by  
1V/DIV  
these components should be as small as possible by plac  
-
I
SHORT  
10A/DIV  
ing the capacitor adjacent to the V and GND pins. When  
IN  
using a physically large input capacitor, the resulting loop  
may become too large in which case using a small case/  
I
L
0.5A/DIV  
value capacitor placed close to the V and GND pins plus  
IN  
SW  
10V/DIV  
a larger capacitor further away is preferred. These com-  
ponents, along with the inductor and output capacitor,  
should be placed on the same side of the circuit board,  
and their connections should be made on that layer. Place  
a local, unbroken ground plane under the application cir-  
cuit on the layer closest to the surface layer. The SW and  
BST nodes should be as small as possible. Finally, keep  
the FB and RT nodes small so that the ground traces will  
shield them from the SW and BST nodes. The exposed  
pad on the bottom of the package must be soldered to  
ground so that the pad is connected to ground electrically  
and also acts as a heat sink thermally. To keep thermal  
resistance low, extend the ground plane as much as pos-  
sible, and add thermal vias under and near the LT8619 to  
additional ground planes within the circuit board and on  
the bottom side.  
8619 F09  
5μs/DIV  
Figure 9. Short-Circuit Waveform with VIN = 12V,  
VOUT = 3.3V, fOSC = 2MHz, L = 4.7μH, COUT = 22μF  
Reversed Input Protection  
Load protection may be necessary in systems where the  
output will be held high when the input to the LT8619 is  
absent. This may occur in battery charging applications or  
in battery backup systems where a battery or some other  
supply is diode ORed with the LT8619’s output. If the V  
IN  
pin is allowed to float and the EN/UV pin is held high (either  
by a logic signal or because it is tied to VIN), then the  
LT8619’s internal circuitry will pull its quiescent current  
through its SW pin. This is acceptable if the system can tol-  
erate several μA in this state. If the EN/UV pin is grounded  
the SW pin current will drop to near 1µA. However, if the  
High Temperature Output Current Considerations  
V pin is grounded while the output is held high, regard-  
IN  
The maximum practical continuous load that the LT8619  
can drive, while rated at 1.2A, actually depends upon both  
the internal current limit (refer to the Typical Performance  
Characteristics section) and the internal temperature  
which depends on operating conditions, PCB layout and  
airflow.  
less of EN/UV, parasitic body diodes inside the LT8619  
can pull current from the output through the SW pin and  
the V pin. Figure 10 shows a connection of the V and  
IN  
IN  
EN/UV pins that will allow the LT8619 to run only when  
the input voltage is present and that protects against a  
shorted or reversed input.  
8619f  
20  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
APPLICATIONS INFORMATION  
ꢎꢃꢈ  
ꢉꢍ  
ꢆꢁꢌ  
ꢀꢁꢂꢃꢄ  
ꢇꢈ  
ꢐꢉꢈ  
ꢏꢁ  
ꢏꢁꢈꢄ  
ꢐꢏꢑꢉ  
ꢋꢋ  
ꢅꢆ  
ꢒꢐꢂꢎꢃꢈ  
ꢎꢃꢈ  
ꢇꢈ  
ꢉꢊꢁꢋ  
8619 ꢒ11  
Figure 11. Recommended PCB Layout for LT8619 10-Pin DFN  
ꢎꢃꢋ  
ꢇꢍ  
ꢆꢁꢌ  
ꢐꢇꢋ  
ꢀꢁꢂꢃꢄ  
ꢅꢆ  
ꢏꢁ  
ꢏꢁꢋꢄ  
ꢉꢉ  
ꢐꢏꢑꢇ  
ꢒꢐꢂꢎꢃꢋ  
ꢎꢃꢋ  
ꢇꢈꢁꢉ  
ꢊꢋ  
8619 ꢒ1ꢔ  
Figure 12. Recommended PCB Layout for LT8619 16-Pin MSOP  
8619f  
21  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
APPLICATIONS INFORMATION  
For higher ambient temperatures, care should be taken in  
the layout of the PCB to ensure good heat sinking of the  
LT8619. The exposed pad on the bottom of the package  
must be soldered to a ground plane. This ground should  
be tied to large copper layers below with thermal vias;  
these layers will spread heat dissipated by the LT8619.  
Placing additional vias can reduce thermal resistance fur-  
ther. Figure 13 shows the rise in case temperature vs load  
current. Note that a higher ambient temperature will result  
in bigger case temperature rise as shown in Figure 14.  
Power dissipation within the LT8619 can be estimated  
by calculating the total power loss from an efficiency  
measurement and subtracting the inductor loss. The  
die temperature is calculated by multiplying the LT8619  
power dissipation by the thermal resistance from junction  
to ambient.  
Figure 15 shows the typical derating maximum output  
current curve. As with any monolithic switching regu-  
lator, the PCB layout, thermal resistance, air flow, other  
heat sources in the vicinity affect how efficiently heat can  
be removed from the die and radically change the die  
junction temperature. The actual LT8619 switcher output  
voltage and current sourcing capability might deviate from  
the performance curve stated in this data sheet. When  
pushing the LT8619 to its limit, verify its operation in the  
actual environment. AT HIGH AMBIENT TEMPERATURE,  
CONTINUOUS OPERATION ABOVE THE MAXIMUM  
OPERATION JUNCTION TEMPERATURE MAY IMPAIR  
DEVICE RELIABILITY OR PERMANENTLY DAMAGE THE  
DEVICE.  
ꢀꢁ  
ꢀꢁ  
ꢀ 1ꢁꢂ  
ꢀ 1ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀ ꢁ ꢃ 1ꢄꢅꢆ ꢇꢈꢆꢉ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
1ꢀ  
1ꢀ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
1ꢀ  
1ꢀ  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢀꢁꢂꢃꢄꢂꢅꢁꢅꢆ ꢁꢇꢈꢉꢊꢃꢄꢁꢂ ꢊꢋꢁꢌꢈ  
ꢀꢁꢂꢃꢀꢄꢀ ꢅꢄꢆꢇꢈꢃꢉꢆ ꢈꢊꢀꢋꢊꢌꢁꢈꢄꢌꢊ  
ꢀꢁꢂ ꢃꢄꢅꢀꢁꢆꢄꢆꢇꢁꢀꢁꢊꢄ ꢇꢋꢄ ꢉꢄꢌꢍꢎꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ6  
ꢀꢁ8  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
1ꢀꢀ  
1ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢂꢋ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
8619 ꢀ1ꢁ  
8619 ꢀ1ꢁ  
Figure 13. Case Temperature Rise vs Load Current  
Figure 14. Case Temperature Rise vs Ambient Temperature  
1ꢀꢁ  
1ꢀꢁ  
1ꢀꢁ  
ꢀꢁ8  
ꢀꢁ6  
ꢀꢁꢂ  
f
ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁ  
f
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ 1ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
≤ 125°C  
ꢀꢁꢂꢃꢄꢅ ꢃꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢅꢄ  
ꢀꢁꢂꢃꢄꢅ  
9ꢀ  
9ꢀ 1ꢀꢀ 1ꢀꢁ 11ꢀ 11ꢀ 1ꢀꢁ 1ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
8619 ꢀ1ꢁ  
Figure 15. LT8619 Derating Maximum Output  
Current with Junction Temperature Less Than 125°C  
8619f  
22  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
TYPICAL APPLICATIONS  
3.3V 400kHz Step-Down Converter  
1.8V 2MHz Step-Down Converter  
ꢔꢕ  
ꢔꢏ  
ꢒꢃꢒꢓ ꢁꢍ 1ꢂꢓ  
ꢑꢒꢌ  
ꢒꢓ  
ꢔꢕ  
ꢢꢎ ꢌꢏ 6ꢅꢎ  
1ꢄꢎ  
ꢅꢊ1ꢁꢋ  
1ꢀꢁꢂ  
ꢈꢊꢈꢎ  
1ꢊꢉꢍ  
ꢂꢃꢂꢄꢎ  
ꢉꢊꢉꢁꢋ  
ꢏꢐꢌ  
1ꢈꢈꢉ  
ꢆꢇ  
ꢔꢏ  
ꢔꢏꢁꢓ  
ꢙꢙ  
8619  
ꢆꢇ  
1ꢅꢅꢆ  
ꢃꢄ  
ꢖꢗꢁ  
ꢏꢋꢋ ꢏꢕ  
ꢤꢕꢥꢐꢎ  
ꢂꢃꢂꢄꢅ  
1ꢃ8ꢓ  
1ꢃꢂꢑ  
ꢈꢃ1ꢄꢎ  
8619  
ꢍꢕꢁ  
ꢃꢄ  
ꢗꢘ  
ꢍꢎꢎ ꢍꢏ  
ꢜꢏꢝꢕꢓ  
ꢔꢕꢌꢎ  
ꢑꢔꢍꢒ  
ꢘꢘ  
ꢖꢔꢑꢗ  
ꢌꢃ6ꢐꢎ  
1ꢃ8ꢊꢋ  
1ꢃꢌꢋ  
1ꢁꢋ  
6ꢊ8ꢚꢋ  
1ꢇ  
ꢈ16ꢆ  
ꢎꢖ  
ꢞꢁ  
ꢂꢂꢄꢎ  
ꢙꢌ  
ꢋꢑ  
ꢉꢉꢁꢋ  
ꢗꢛꢏꢙ  
ꢇꢏꢚ  
8619 ꢁꢑꢈꢒ  
ꢂꢈꢉ  
ꢒꢗꢕꢘ  
ꢄꢕꢖ  
8619 ꢌꢍꢅꢉ  
1ꢉ1ꢆ  
f
ꢟ ꢂꢋꢅꢣ  
ꢍꢗꢙ  
f
ꢜ ꢢꢅꢅꢆꢂꢣ  
ꢏꢒꢘ  
ꢀ ꢟ ꢓꢔꢗꢅꢑꢛ ꢔꢅꢀꢆꢠꢂꢈꢂꢈꢑꢖꢠꢈ1  
ꢟ ꢁꢚꢡ ꢙꢒꢂꢂꢌꢢꢊꢞ1ꢙꢂꢂ6ꢡꢂꢌꢈ  
ꢛ ꢜ ꢎꢔꢒꢂꢍꢗ ꢔꢂꢛꢃꢝꢈꢉꢈꢉꢘꢞꢝ11  
ꢏꢐꢌ  
ꢍꢕꢁ  
ꢜ ꢌꢖꢟ ꢘꢈꢉꢉꢀꢠꢡꢙ1ꢘꢉꢉ6ꢟꢉꢀꢅ  
5V 2MHz Step-Down Converter  
ꢏꢐ  
6ꢎ ꢁꢑ ꢒ6ꢎ  
ꢓ6ꢊꢎ ꢁꢔꢍꢐꢕꢏꢖꢐꢁꢗ  
ꢏꢐ  
ꢙꢕꢁ  
ꢕꢚ  
ꢄꢅꢆꢇꢈ  
ꢊꢅ1ꢇꢌ  
ꢉꢅꢉꢇꢌ  
ꢑꢘꢁ  
8619ꢂꢃ  
ꢃꢎ  
1ꢅꢉꢍ  
1ꢊꢊꢋ  
ꢠꢛ  
ꢑꢌꢌ ꢑꢐ  
ꢖꢐꢟꢘꢎ  
ꢠꢛ  
ꢏꢐꢁꢎ  
ꢔꢁ  
ꢞꢞ  
1ꢇꢌ  
ꢙꢏꢍꢕ  
ꢑꢘꢁ  
ꢕꢝꢐꢞ  
ꢛꢐꢜ  
8619 ꢁꢍꢊꢄ  
ꢉꢉꢇꢌ  
ꢉꢊꢋ  
f
ꢡ ꢉꢥꢈꢦ  
ꢑꢕꢞ  
ꢀ ꢡ ꢎꢏꢕꢈꢍꢝ ꢏꢈꢀꢠꢂꢉꢊꢉꢊꢙꢢꢂꢊ1  
ꢡ ꢁꢜꢣ ꢞꢒꢉꢉꢃꢤꢆꢔ1ꢞꢉꢉ6ꢣꢉꢃꢊ  
ꢑꢘꢁ  
12V 700kHz Step-Down Converter  
ꢕꢐ  
1ꢊꢔ ꢁꢎ 6ꢇꢔ  
1ꢃꢏ  
ꢂꢉꢂꢃꢏ  
1ꢇꢇꢈ  
ꢕꢐ  
ꢕꢐꢁꢔ  
ꢚꢚ  
ꢅꢆ  
ꢅꢆ  
ꢗꢘꢁ  
ꢘꢙ  
ꢇꢉ1ꢃꢏ  
ꢂꢂꢃꢄ  
ꢎꢖꢁ  
8619  
1ꢂꢔ  
1ꢉꢂꢓ  
ꢌꢇ1ꢈ  
ꢂꢂꢒꢏ  
ꢝꢐꢞꢖꢔ  
ꢎꢏꢏ ꢎꢐ  
ꢗꢕꢓꢘ  
ꢇꢉ9ꢊ1ꢋ  
66ꢉꢍꢈ  
ꢟꢁ  
ꢏꢗ  
ꢘꢜꢐꢚ  
ꢆꢐꢛ  
8619 ꢁꢓꢇꢍ  
1ꢇꢃꢏ  
ꢑꢂ  
66ꢉꢍꢈ  
f
ꢠ ꢣꢇꢇꢈꢄꢥ  
ꢎꢘꢚ  
ꢀ ꢠ ꢔꢕꢘꢄꢓꢜ ꢕꢄꢀꢅꢡꢂꢇꢂꢇꢚꢢꢡ11  
ꢠ ꢋꢖꢟꢓꢁꢓ ꢆꢟꢋꢊꢂꢝꢟꢣꢜꢓ1ꢇ6ꢤ  
ꢎꢖꢁ  
8619f  
23  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LT8619#packaging for the most recent package drawings.  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
ꢂꢁꢥꢂ ±ꢂꢁꢂꢡ  
ꢀꢁꢡꢡ ±ꢂꢁꢂꢡ  
ꢛꢁ1ꢡ ±ꢂꢁꢂꢡ ꢃꢛ ꢅꢆꢇꢈꢅꢉ  
1ꢁ6ꢡ ±ꢂꢁꢂꢡ  
ꢖꢏꢕꢗꢏꢑꢈ  
ꢋꢘꢌꢙꢆꢊꢈ  
ꢂꢁꢛꢡ ±ꢂꢁꢂꢡ  
ꢂꢁꢡꢂ  
ꢒꢅꢕ  
ꢛꢁꢀ8 ±ꢂꢁꢂꢡ  
ꢃꢛ ꢅꢆꢇꢈꢅꢉ  
RECOMMENDED ꢅꢋꢙꢇꢈꢎ ꢖꢏꢇ ꢖꢆꢌꢕꢞ ꢏꢊꢇ ꢇꢆꢓꢈꢊꢅꢆꢋꢊꢅ  
ꢎ ꢦ ꢂꢁ1ꢛꢡ  
ꢂꢁꢄꢂ ±ꢂꢁ1ꢂ  
ꢌꢣꢖ  
6
1ꢂ  
ꢀꢁꢂꢂ ±ꢂꢁ1ꢂ  
ꢃꢄ ꢅꢆꢇꢈꢅꢉ  
1ꢁ6ꢡ ±ꢂꢁ1ꢂ  
ꢃꢛ ꢅꢆꢇꢈꢅꢉ  
ꢖꢆꢊ 1 ꢊꢋꢌꢕꢞ  
ꢎ ꢦ ꢂꢁꢛꢂ ꢋꢎ  
ꢖꢆꢊ 1  
ꢌꢋꢖ ꢓꢏꢎꢗ  
ꢃꢅꢈꢈ ꢊꢋꢌꢈ 6ꢉ  
ꢂꢁꢀꢡ × ꢄꢡ°  
ꢕꢞꢏꢓꢝꢈꢎ  
ꢃꢇꢇꢉ ꢇꢝꢊ ꢎꢈꢜ ꢕ ꢂꢀ1ꢂ  
1
ꢂꢁꢛꢡ ±ꢂꢁꢂꢡ  
ꢂꢁꢡꢂ ꢒꢅꢕ  
ꢂꢁꢥꢡ ±ꢂꢁꢂꢡ  
ꢂꢁꢛꢂꢂ ꢎꢈꢝ  
ꢛꢁꢀ8 ±ꢂꢁ1ꢂ  
ꢃꢛ ꢅꢆꢇꢈꢅꢉ  
ꢂꢁꢂꢂ ꢧ ꢂꢁꢂꢡ  
ꢒꢋꢌꢌꢋꢓ ꢜꢆꢈꢐꢤꢈꢟꢖꢋꢅꢈꢇ ꢖꢏꢇ  
ꢊꢋꢌꢈꢍ  
1ꢁ ꢇꢎꢏꢐꢆꢊꢑ ꢌꢋ ꢒꢈ ꢓꢏꢇꢈ ꢏ ꢔꢈꢇꢈꢕ ꢖꢏꢕꢗꢏꢑꢈ ꢋꢘꢌꢙꢆꢊꢈ ꢓꢂꢚꢛꢛ9 ꢜꢏꢎꢆꢏꢌꢆꢋꢊ ꢋꢝ ꢃꢐꢈꢈꢇꢚꢛꢉꢁ  
ꢕꢞꢈꢕꢗ ꢌꢞꢈ ꢙꢌꢕ ꢐꢈꢒꢅꢆꢌꢈ ꢇꢏꢌꢏ ꢅꢞꢈꢈꢌ ꢝꢋꢎ ꢕꢘꢎꢎꢈꢊꢌ ꢅꢌꢏꢌꢘꢅ ꢋꢝ ꢜꢏꢎꢆꢏꢌꢆꢋꢊ ꢏꢅꢅꢆꢑꢊꢓꢈꢊꢌ  
ꢛꢁ ꢇꢎꢏꢐꢆꢊꢑ ꢊꢋꢌ ꢌꢋ ꢅꢕꢏꢙꢈ  
ꢀꢁ ꢏꢙꢙ ꢇꢆꢓꢈꢊꢅꢆꢋꢊꢅ ꢏꢎꢈ ꢆꢊ ꢓꢆꢙꢙꢆꢓꢈꢌꢈꢎꢅ  
ꢄꢁ ꢇꢆꢓꢈꢊꢅꢆꢋꢊꢅ ꢋꢝ ꢈꢟꢖꢋꢅꢈꢇ ꢖꢏꢇ ꢋꢊ ꢒꢋꢌꢌꢋꢓ ꢋꢝ ꢖꢏꢕꢗꢏꢑꢈ ꢇꢋ ꢊꢋꢌ ꢆꢊꢕꢙꢘꢇꢈ  
ꢓꢋꢙꢇ ꢝꢙꢏꢅꢞꢁ ꢓꢋꢙꢇ ꢝꢙꢏꢅꢞꢠ ꢆꢝ ꢖꢎꢈꢅꢈꢊꢌꢠ ꢅꢞꢏꢙꢙ ꢊꢋꢌ ꢈꢟꢕꢈꢈꢇ ꢂꢁ1ꢡꢢꢢ ꢋꢊ ꢏꢊꢣ ꢅꢆꢇꢈ  
ꢡꢁ ꢈꢟꢖꢋꢅꢈꢇ ꢖꢏꢇ ꢅꢞꢏꢙꢙ ꢒꢈ ꢅꢋꢙꢇꢈꢎ ꢖꢙꢏꢌꢈꢇ  
6ꢁ ꢅꢞꢏꢇꢈꢇ ꢏꢎꢈꢏ ꢆꢅ ꢋꢊꢙꢣ ꢏ ꢎꢈꢝꢈꢎꢈꢊꢕꢈ ꢝꢋꢎ ꢖꢆꢊ 1 ꢙꢋꢕꢏꢌꢆꢋꢊ ꢋꢊ ꢌꢞꢈ  
ꢌꢋꢖ ꢏꢊꢇ ꢒꢋꢌꢌꢋꢓ ꢋꢝ ꢖꢏꢕꢗꢏꢑꢈ  
8619f  
24  
For more information www.linear.com/LT8619  
LT8619/LT8619-5  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LT8619#packaging for the most recent package drawings.  
MSE Package  
16-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1667 Rev F)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 ±0.102  
(.112 ±.004)  
2.845 ±0.102  
(.112 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
1
8
0.35  
REF  
5.10  
(.201)  
MIN  
1.651 ±0.102  
(.065 ±.004)  
1.651 ±0.102  
(.065 ±.004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
16  
9
0.305 ±0.038  
0.50  
(.0197)  
BSC  
NO MEASUREMENT PURPOSE  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
(.0120 ±.0015)  
TYP  
0.280 ±0.076  
(.011 ±.003)  
RECOMMENDED SOLDER PAD LAYOUT  
16151413121110  
9
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
0° – 6° TYP  
4.90 ±0.152  
(.193 ±.006)  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1 2 3 4 5 6 7 8  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MSE16) 0213 REV F  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOT EXCEED 0.254mm (.010") PER SIDE.  
8619f  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
25  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LT8619/LT8619-5  
TYPICAL APPLICATION  
Ultralow EMI 5V 2MHz Step-Down Converter  
ꢋꢌ1  
ꢌꢍꢎꢏ  
ꢉꢊ  
ꢄꢅꢆꢇꢈ  
ꢉꢊ  
ꢌꢘꢁ  
ꢘꢛ  
ꢉꢊ  
6ꢓ ꢁꢔ ꢕ6ꢓ  
ꢄꢅꢆꢇꢋ  
ꢄꢅꢆꢇꢋ  
ꢄꢅꢆꢇꢋ  
ꢑꢅ1ꢇꢋ  
8619ꢂꢃ  
ꢖ6ꢑꢓ ꢁꢗꢎꢊꢘꢉꢍꢊꢁꢙ  
ꢄꢅꢆꢇꢈ  
ꢔꢚꢁ  
ꢃꢓ  
1ꢅꢐꢎ  
1ꢑꢑꢒ  
ꢜꢝ  
ꢔꢋꢋ ꢔꢊ  
ꢍꢊꢠꢚꢓ  
ꢜꢝ  
ꢉꢊꢁꢓ  
ꢟꢟ  
1ꢇꢋ  
ꢐꢑꢒ  
ꢌꢉꢎꢘ  
ꢔꢚꢁ  
ꢗꢁ  
ꢘꢞꢊꢟ  
ꢝꢊꢏ  
ꢐꢐꢇꢋ  
8619 ꢁꢎꢑ6  
f
ꢡ ꢐꢣꢈꢦ  
ꢋꢌ1 ꢡ ꢁꢏꢢ ꢣꢜꢤꢐꢑ1ꢐꢘꢐꢐ1ꢎ  
ꢡ ꢥꢋꢀꢄꢑꢐꢑ  
ꢔꢘꢟ  
ꢉꢊ  
ꢀ ꢡ ꢓꢉꢘꢈꢎꢞ ꢉꢈꢀꢜꢂꢐꢑꢐꢑꢌꢤꢂꢑ1  
ꢡ ꢁꢏꢢ ꢟꢕꢐꢐꢃꢥꢆꢗ1ꢟꢐꢐ6ꢢꢐꢃꢑ  
ꢔꢚꢁ  
RELATED PARTS  
PART  
DESCRIPTION  
COMMENTS  
= 3V, V  
LT8602  
42V, Quad Output (2.5A + 1.5A + 1.5A + 1.5A) 95% Efficiency,  
2.2MHz Synchronous Micropower Step-Down DC/DC  
V
= 42V, V  
= 0.8V, I = 2.5μA,  
IN(MIN)  
IN(MAX)  
OUT(MIN)  
Q
I
< 1μA, 6mm × 6mm QFN-40  
SD  
Converter with I = 25μA  
Q
LT8609/LT8609A  
LT8610  
42V, 2A, 94% Efficiency, 2.2MHz Synchronous Micropower  
V
= 3V, V  
= 42V, V  
IN(MAX)  
= 0.8V, IQ = 2.5μA,  
IN(MIN)  
OUT(MIN)  
Step-Down DC/DC Converter with I = 2.5μA  
I
< 1μA, MSOP-10E  
SD  
Q
42V, 2.5A, 96% Efficiency, 2.2MHz Synchronous Micropower  
V
= 3.4V, V  
< 1μA, MSOP-16E  
= 42V, V  
= 42V, V  
= 0.97V, I = 2.5μA,  
Q
IN(MIN)  
IN(MAX)  
OUT(MIN)  
Step- Down DC/DC Converter with I = 2.5μA  
I
SD  
Q
LT8610A/LT8610AB 42V, 3.5A, 96% Efficiency, 2.2MHz Synchronous Micropower  
V
= 3.4V, V  
< 1μA, MSOP-16E  
= 0.97V, I = 2.5μA,  
Q
IN(MIN)  
IN(MAX)  
OUT(MIN)  
Step- Down DC/DC Converter with I = 2.5μA  
I
SD  
Q
LT8610AC  
LT8611  
42V, 3.5A, 96% Efficiency, 2.2MHz Synchronous Micropower  
V
SD  
= 3V, V  
= 42V, V  
= 0.8V, I = 2.5μA,  
IN(MIN)  
IN(MAX)  
OUT(MIN) Q  
Step- Down DC/DC Converter with I = 2.5μA  
I
< 1μA, MSOP-16E  
Q
42V, 2.5A, 96% Efficiency, 2.2MHz Synchronous Micropower  
V
= 3.4V, V  
< 1μA, 3mm × 5mm QFN-24  
= 42V, V  
= 0.97V, I = 2.5μA,  
Q
IN(MIN)  
IN(MAX)  
OUT(MIN)  
Step- Down DC/DC Converter with I = 2.5μA and Input/Output  
I
SD  
Q
Current Limit/Monitor  
LT8612  
42V, 6A, 96% Efficiency, 2.2MHz Synchronous Micropower  
V
SD  
= 3.4V, V  
= 42V, V  
= 0.97V, I = 3.0μA,  
Q
IN(MIN)  
IN(MAX)  
OUT(MIN)  
Step-Down DC/DC Converter with I = 2.5μA  
I
< 1μA, 3mm × 6mm QFN-28  
Q
LT8613  
42V, 6A, 96% Efficiency, 2.2MHz Synchronous Micropower  
Step- Down DC/DC Converter with Current Limiting  
V
SD  
= 3.4V, VIN(MAX) = 42V, V  
= 0.97V, I = 3.0μA,  
OUT(MIN) Q  
IN(MIN)  
I
< 1μA, 3mm × 6mm QFN-28  
LT8614  
42V, 4A, 96% Efficiency, 2.2MHz Synchronous Silent Switcher  
V
SD  
= 3.4V, V  
= 42V, V = 0.97V, I = 2.5μA,  
OUT(MIN) Q  
IN(MIN)  
IN(MAX)  
Step- Down DC/DC Converter with I = 2.5μA  
I
< 1μA, 3mm × 4mm QFN-18  
Q
LT8616  
42V, Dual 2.5A + 1.5A, 95% Efficiency, 2.2MHz Synchronous  
V
SD  
= 3.4V, VIN(MAX) = 42V, V  
= 0.8V, I = 5μA,  
IN(MIN)  
OUT(MIN) Q  
Micropower Step-Down DC/DC Converter with I = 5μA  
I
< 1μA, TSSOP-28E, 3mm × 6mm QFN-28  
Q
LT8620  
65V, 2.5A, 94% Efficiency, 2.2MHz Synchronous Micropower  
V
= 3.4V, V  
= 65V, V  
= 0.97V, I = 2.5μA,  
IN(MIN)  
IN(MAX)  
OUT(MIN) Q  
Step- Down DC/DC Converter with I = 2.5μA  
ISD < 1μA, MSOP-16E, 3mm × 5mm QFN-24  
V = 3.4V, V = 42V, V = 0.97V, I = 2.5μA,  
IN(MIN)  
Q
LT8640/LT8640-1  
42V, 5A, 96% Efficiency, 3MHz Synchronous Micropower  
IN(MAX)  
OUT(MIN)  
Q
Step-Down DC/DC Converter with I = 2.5μA  
I
SD  
< 1μA, 3mm × 4mm QFN-18  
Q
8619f  
LT 0118 • PRINTED IN USA  
www.linear.com/LT8619  
26  
ANALOG DEVICES, INC. 2018  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY