LTC1044ACN8#TRPBF [Linear]

IC SWITCHED CAPACITOR CONVERTER, Switching Regulator or Controller;
LTC1044ACN8#TRPBF
型号: LTC1044ACN8#TRPBF
厂家: Linear    Linear
描述:

IC SWITCHED CAPACITOR CONVERTER, Switching Regulator or Controller

光电二极管
文件: 总14页 (文件大小:215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1044A  
12V CMOS  
Voltage Converter  
FeaTures  
DescripTion  
The LTC®1044A is a monolithic CMOS switched-capacitor  
voltage converter. It plugs in for ICL7660/LTC1044 in  
applications where higher input voltage (up to 12V) is  
needed. TheLTC1044Aprovidesseveralconversionfunc-  
tions without using inductors. The input voltage can be  
n
1.5V to 12V Operating Supply Voltage Range  
n
13V Absolute Maximum Rating  
n
200µA Maximum No Load Supply Current at 5V  
n
Boost Pin (Pin 1) for Higher Switching Frequency  
n
97% Minimum Open Circuit Voltage Conversion  
Efficiency  
inverted (V  
= –V ), doubled (V  
= 2V ), divided  
OUT IN  
OUT  
IN  
OUT IN  
= nV ).  
n
95% Minimum Power Conversion Efficiency  
(V  
= V /2) or multiplied (V  
OUT  
IN  
+
n
I = 1.5µA with 5V Supply When OSC Pin = 0V or V  
S
To optimize performance in specific applications, a boost  
functionisavailabletoraisetheinternaloscillatorfrequency  
by a factor of seven. Smaller external capacitors can be  
used in higher frequency operation to save board space.  
The internal oscillator can also be disabled to save power.  
The supply current drops to 1.5µA at 5V input when the  
n
High Voltage Upgrade to ICL7660/LTC1044  
applicaTions  
n
Conversion of 10V to 10V Supplies  
n
Conversion of 5V to 5V Supplies  
+
OSC pin is tied to GND or V .  
n
Precise Voltage Division: V  
= V /2 20ppm  
OUT  
IN  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
n
n
n
n
Technology Corporation. All other trademarks are the property of their respective owners.  
Voltage Multiplication: V  
= nV  
OUT  
IN  
Supply Splitter: V  
= V /2  
OUT  
S
Automotive Applications  
Battery Systems with 9V Wall Adapters/Chargers  
Typical applicaTion  
Generating –10V from 10V  
Output Voltage vs Load Current, V+ = 10V  
0
LTC1044A  
T
= 25°C  
A
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
1
2
3
4
8
7
6
5
+
C1 = C2 = 10µF  
10V INPUT  
BOOST  
V
+
CAP  
OSC  
LV  
+
GND  
10µF  
–10V OUTPUT  
CAP  
V
OUT  
1044a TA01a  
10µF  
+
SLOPE = 45Ω  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
1044a TA01b  
1044afa  
1
For more information www.linear.com/LTC1044A  
LTC1044A  
absoluTe MaxiMuM raTings  
(Note 1)  
Supply Voltage..........................................................13V  
Operating Temperature Range  
Input Voltage on Pins 1, 6 and 7  
LTC1044AC.............................................. 0°C to 70°C  
LTC1044AI........................................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
+
(Note 2)..................................–0.3V < V < V + 0.3V  
IN  
Current into Pin 6....................................................20µA  
Output Short-Circuit Duration  
+
V ≤ 6.5V ......................................................Continuous  
pin conFiguraTion  
TOP VIEW  
+
TOP VIEW  
+
BOOST  
1
2
3
4
V
BOOST  
1
2
3
4
8
7
6
5
V
8
7
6
5
+
+
CAP  
OSC  
LV  
CAP  
OSC  
LV  
GND  
GND  
CAP  
V
CAP  
V
OUT  
OUT  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
JMAX  
= 110°C, θ = 100°C/W  
T
= 110°C, θ = 130°C/W  
JMAX JA  
JA  
Consult factory for military grade parts  
orDer inForMaTion  
LEAD FREE FINISH  
LTC1044ACN8#PBF  
LTC1044AIN8#PBF  
LTC1044ACS8#PBF  
LTC1044AIS8#PBF  
TAPE AND REEL  
PART MARKING  
LTC1044 ACN8  
LTC1044 AIN8  
1044A  
PACKAGE DESCRIPTION  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
8-Lead Plastic SO  
8-Lead Plastic SO  
TEMPERATURE RANGE  
0°C to 70°C  
LTC1044ACN8#TRPBF  
LTC1044AIN8#TRPBF  
LTC1044ACS8#TRPBF  
LTC1044AIS8#TRPBF  
–40°C to 85°C  
0°C to 70°C  
1044AI  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1044afa  
2
For more information www.linear.com/LTC1044A  
LTC1044A  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, COSC = 0pF, unless otherwise noted.  
LTC1044AC  
LTC1044AI  
TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
I
Supply Current  
R = ∞, Pins 1 and 7, No Connection  
60  
15  
200  
60  
15  
200  
μA  
μA  
S
L
R = ∞, Pins 1 and 7, No Connection,  
L
+
V = 3V  
l
l
Minimum Supply Voltage  
Maximum Supply Voltage  
Output Resistance  
R = 10k  
1.5  
1.5  
V
V
L
R = 10k  
L
12  
12  
R
OUT  
I = 20mA, f  
L
= 5kHz  
100  
120  
310  
100  
130  
325  
Ω
Ω
Ω
OSC  
l
l
+
V = 2V, I = 3mA, f  
= 1kHz  
L
OSC  
+
l
l
f
Oscillator Frequency  
Power Efficiency  
V = 5V, (Note 3)  
5
1
5
1
kHz  
kHz  
OSC  
+
V = 2V  
P
RL = 5k, f  
= 5kHz  
95  
97  
98  
95  
97  
98  
%
%
EFF  
OSC  
Voltage Conversion Efficiency RL = ∞  
99.9  
99.9  
+
Oscillator Sink or Source  
Current  
V
= 0V or V  
OSC  
l
l
Pin 1 (BOOST) = 0V  
Pin 1 (BOOST) = V  
3
20  
3
20  
µA  
µA  
+
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Connecting any input terminal to voltages greater than V or less  
than ground may cause destructive latchup. It is recommended that no  
inputs from sources operating from external supplies be applied prior to  
power-up of the LTC1044A.  
Note 3: f  
is tested with C  
= 100pF to minimize the effects of test  
OSC  
OSC  
fixture capacitance loading. The 0pF frequency is correlated to this 100pF  
test point, and is intended to simulate the capacitance at pin 7 when the  
device is plugged into a test socket and no external capacitor is used.  
+
1044afa  
3
For more information www.linear.com/LTC1044A  
LTC1044A  
Typical perForMance characTerisTics  
Operating Voltage Range vs  
Temperature  
Power Efficiency vs Oscillator  
Frequency, V+ = 5V  
Power Efficiency vs Oscillator  
Frequency, V+ = 10V  
100  
98  
14  
12  
100  
98  
T
= 25°C  
T
= 25°C  
A
A
C1 = C2  
C1 = C2  
100µF  
10µF  
100µF  
I
L
= 1mA  
96  
96  
10µF  
10  
8
94  
94  
100µF  
= 15mA  
1µF  
I
= 1mA  
L
10µF  
I
L
92  
90  
92  
90  
6
88  
86  
84  
82  
80  
88  
86  
84  
82  
80  
100µF  
10µF  
I
= 15mA  
4
L
1µF  
2
1µF  
1k  
1µF  
0
–55 –25  
0
25  
50  
75  
100 125  
100  
10k  
100k  
100  
1k  
10k  
100k  
AMBIENT TEMPERATURE (°C)  
OSCILLATOR FREQUENCY (Hz)  
OSCILLATOR FREQUENCY (Hz)  
1044a G02  
1044a G03  
1044a G01  
Output Resistance vs Oscillator  
Frequency, V+ = 5V  
Output Resistance vs Oscillator  
Frequency, V+ = 10V  
Power Conversion Efficiency vs  
Load Current, V+ = 2V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
T
= 25°C  
T
L
= 25°C  
= 10mA  
T = 25°C  
A
I = 10mA  
L
A
A
9
8
7
6
5
4
3
2
1
0
C1 = C2 = 10µF  
= 1kHz  
I
P
C1 = C2 = 10µF  
EFF  
f
OSC  
C1 = C2 = 1µF  
I
S
C1 = C2 = 1µF  
C1 = C2  
= 100µF  
C1 = C2  
= 10µF  
C1 = C2 = 100µF  
1k  
0
2
3
4
5
6
7
1
100  
10k  
100k  
100  
1k  
10k  
100k  
LOAD CURRENT (mA)  
OSCILLATOR FREQUENCY (Hz)  
OSCILLATOR FREQUENCY (Hz)  
1044a G04  
1044a G05  
1044a G06  
Power Conversion Efficiency vs  
Load Current, V+ = 5V  
Power Conversion Efficiency vs  
Load Current, V+ = 10V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
300  
T
= 25°C  
A
270  
240  
210  
180  
150  
120  
90  
C1 = C2 = 10µF  
= 5kHz  
P
EFF  
P
EFF  
f
OSC  
I
S
I
S
60  
T
= 25°C  
A
C1 = C2 = 10µF  
= 20kHz  
30  
f
OSC  
0
0
20  
30  
40  
50  
60  
70  
0
40  
60  
80  
100 120 140  
10  
20  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
1044a G07  
1044a G08  
1044afa  
4
For more information www.linear.com/LTC1044A  
LTC1044A  
Typical perForMance characTerisTics  
Output Resistance vs Supply  
Voltage  
Output Voltage vs Load Current,  
V+ = 2V  
Output Voltage vs Load Current,  
V+ = 5V  
1000  
100  
10  
2.5  
2.0  
5
4
T
f
= 25°C  
OSC  
T
f
= 25°C  
A
OSC  
T
I
= 25°C  
= 3mA  
A
A
L
= 1kHz  
= 5kHz  
1.5  
3
1.0  
2
C
OSC  
= 100pF  
0.5  
1
SLOPE = 80Ω  
0
0
SLOPE = 250Ω  
0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–1  
–2  
–3  
–4  
–5  
C
OSC  
= 0pF  
0
1
2
3
4
5
6
7
8
9
10  
0
10 20 30 40 50 60 70 80 90 100  
1
2
4
6
7
8
10 11 12  
9
0
3
5
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
1044a G09  
1044a G10  
1044a G11  
Output Voltage vs Load Current,  
V+ = 10V  
Output Resistance vs  
Temperature  
Oscillator Frequency as a  
Function of COSC, V+ = 5V  
10  
8
100k  
10k  
1k  
400  
360  
320  
280  
240  
200  
160  
120  
80  
T
= 25°C  
C1 = C2 = 10µF  
= 1kHz  
T
OSC  
= 25°C  
A
A
f
= 20kHz  
+
6
PIN 1 = V  
+
V
= 2V, f  
OSC  
4
2
0
–2  
–4  
–6  
–8  
PIN 1 = OPEN  
+
V
+
= 5V, f  
= 5kHz  
OSC  
100  
10  
SLOPE = 45Ω  
40  
V
= 10V, f  
25  
= 20kHz  
OSC  
50  
–10  
0
0
10 20 30 40 50 60 70 80 90 100  
1
10  
100  
1000  
10000  
–55  
0
75 100 125  
–25  
EXTERNAL CAPACITOR (PIN 7 TO GND)(pF)  
LOAD CURRENT (mA)  
AMBIENT TEMPERATURE (°C)  
1044a G14  
1044a G12  
1044a G13  
Oscillator Frequency as a  
Function of COSC, V+ = 10V  
Oscillator Frequency vs Supply  
Voltage  
Oscillator Frequency vs  
Temperature  
100k  
10k  
1k  
100k  
10k  
35  
30  
+
V
T
= 10V  
T = 25°C  
A
C
= 0pF  
OSC  
= 25°C  
C
= 0pF  
OSC  
A
+
PIN 1 = V  
25  
20  
15  
10  
5
+
V
= 10V  
PIN 1 = OPEN  
1k  
100  
10  
+
V
= 5V  
25  
0.1k  
0
50  
100 125  
1
10  
100  
1000  
10000  
0
1
2
3
4
5
6
7
8
9
10 11 12  
–55 –25  
0
75  
EXTERNAL CAPACITOR (PIN 7 TO GND)(pF)  
SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
1044a G16  
1044a G15  
1044a G17  
1044afa  
5
For more information www.linear.com/LTC1044A  
LTC1044A  
TesT circuiT  
+
V
R
(5V)  
I
I
S
L
1
2
3
4
8
7
6
5
EXTERNAL  
OSCILLATOR  
LTC1044A  
+
L
C1  
10µF  
V
OUT  
C2  
C
OSC  
+
10µF  
1044a TC  
applicaTions inForMaTion  
Theory of Operation  
A new variable, R  
, has been defined such that R  
EQUIV EQUIV  
= 1/(f C1). Thus, the equivalent circuit for the switched-  
To understand the theory of operation of the LTC1044A,  
a review of a basic switched-capacitor building block is  
helpful.  
capacitor network is as shown in Figure 2.  
R
EQUIV  
V1  
V2  
In Figure 1, when the switch is in the left position, capaci-  
tor C1 will charge to voltage V1. The total charge on C1  
will be q1 = C1V1. The switch then moves to the right,  
discharging C1 to voltage V2. After this discharge time,  
the charge on C1 is q2 = C1V2. Note that charge has been  
transferred from the source, V1, to the output, V2. The  
amount of charge transferred is:  
R
C2  
L
1
R
=
EQUIV  
f × C1  
1044a F02  
Figure 2. Switched-Capacitor Equivalent Circuit  
Examination of Figure 3 shows that the LTC1044A has the  
same switching action as the basic switched-capacitor  
building block. With the addition of finite switch-on  
resistance and output voltage ripple, the simple theory  
although not exact, provides an intuitive feel for how the  
device works.  
∆q = q1 – q2 = C1(V1 – V2)  
If the switch is cycled f times per second, the charge  
transfer per unit time (i.e., current) is:  
I = f ∆q = f C1(V1 – V2)  
For example, if you examine power conversion efficiency  
as a function of frequency (see typical curve), this simple  
theory will explain how the LTC1044A behaves. The loss,  
and hence the efficiency, is set by the output impedance.  
As frequency is decreased, the output impedance will  
eventually be dominated by the 1/(f C1) term, and power  
efficiencywilldrop.ThetypicalcurvesforPowerEfficiency  
vsFrequencyshowthiseffectforvariouscapacitorvalues.  
V1  
V2  
f
R
L
C1  
C2  
1044a F01  
Figure 1. Switched-Capacitor Building Block  
Rewriting in terms of voltage and impedance equivalence,  
V1– V2 V1– V2  
Note also that power efficiency decreases as frequency  
goes up. This is caused by internal switching losses which  
occurduetosomefinitechargebeinglostoneachswitching  
cycle. This charge loss per unit cycle, when multiplied by  
the switching frequency, becomes a current loss. At high  
frequency this loss becomes significant and the power  
efficiency starts to decrease.  
I=  
=
1
R
EQUIV  
(fC1)  
1044afa  
6
For more information www.linear.com/LTC1044A  
LTC1044A  
applicaTions inForMaTion  
+
V
(8)  
SW1  
SW2  
+
C
(2)  
BOOST  
φ
+
7X  
(1)  
C1  
OSC  
÷ 2  
φ
OSC  
(7)  
C
V
OUT  
(5)  
(4)  
C2  
+
1044a F03  
CLOSED WHEN  
+
V
> 3V  
LV  
(6)  
GND  
(3)  
Figure 3. LTC1044A Switched-Capacitor Voltage Converter Block Diagram  
LV (Pin 6)  
Loading pin 7 with more capacitance will lower the  
frequency. Using the boost (pin 1) in conjunction with  
external capacitance on pin 7 allows user selection of the  
frequency over a wide range.  
+
The internal logic of the LTC1044A runs between V and  
+
LV (pin 6). For V greater than or equal to 3V, an internal  
+
switch shorts LV to GND (pin 3). For V less than 3V, the  
+
LV pin should be tied to GND. For V greater than or equal  
Driving the LTC1044A from an external frequency source  
canbeeasilyachievedbydrivingpin7andleavingtheboost  
pin open as shown in Figure 5. The output current from  
pin 7 is small (typically 0.5µA) so a logic gate is capable  
of driving this current. The choice of using a CMOS logic  
gate is best because it can operate over a wide supply  
voltage range (3V to 15V) and has enough voltage swing  
to drive the internal Schmitt trigger shown in Figure 4. For  
5V applications, a TTL logic gate can be used by simply  
adding an external pull-up resistor (see Figure 5).  
to 3V, the LV pin can be tied to GND or left floating.  
OSC (Pin 7) and Boost (Pin 1)  
The switching frequency can be raised, lowered, or driven  
from an external source. Figure 4 shows a functional  
diagram of the oscillator circuit.  
+
V
6I  
I
BOOST  
(1)  
+
V
100k  
REQUIRED FOR  
TTL LOGIC  
1
2
3
4
8
7
6
5
NC  
SCHMITT  
TRIGGER  
OSC INPUT  
OSC  
(7)  
LTC1044A  
+
C1  
~14pF  
+
–(V )  
6I  
I
C2  
+
LV  
(6)  
1044a F04  
1044a F05  
Figure 4. Oscillator  
+
Figure 5. External Clocking  
By connecting the boost pin (pin 1) to V , the charge and  
discharge current is increased and hence, the frequency  
is increased by approximately seven times. Increasing the  
frequency will decrease output impedance and ripple for  
higher load currents.  
1044afa  
7
For more information www.linear.com/LTC1044A  
LTC1044A  
applicaTions inForMaTion  
Capacitor Selection  
The exact expression for output resistance is extremely  
complex, but the dominant effect of the capacitor is  
clearly shown on the typical curves of Output Resistance  
and Power Efficiency vs Frequency. For C1 = C2 = 10µF,  
External capacitors C1 and C2 are not critical. Matching is  
not required, nor do they have to be high quality or tight  
tolerance.Aluminumortantalumelectrolyticsareexcellent  
choices with cost and size being the only consideration.  
the output impedance goes from 60Ω at f  
= 10kHz to  
OSC  
200Ω at f  
= 1kHz. As the 1/(f C) term becomes large  
OSC  
compared to the switch-on resistance term, the output  
Negative Voltage Converter  
resistance is determined by 1/(f C) only.  
Figure 6 shows a typical connection which will provide  
a negative supply from an available positive supply. This  
circuit operates over full temperature and power supply  
ranges without the need of any external diodes. The LV  
Voltage Doubling  
Figure 7 shows a two-diode capacitive voltage doubler.  
Witha5Vinput,theoutputis9.93Vwithnoloadand9.13V  
with a 10mA load. With a 10V input, the output is 19.93V  
with no load and 19.28V with a 10mA load.  
+
pin (pin 6) is shown grounded, but for V ≥ 3V it may be  
floated, since LV is internally switched to ground (pin 3)  
+
for V ≥ 3V.  
V
IN  
The output voltage (pin 5) characteristics of the circuit  
are those of a nearly ideal voltage source in series with  
an 80Ω resistor. The 80Ω output impedance is composed  
of two terms:  
(1.5V TO 12V)  
1
2
3
4
8
7
6
5
+
V
d
V
d
1N5817  
LTC1044A  
1N5817  
+
V
OUT  
= 2(V – 1)  
IN  
REQUIRED  
+
FOR V < 3V  
+
+
1. The equivalent switched-capacitor resistance (see  
Theory of Operation).  
10µF  
10µF  
1044a F07  
2. A term related to the on-resistance of the MOS  
switches.  
Figure 7. Voltage Doubler  
At an oscillator frequency of 10kHz and C1 = 10µF, the  
first term is:  
Ultra-Precision Voltage Divider  
An ultra-precision voltage divider is shown in Figure 8. To  
achieve the 0.002% accuracy indicated, the load current  
should be kept below 100nA. However, with a slight loss  
in accuracy the load current can be increased.  
1
R
=
=
EQUIV  
(f  
1
/2)C1  
OSC  
=20Ω  
– 6  
3
510 1010  
1
2
3
4
8
7
6
5
+
V
(3V TO 24V)  
Notice that the above equation for R  
is not a capaci-  
EQUIV  
tive reactance equation (X = 1/C) and does not contain  
C
LTC1044A  
+
C1  
10µF  
a 2π term.  
1
2
3
4
8
7
6
5
+
V
(1.5V TO 12V)  
+
V /2 0.002%  
1044a F08  
REQUIRED FOR  
+
+
C2  
10µF  
LTC1044A  
V
< 6V  
+
T
I
≤ T ≤ T  
MIN A MAX  
+
10µF  
≤ 100nA  
REQUIRED FOR V < 3V  
+
L
V
= V  
OUT  
10µF  
+
Figure 8. Ultra-Precision Voltage Divider  
T
≤ T ≤ T  
A MAX  
1044a F06  
MIN  
Figure 6. Negative Voltage Converter  
1044afa  
8
For more information www.linear.com/LTC1044A  
LTC1044A  
applicaTions inForMaTion  
Battery Splitter  
Paralleling for Lower Output Resistance  
A common need in many systems is to obtain (+) and  
(–) supplies from a single battery or single power supply  
system. Where current requirements are small, the circuit  
shown in Figure 9 is a simple solution. It provides sym-  
metrical output voltages, both equal to one half input  
voltage. The output voltages are both referenced to pin 3  
(output common). If the input voltage between pin 8 and  
pin 5 is less than 6V, pin 6 should also be connected to  
pin 3 as shown by the dashed line.  
Additional flexibility of the LTC1044A is shown in Figures  
10 and 11.  
Figure 10 shows two LTC1044As connected in parallel to  
provide a lower effective output resistance. If, however,  
theoutputresistanceisdominatedby1/(fC1),increasing  
the capacitor size (C1) or increasing the frequency will be  
of more benefit than the paralleling circuit shown.  
Figure 11 makes use of stacking two LTC1044As to pro-  
vide even higher voltages. A negative voltage doubler or  
tripler can be achieved, depending upon how pin 8 of the  
second LTC1044A is connected, as shown schematically  
bytheswitch. Theavailableoutputcurrentwillbedictated/  
decreased by the product of the individual power conver-  
sion efficiencies and the voltage step-up ratio.  
1
2
3
4
8
7
6
5
+V /2 (6V)  
B
+
V
B
LTC1044A  
+
12V  
C1  
10µF  
REQUIRED FOR V < 6V  
B
+V /2 (–6V)  
B
C2  
+
10µF  
OUTPUT  
COMMON  
1044a F09  
Figure 9. Battery Splitter  
+
V
1
2
8
7
6
5
1
2
3
4
8
7
6
5
+
LTC1044A  
+
LTC1044A  
3
4
C1  
C1  
10µF  
10µF  
+
V
= –(V )  
OUT  
1/4 CD4077  
*
C2  
+
20µF  
*THE EXCLUSIVE NOR GATE SYNCHRONIZES BOTH LTC1044As TO MINIMIZE RIPPLE  
1044a F10  
Figure 10. Paralleling for Lower Output Resistance  
+
V
+
+
FOR V  
= –3V  
FOR V  
= –2V  
OUT  
OUT  
1
2
3
4
8
7
6
5
1
2
8
7
6
5
10µF  
+
+
LTC1044A  
LTC1044A  
3
4
10µF  
+
–(V )  
V
OUT  
10µF  
10µF  
+
+
1044a F11  
Figure 11. Stacking for Higher Voltage  
1044afa  
9
For more information www.linear.com/LTC1044A  
LTC1044A  
Typical applicaTions  
Low Output Impedance Voltage Converter  
200k  
8.2k  
V
*
IN  
V
OUT  
3
2
7
50k  
+
ADJ  
6
LM10  
OUTPUT  
10µF  
8
1
7
6
5
4
39k  
+
1
100µF  
+
8
4
50k  
LTC1044A  
200k  
39k  
1044a F12  
0.1µF  
2
3
10µF  
+
*V ≥ |–V | + 0.5V  
LOAD REGULATION 0.02%, 0mA TO 15mA  
IN  
OUT  
Single 5V Strain Gauge Bridge Signal Conditioner  
1
2
3
4
8
7
6
5
5V  
LTC1044A  
+
100µF  
100µF  
–5V  
4
+
220Ω  
8
0.33µF  
3
2
+
OUTPUT  
0V TO 3.5V  
0psi to 350psi  
1
1.2V REFERENCE TO  
A/D CONVERTER FOR  
RATIOMETRIC OPERATION  
(1mA MAX)  
D
2k  
GAIN  
TRIM  
100k  
0.047µF  
46k*  
LT1413  
10k  
ZERO  
TRIM  
301k*  
A
LT1004  
1.2V  
350Ω PRESSURE  
TRANSDUCER  
100Ω*  
E
5
6
0V  
+
7
39k  
*1% FILM RESISTOR  
PRESSURE TRANSDUCER BLH/DHF-350  
(CIRCLED LETTER IS PIN NUMBER)  
C
≈ –1.2V  
0.1µF  
1044a F13  
1044afa  
10  
For more information www.linear.com/LTC1044A  
LTC1044A  
Typical applicaTions  
Regulated Output 3V to 5V Converter  
3V  
1N914  
200  
1
2
3
4
8
7
6
5
5V  
OUTPUT  
+
100µF  
LTC1044A  
1M  
1
+
4.8M  
10µF  
7
+
8
1k  
REF  
AMP  
330k  
EVEREADY  
EXP-30  
LM10  
+
2
3
1k  
6
OP  
AMP  
4
100k  
1N914  
150k  
1044a F14  
Low Dropout 5V Regulator  
2N2219  
V
= 5V  
OUT  
1N914  
200Ω  
10µF  
1
8
7
6
5
12V  
2
3
4
+
LTC1044A  
+
10µF  
100Ω  
120k  
100k  
SHORT-CIRCUIT  
PROTECTION  
8
+
5
FEEDBACK AMP  
1M  
6V  
V
LOAD  
4 EVEREADY  
E-91 CELLS  
2
3
+
+
7
LT1013  
1N914  
V
4
1
6
LT1004  
1.2V  
30k  
50k  
OUTPUT  
ADJUST  
1.2k  
V
V
V
AT 1mA = 1mV  
AT 10mA = 15mV  
AT 100mA = 95mV  
DROPOUT  
DROPOUT  
DROPOUT  
0.01Ω  
1044a F15  
1044afa  
11  
For more information www.linear.com/LTC1044A  
LTC1044A  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
.400*  
(10.160)  
MAX  
.130 ±.005  
(3.302 ±0.127)  
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
8
1
7
6
3
5
4
.065  
(1.651)  
TYP  
.255 ±.015*  
(6.477 ±0.381)  
.008 – .015  
(0.203 – 0.381)  
.120  
(3.048)  
MIN  
.020  
(0.508)  
MIN  
+.035  
–.015  
.325  
2
.018 ±.003  
(0.457 ±0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
N8 REV I 0711  
(
)
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
SO8 REV G 0212  
1044afa  
12  
For more information www.linear.com/LTC1044A  
LTC1044A  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
4/14  
Changed 0.0002% to 0.002% in the Ultra-Precision Voltage Divider section  
8
1044afa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
13  
LTC1044A  
Typical applicaTion  
Two-Diode Capacitive Voltage Doubler  
V
IN  
(1.5V TO 12V)  
1
2
3
4
8
7
6
5
+
V
d
V
d
1N5817  
LTC1044A  
1N5817  
+
V
= 2(V – 1)  
IN  
OUT  
REQUIRED  
FOR V < 3V  
+
+
+
10µF  
10µF  
1044a TA02  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 1.8V to 5.5V, V  
LTC3240-3.3/  
LTC3240-2.5  
3.3V/2.5V Step-Up/Step-Down Charge Pump  
DC/DC Converter  
= 3.3V/2.5V, I = 65μA, I < 1μA,  
OUT(MAX) Q SD  
IN  
(2mm × 2mm) DFN Package  
LTC3245  
Wide V Range Low Noise 250mA Buck-Boost V : 2.7V to 38V, V  
= 5V, I = 20µA, I = 4µA, 12-Lead MS and  
IN  
IN  
OUT(MAX) Q SD  
Charge Pump  
(3mm × 4mm) DFN Packages  
LTC3255  
Wide V Range 50mA Buck (Step-Down)  
V : 4V to 48V, V = 12.5V, I = 16µA, 10-Lead MSOP and  
IN  
IN  
OUT(MAX)  
Q
Charge Pump  
(3mm × 3mm) DFN Packages  
1044afa  
LT 0414 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
14  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC1044A  
LINEAR TECHNOLOGY CORPORATION 1993  

相关型号:

LTC1044ACS8

12V CMOS Voltage Converter
Linear

LTC1044ACS8#PBF

暂无描述
Linear

LTC1044ACS8#TRPBF

LTC1044A - 12V CMOS Voltage Converter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1044AI

12V CMOS Voltage Converter
Linear

LTC1044AIN8

12V CMOS Voltage Converter
Linear

LTC1044AIN8#PBF

暂无描述
Linear

LTC1044AIN8#TRPBF

IC SWITCHED CAPACITOR CONVERTER, Switching Regulator or Controller
Linear

LTC1044AIS8

12V CMOS Voltage Converter
Linear

LTC1044AIS8#PBF

暂无描述
Linear

LTC1044AIS8#TR

LTC1044A - 12V CMOS Voltage Converter; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1044AIS8#TRPBF

LTC1044A - 12V CMOS Voltage Converter; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1044C

Switched Capacitor Voltage Converter
Linear