LTC1044AIS8#PBF [Linear]

暂无描述;
LTC1044AIS8#PBF
型号: LTC1044AIS8#PBF
厂家: Linear    Linear
描述:

暂无描述

转换器 光电二极管
文件: 总12页 (文件大小:276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1044A  
12V CMOS  
Voltage Converter  
U
DESCRIPTIO  
EATURE  
1.5V to 12V Operating Supply Voltage Range  
13V Absolute Maximum Rating  
200µA Maximum No Load Supply Current at 5V  
Boost Pin (Pin 1) for Higher Switching Frequency  
97% Minimum Open Circuit Voltage Conversion  
Efficiency  
95% Minimum Power Conversion Efficiency  
IS = 1.5µA with 5V Supply When OSC Pin = 0V or V+  
High Voltage Upgrade to ICL7660/LTC1044  
S
F
The LTC1044A is a monolithic CMOS switched-capacitor  
voltage converter. It plugs in for ICL7660/LTC1044 in  
applications where higher input voltage (up to 12V) is  
needed. The LTC1044A provides several conversion func-  
tions without using inductors. The input voltage can be  
inverted (VOUT = VIN), doubled (VOUT = 2VIN), divided  
(VOUT = VIN/2) or multiplied (VOUT = ±nVIN).  
To optimize performance in specific applications, a boost  
function is available to raise the internal oscillator fre-  
quency by a factor of 7. Smaller external capacitors can be  
used in higher frequency operation to save board space.  
The internal oscillator can also be disabled to save power.  
The supply current drops to 1.5µA at 5V input when the  
OSC pin is tied to GND or V+.  
O U  
PPLICATI  
A
S
Conversion of 10V to ±10V Supplies  
Conversion of 5V to ±5V Supplies  
Precise Voltage Division: VOUT = VIN/2 ±20ppm  
Voltage Multiplication: VOUT = ±nVIN  
Supply Splitter: VOUT = ±VS/2  
Automotive Applications  
Battery Systems with 9V Wall Adapters/Chargers  
U
O
TYPICAL APPLICATI  
Generating 10V from 10V  
Output Voltage vs Load Current, V+ = 10V  
0
LTC1044A  
T
= 25°C  
A
1
2
3
4
8
7
6
5
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
+
C1 = C2 = 10µF  
10V INPUT  
BOOST  
V
+
CAP  
OSC  
LV  
+
GND  
10µF  
–10V OUTPUT  
CAP  
V
OUT  
10µF  
LTC1044A • TA01  
+
SLOPE = 45Ω  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
LTC1044A • TA02  
1
LTC1044A  
W W W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
/O  
(Note 1)  
Supply Voltage ........................................................ 13V  
Input Voltage on Pins 1, 6 and 7  
TOP VIEW  
ORDER PART  
+
NUMBER  
BOOST  
1
2
3
4
V
8
7
6
5
(Note 2) .............................. 0.3V < VIN < V+ + 0.3V  
Current into Pin 6 ................................................. 20µA  
Output Short-Circuit Duration  
+
CAP  
OSC  
LV  
LTC1044ACN8  
LTC1044AIN8  
GND  
CAP  
V
OUT  
V+ 6.5V .................................................Continuous  
Operating Temperature Range  
LTC1044AC ............................................ 0°C to 70°C  
LTC1044AI ........................................ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
TJMAX = 110°C, θJA = 100°C/W  
TOP VIEW  
ORDER PART  
NUMBER  
+
BOOST  
1
2
3
4
8
7
6
5
V
+
CAP  
OSC  
LV  
LTC1044ACS8  
LTC1044AIS8  
GND  
CAP  
V
OUT  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
1044A  
1044AI  
TJMAX = 110°C, θJA = 130°C/W  
Consult factory for Military grade parts  
V+ = 5V, COSC = 0pF, TA = 25°C, See Test Circuit, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
LTC1044AC  
TYP  
LTC1044AI  
TYP MAX UNITS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX MIN  
I
Supply Current  
R = , Pins 1 and 7, No Connection  
60  
15  
200  
60  
15  
200  
µA  
µA  
S
L
R = , Pins 1 and 7, No Connection,  
L
+
V
= 3V  
Minimum Supply Voltage  
Maximum Supply Voltage  
Output Resistance  
R = 10k  
1.5  
1.5  
12  
V
V
L
R = 10k  
L
12  
R
OUT  
I = 20mA, f  
L
= 5kHz  
100  
120  
310  
100  
130  
325  
OSC  
+
V
= 2V, I = 3mA, f  
= 1kHz  
OSC  
L
+
+
f
Oscillator Frequency  
Power Efficiency  
V
V
= 5V, (Note 3)  
= 2V  
5
1
5
1
kHz  
kHz  
OSC  
P
R = 5k, f = 5kHz  
L OSC  
95  
97  
98  
95  
97  
98  
%
%
EFF  
Voltage Conversion Efficiency R = ∞  
99.9  
99.9  
L
+
Oscillator Sink or Source  
Current  
V
= 0V or V  
OSC  
Pin 1 (BOOST) = 0V  
Pin 1 (BOOST) = V  
3
20  
3
20  
µA  
µA  
+
The  
denotes specifications which apply over the full operating  
inputs from sources operating from external supplies be applied prior to  
power-up of the LTC1044A.  
temperature range; all other limits and typicals T = 25°C.  
A
Note 1: Absolute maximum ratings are those values beyond which the life  
Note 3: f  
is tested with C  
= 100pF to minimize the effects of test  
OSC  
OSC  
of a device may be impaired.  
Note 2: Connecting any input terminal to voltages greater than V or less  
fixture capacitance loading. The 0pF frequency is correlated to this 100pF  
test point, and is intended to simulate the capacitance at pin 7 when the  
device is plugged into a test socket and no external capacitor is used.  
+
than ground may cause destructive latch-up. It is recommended that no  
2
LTC1044A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Using the Test Circuit  
Power Efficiency vs  
Oscillator Frequency, V+ = 10V  
Operating Voltage Range  
vs Temperature  
Power Efficiency vs  
Oscillator Frequency, V+ = 5V  
100  
98  
100  
98  
14  
12  
T
= 25°C  
T
= 25°C  
A
A
C1 = C2  
C1 = C2  
100µF  
10µF  
100µF  
I
L
= 1mA  
96  
96  
10µF  
10  
8
94  
94  
100µF  
= 15mA  
1µF  
I
= 1mA  
L
10µF  
I
L
92  
90  
92  
90  
6
88  
86  
84  
82  
80  
88  
86  
84  
82  
80  
100µF  
10µF  
I
L
= 15mA  
4
1µF  
2
1µF  
1µF  
0
100  
1k  
10k  
100k  
–55 –25  
0
25  
50  
75  
100 125  
100  
1k  
10k  
100k  
OSCILLATOR FREQUENCY (Hz)  
AMBIENT TEMPERATURE (°C)  
OSCILLATOR FREQUENCY (Hz)  
LTC1044A • G02  
LTC1044A • TPC03  
LTC1044A • TPC01  
Power Conversion Efficiency  
vs Load Current, V+ = 2V  
Output Resistance vs  
Oscillator Frequency, V+ = 5V  
Output Resistance vs  
Oscillator Frequency, V+ = 10V  
500  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
9
500  
400  
300  
200  
100  
0
T
= 25°C  
T
I
= 25°C  
= 10mA  
T
I
= 25°C  
= 10mA  
A
A
L
A
L
C1 = C2 = 10µF  
= 1kHz  
P
C1 = C2 = 10µF  
EFF  
f
OSC  
8
7
C1 = C2 = 1µF  
6
I
S
C1 = C2 = 1µF  
5
C1 = C2  
= 100µF  
C1 = C2  
= 10µF  
4
3
2
1
C1 = C2 = 100µF  
0
100  
1k  
10k  
100k  
0
2
3
4
5
6
7
100  
1k  
10k  
100k  
1
LOAD CURRENT (mA)  
OSCILLATOR FREQUENCY (Hz)  
OSCILLATOR FREQUENCY (Hz)  
LTC1044A • TPC05  
LTC1044A • TPC04  
LTC1044A • TPC06  
Power Conversion Efficiency  
vs Load Current, V+ = 5V  
Power Conversion Efficiency  
vs Load Current, V+ = 10V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
300  
270  
240  
210  
180  
150  
120  
90  
T
= 25°C  
A
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
C1 = C2 = 10µF  
= 5kHz  
P
P
EFF  
EFF  
f
OSC  
I
S
I
S
60  
T
= 25°C  
A
C1 = C2 = 10µF  
= 20kHz  
30  
f
OSC  
0
0
20  
30  
40  
50  
60  
70  
0
40  
60  
80  
100 120 140  
10  
20  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LTC1044A • TPC07  
LTC1044A • TPC08  
3
LTC1044A  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Using the Test Circuit  
Output Resistance  
vs Supply Voltage  
Output Voltage  
Output Voltage  
vs Load Current, V+ = 5V  
vs Load Current, V+ = 2V  
1000  
100  
10  
2.5  
2.0  
5
4
T
L
= 25°C  
= 3mA  
T
f
= 25°C  
OSC  
T = 25°C  
A
f
A
A
I
= 1kHz  
= 5kHz  
OSC  
1.5  
3
1.0  
2
C
= 100pF  
OSC  
0.5  
1
0
0
SLOPE = 80Ω  
SLOPE = 250Ω  
0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–1  
–2  
–3  
–4  
–5  
C
OSC  
= 0pF  
1
2
3
4
5
6
7
8
9
10  
1
2
4
6
7
8
10 11 12  
0
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
0
3
5
9
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
LTC1044A • TPC09  
LTC1044A • TPC10  
LTC1044A • TPC11  
Output Voltage  
vs Load Current, V+ = 10V  
Output Resistance  
vs Temperature  
Oscillator Frequency as a  
Function of COSC, V+ = 5V  
400  
360  
320  
280  
240  
200  
160  
120  
80  
100k  
10k  
1k  
10  
8
C1 = C2 = 10µF  
T = 25°C  
A
T
OSC  
= 25°C  
A
f
= 20kHz  
+
6
PIN 1 = V  
+
V
= 2V, f  
= 1kHz  
OSC  
OSC  
4
2
0
–2  
–4  
–6  
–8  
PIN 1 = OPEN  
+
V
+
= 5V, f  
= 5kHz  
100  
10  
SLOPE = 45Ω  
40  
V
= 10V, f  
25  
= 20kHz  
OSC  
50  
0
–10  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
–55  
0
75 100 125  
1
10  
100  
1000  
10000  
–25  
EXTERNAL CAPACITOR (PIN 7 TO GND)(pF)  
AMBIENT TEMPERATURE (°C)  
LTC1044A • TPC14  
LTC1044A • TPC12  
LTC1044A • TPC13  
Oscillator Frequency as a  
Function of COSC, V+ = 10V  
Oscillator Frequency  
vs Supply Voltage  
Oscillator Frequency  
vs Temperature  
100k  
10k  
1k  
100k  
10k  
35  
30  
+
V
T
= 10V  
T
= 25°C  
= 0pF  
A
OSC  
C
OSC  
= 0pF  
= 25°C  
C
A
+
PIN 1 = V  
25  
20  
15  
10  
5
+
V
= 10V  
PIN 1 = OPEN  
1k  
100  
10  
+
V
= 5V  
25  
0.1k  
0
1
10  
100  
1000  
10000  
50  
100 125  
0
1
2
3
4
5
6
7
8
9
10 11 12  
–55 –25  
0
75  
EXTERNAL CAPACITOR (PIN 7 TO GND)(pF)  
SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
LTC1044A • G16  
LTC1044A • TPC15  
LTC1044A • TPC17  
4
LTC1044A  
TEST CIRCUIT  
+
V
R
(5V)  
I
I
S
L
1
2
3
4
8
7
6
5
EXTERNAL  
OSCILLATOR  
LTC1044A  
+
L
C1  
10µF  
V
OUT  
C2  
C
OSC  
LTC1044A • TC  
+
10µF  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
R
=
EQUIV  
Theory of Operation  
V1  
V2  
To understand the theory of operation of the LTC1044A, a  
review of a basic switched-capacitor building block is  
helpful.  
R
L
C2  
1
R
EQUIV  
f × C1  
LTC1044A • F02  
InFigure1,whentheswitchisintheleftposition,capacitor  
C1 will charge to voltage V1. The total charge on C1 will be  
q1 = C1V1. The switch then moves to the right, discharg-  
ing C1 to voltage V2. After this discharge time, the charge  
on C1 is q2 = C1V2. Note that charge has been transferred  
from the source, V1, to the output, V2. The amount of  
charge transferred is:  
Figure 2. Switched-Capacitor Equivalent Circuit  
Examination of Figure 3 shows that the LTC1044A has the  
same switching action as the basic switched-capacitor  
building block. With the addition of finite switch-on resis-  
tance and output voltage ripple, the simple theory al-  
though not exact, provides an intuitive feel for how the  
device works.  
q = q1 – q2 = C1(V1 – V2)  
If the switch is cycled f times per second, the charge  
transfer per unit time (i.e., current) is:  
For example, if you examine power conversion efficiency  
as a function of frequency (see typical curve), this simple  
theory will explain how the LTC1044A behaves. The loss,  
and hence the efficiency, is set by the output impedance.  
As frequency is decreased, the output impedance will  
eventually be dominated by the 1/(f × C1) term, and power  
efficiency will drop. The typical curves for Power Effi-  
ciency vs Frequency show this effect for various capacitor  
values.  
I = f × ∆q = f × C1(V1 – V2)  
V1  
V2  
f
R
L
C1  
C2  
LTC1044A • F01  
Figure 1. Switched-Capacitor Building Block  
Note also that power efficiency decreases as frequency  
goes up. This is caused by internal switching losses which  
occur due to some finite charge being lost on each  
switching cycle. This charge loss per unit cycle, when  
multiplied by the switching frequency, becomes a current  
loss. At high frequency this loss becomes significant and  
the power efficiency starts to decrease.  
Rewriting in terms of voltage and impedance equivalence,  
V1 – V2  
1/(f × C1)  
V1 – V2  
EQUIV  
I =  
=
R
A new variable, REQUIV, has been defined such that REQUIV  
= 1/(f × C1). Thus, the equivalent circuit for the switched-  
capacitor network is as shown in Figure 2.  
5
LTC1044A  
O U  
W
U
PPLICATI  
A
S
I FOR ATIO  
+
V
(8)  
SW1  
SW2  
+
C
(2)  
BOOST  
φ
φ
+
7X  
C1  
(1)  
OSC  
÷2  
OSC  
(7)  
C
V
OUT  
(5)  
(4)  
C2  
+
LTC1044A • F03  
CLOSED WHEN  
+
V
> 3V  
LV  
(6)  
GND  
(3)  
Figure 3. LTC1044A Switched-Capacitor Voltage Converter Block Diagram  
LV (Pin 6)  
frequency will decrease output impedance and ripple for  
higher load currents.  
The internal logic of the LTC1044A runs between V+ and  
LV (pin 6). For V+ greater than or equal to 3V, an internal  
switch shorts LV to GND (pin 3). For V+ less than 3V, the  
LV pin should be tied to GND. For V+ greater than or equal  
to 3V, the LV pin can be tied to GND or left floating.  
Loading pin 7 with more capacitance will lower the fre-  
quency. Using the boost (pin 1) in conjunction with exter-  
nal capacitance on pin 7 allows user selection of the  
frequency over a wide range.  
Driving the LTC1044A from an external frequency source  
can be easily achieved by driving pin 7 and leaving the  
boost pin open as shown in Figure 5. The output current  
from pin 7 is small (typically 0.5µA) so a logic gate is  
capable of driving this current. The choice of using a  
CMOS logic gate is best because it can operate over a wide  
supply voltage range (3V to 15V) and has enough voltage  
swing to drive the internal Schmitt trigger shown in Figure  
4. For 5V applications, a TTL logic gate can be used by  
simply adding an external pull-up resistor (see Figure 5).  
OSC (Pin 7) and Boost (Pin 1)  
The switching frequency can be raised, lowered, or driven  
from an external source. Figure 4 shows a functional  
diagram of the oscillator circuit.  
By connecting the boost pin (pin 1) to V+, the charge and  
discharge current is increased and hence, the frequency is  
increased by approximately 7 times. Increasing the  
+
V
6I  
I
+
V
BOOST  
(1)  
100k  
REQUIRED FOR  
TTL LOGIC  
1
2
3
4
8
7
6
5
NC  
OSC INPUT  
LTC1044A  
+
C1  
SCHMITT  
TRIGGER  
+
OSC  
(7)  
–(V )  
C2  
~14pF  
+
LTC1044A • F05  
6I  
I
LV  
(6)  
LTC1044A • F04  
Figure 5. External Clocking  
Figure 4. Oscillator  
6
LTC1044A  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Capacitor Selection  
The exact expression for output resistance is extremely  
complex, butthedominanteffectofthecapacitorisclearly  
shown on the typical curves of Output Resistance and  
Power Efficiency vs Frequency. For C1 = C2 = 10µF, the  
outputimpedancegoesfrom60atfOSC =10kHzto200Ω  
at fOSC = 1kHz. As the 1/(f × C) term becomes large  
compared to the switch-on resistance term, the output  
resistance is determined by 1/(f × C) only.  
External capacitors C1 and C2 are not critical. Matching  
is not required, nor do they have to be high quality or  
tight tolerance. Aluminum or tantalum electrolytics are  
excellent choices with cost and size being the only  
consideration.  
Negative Voltage Converter  
Figure 6 shows a typical connection which will provide a  
negative supply from an available positive supply. This  
circuit operates over full temperature and power supply  
ranges without the need of any external diodes. The LV  
pin (pin 6) is shown grounded, but for V+ 3V it may be  
“floated”, since LV is internally switched to ground (pin 3)  
for V+ 3V.  
Voltage Doubling  
Figure 7 shows a two-diode capacitive voltage doubler.  
Witha5Vinput, theoutputis9.93Vwithnoloadand9.13V  
with a 10mA load. With a 10V input, the output is 19.93V  
with no load and 19.28V with a 10mA load.  
V
IN  
(1.5V TO 12V)  
1
2
3
4
8
7
6
5
The output voltage (pin 5) characteristics of the circuit are  
thoseofanearlyidealvoltagesourceinserieswithan80Ω  
resistor. The 80output impedance is composed of two  
terms:  
+
V
d
V
d
1N5817  
LTC1044A  
1N5817  
+
V
= 2(V – 1)  
IN  
OUT  
REQUIRED  
FOR V < 3V  
+
+
+
10µF  
10µF  
LTC1044A • F07  
1. The equivalent switched-capacitor resistance (see  
Theory of Operation).  
Figure 7. Voltage Doubler  
2. A term related to the on-resistance of the MOS  
switches.  
Atanoscillatorfrequencyof10kHzandC1=10µF, thefirst  
Ultra-Precision Voltage Divider  
term is:  
An ultra-precision voltage divider is shown in Figure 8. To  
achieve the 0.0002% accuracy indicated, the load current  
should be kept below 100nA. However, with a slight loss  
in accuracy the load current can be increased.  
1
R
=
=
EQUIV  
(f /2) × C1  
OSC  
1
= 20Ω  
3
–6  
1
2
3
4
8
7
6
5
+
5 × 10 × 10 × 10  
V
(3V TO 24V)  
LTC1044A  
+
Notice that the above equation for REQUIV is not a capaci-  
tive reactance equation (XC = 1/ωC) and does not contain  
a 2π term.  
C1  
10µF  
LTC1044A • F08  
+
V /2 ±0.002%  
REQUIRED FOR  
+
1
2
3
4
8
7
6
5
+
+
C2  
10µF  
V
< 6V  
T
I
T T  
MIN A MAX  
100nA  
V
(1.5V TO 12V)  
L
LTC1044A  
+
+
10µF  
REQUIRED FOR V < 3V  
+
Figure 8. Ultra-Precision Voltage Divider  
V
= V  
OUT  
10µF  
+
LTC1044A • F06  
T
T T  
A MAX  
MIN  
Figure 6. Negative Voltage Converter  
7
LTC1044A  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Battery Splitter  
(output common). If the input voltage between pin 8 and  
pin 5 is less than 6V, pin 6 should also be connected to  
pin 3 as shown by the dashed line.  
A common need in many systems is to obtain (+) and  
(–) supplies from a single battery or single power supply  
system. Where current requirements are small, the circuit  
shown in Figure 9 is a simple solution. It provides sym-  
metrical ± output voltages, both equal to one half input  
voltage. The output voltages are both referenced to pin 3  
Paralleling for Lower Output Resistance  
Additional flexibility of the LTC1044A is shown in Figures  
10 and 11.  
Figure 10 shows two LTC1044As connected in parallel to  
provide a lower effective output resistance. If, however,  
the output resistance is dominated by 1/(f × C1), increas-  
ing the capacitor size (C1) or increasing the frequency will  
be of more benefit than the paralleling circuit shown.  
1
2
3
4
8
7
6
5
+V /2 (6V)  
B
+
V
B
LTC1044A  
+
12V  
C1  
10µF  
REQUIRED FOR V < 6V  
B
+V /2 (–6V)  
B
Figure 11 makes use of “stacking” two LTC1044As to  
provide even higher voltages. A negative voltage doubler  
ortriplercanbeachieved,dependinguponhowpin8ofthe  
second LTC1044A is connected, as shown schematically  
bytheswitch. Theavailableoutputcurrentwillbedictated/  
decreased by the product of the individual power conver-  
sion efficiencies and the voltage step-up ratio.  
LTC1044A • F09  
C2  
+
10µF  
OUTPUT  
COMMON  
Figure 9. Battery Splitter  
+
V
1
2
8
7
6
5
1
2
3
4
8
7
6
5
+
LTC1044A  
+
LTC1044A  
3
4
C1  
C1  
10µF  
10µF  
+
V
= –(V )  
OUT  
1/4 CD4077  
*
C2  
+
20µF  
LTC1044A • F10  
*THE EXCLUSIVE NOR GATE SYNCHRONIZES BOTH LTC1044As TO MINIMIZE RIPPLE  
Figure 10. Paralleling for Lower Output Resistance  
+
V
+
+
FOR V  
= –3V  
FOR V  
= –2V  
OUT  
OUT  
1
2
3
4
8
7
6
5
1
2
8
7
6
5
10µF  
+
+
LTC1044A  
LTC1044A  
3
4
10µF  
+
–(V )  
V
OUT  
10µF  
10µF  
+
+
LTC1044A  
• F11  
Figure 11. Stacking for Higher Voltage  
8
LTC1044A  
U
TYPICAL APPLICATIO S  
Low Output Impedance Voltage Converter  
200k  
8.2k  
V
IN  
*
V
OUT  
3
2
7
50k  
+
ADJ  
6
LM10  
OUTPUT  
8
1
7
6
5
4
39k  
+
1
10µF  
100µF  
+
8
4
50k  
LTC1044A  
200k  
39k  
LTC1044 • F12  
0.1µF  
2
3
10µF  
+
*V  
–V  
+ 0.5V  
OUT  
IN  
LOAD REGULATION ±0.02%, 0mA TO 15mA  
Single 5V Strain Gauge Bridge Signal Conditioner  
1
2
3
4
8
7
6
5
5V  
LTC1044A  
+
100µF  
100µF  
–5V  
4
+
220Ω  
8
0.33µF  
3
2
+
OUTPUT  
0V TO 3.5V  
0psi to 350psi  
1
1.2V REFERENCE TO  
A/D CONVERTER FOR  
RATIOMETRIC OPERATION  
(1mA MAX)  
D
2k  
GAIN  
TRIM  
100k  
0.047µF  
46k*  
LT1413  
10k  
ZERO  
TRIM  
301k*  
A
LT1004  
1.2V  
350PRESSURE  
TRANSDUCER  
100*  
E
5
6
0V  
+
7
39k  
*1% FILM RESISTOR  
PRESSURE TRANSDUCER BLH/DHF-350  
(CIRCLED LETTER IS PIN NUMBER)  
C
–1.2V  
0.1µF  
LTC1044A • F13  
9
LTC1044A  
U
TYPICAL APPLICATIO S  
Regulated Output 3V to 5V Converter  
3V  
1N914  
200Ω  
1
2
3
4
8
7
6
5
5V  
OUTPUT  
+
100µF  
LTC1044A  
1M  
1
+
4.8M  
10µF  
7
+
8
1k  
REF  
AMP  
330k  
EVEREADY  
EXP-30  
LM10  
+
2
3
1k  
6
OP  
AMP  
4
100k  
1N914  
150k  
LTC1044A • F14  
Low Dropout 5V Regulator  
2N2219  
V
= 5V  
OUT  
1N914  
200Ω  
10µF  
1
2
3
4
8
7
6
5
12V  
+
LTC1044A  
+
10µF  
100Ω  
120k  
100k  
SHORT-CIRCUIT  
PROTECTION  
8
+
5
FEEDBACK AMP  
1M  
6V  
V
LOAD  
4 EVEREADY  
E-91 CELLS  
2
3
+
+
7
LT1013  
1N914  
V
4
1
6
LT1004  
1.2V  
30k  
50k  
OUTPUT  
ADJUST  
1.2k  
V
V
V
AT 1mA = 1mV  
AT 10mA = 15mV  
AT 100mA = 95mV  
DROPOUT  
DROPOUT  
DROPOUT  
0.01Ω  
LTC1044A • F15  
10  
LTC1044A  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead Plastic DIP  
0.400  
(10.160)  
MAX  
8
7
6
5
4
0.250 ± 0.010  
(6.350 ± 0.254)  
1
2
3
0.130 ± 0.005  
0.300 – 0.320  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.128)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.025  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
–0.015  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0392  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
SO8 0392  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1044A  
U.S. Area Sales Offices  
SOUTHWEST REGION  
Linear Technology Corporation  
22141 Ventura Blvd.  
SOUTHEAST REGION  
Linear Technology Corporation  
17060 Dallas Parkway  
Suite 208  
Dallas, TX 75248  
Phone: (214) 733-3071  
FAX: (214) 380-5138  
NORTHEAST REGION  
Linear Technology Corporation  
One Oxford Valley  
2300 E. Lincoln Hwy.,Suite 306  
Langhorne, PA 19047  
Phone: (215) 757-8578  
FAX: (215) 757-5631  
Suite 206  
Woodland Hills, CA 91364  
Phone: (818) 703-0835  
FAX: (818) 703-0517  
NORTHWEST REGION  
Linear Technology Corporation  
782 Sycamore Dr.  
CENTRAL REGION  
Linear Technology Corporation  
Chesapeake Square  
Linear Technology Corporation  
266 Lowell St., Suite B-8  
Wilmington, MA 01887  
Milpitas, CA 95035  
Phone: (408) 428-2050  
FAX: (408) 432-6331  
229 Mitchell Court, Suite A-25  
Addison, IL 60101  
Phone: (708) 620-6910  
FAX: (708) 620-6977  
Phone: (508) 658-3881  
FAX: (508) 658-2701  
International Sales Offices  
KOREA  
FRANCE  
Linear Technology Korea Branch  
Namsong Building, #505  
Itaewon-Dong 260-199  
Yongsan-Ku, Seoul  
Korea  
TAIWAN  
Linear Technology S.A.R.L.  
Immeuble "Le Quartz"  
58 Chemin de la Justice  
92290 Chatenay Malabry  
France  
Linear Technology Corporation  
Rm. 801, No. 46, Sec. 2  
Chung Shan N. Rd.  
Taipei, Taiwan, R.O.C.  
Phone: 886-2-521-7575  
FAX: 886-2-562-2285  
Phone: 82-2-792-1617  
FAX: 82-2-792-1619  
Phone: 33-1-41079555  
FAX: 33-1-46314613  
SINGAPORE  
UNITED KINGDOM  
GERMANY  
Linear Technology Pte. Ltd.  
101 Boon Keng Road  
#02-15 Kallang Ind. Estates  
Singapore 1233  
Linear Technology (UK) Ltd.  
The Coliseum, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
Linear Technology GMBH  
Untere Hauptstr. 9  
D-85386 Eching  
Germany  
Phone: 65-293-5322  
FAX: 65-292-0398  
Phone: 44-276-677676  
FAX: 44-276-64851  
Phone: 49-89-3197410  
FAX: 49-89-3194821  
JAPAN  
Linear Technology KK  
5F YZ Bldg.  
4-4-12 Iidabashi, Chiyoda-Ku  
Tokyo, 102 Japan  
Phone: 81-3-3237-7891  
FAX: 81-3-3237-8010  
World Headquarters  
Linear Technology Corporation  
1630 McCarthy Blvd.  
Milpitas, CA 95035-7487  
Phone: (408) 432-1900  
FAX: (408) 434-0507  
08/16/93  
LT/GP 1293 10K REV 0 • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1993  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY