LTC1046MJ8 [Linear]

“Inductorless” 5V to + 5V Converter; “电感” 5V至+ 5V转换器
LTC1046MJ8
型号: LTC1046MJ8
厂家: Linear    Linear
描述:

“Inductorless” 5V to + 5V Converter
“电感” 5V至+ 5V转换器

转换器
文件: 总12页 (文件大小:175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1046  
“Inductorless”  
5V to 5V Converter  
U
FEATURES  
DESCRIPTIO  
The LTC®1046 is a 50mA monolithic CMOS switched  
capacitor voltage converter. It plugs in for ICL7660/  
LTC1044 in 5V applications where more output current is  
needed. The device is optimized to provide high current  
capability for input voltages of 6V or less. It trades off  
operating voltage to get higher output current. The  
LTC1046 provides several voltage conversion functions:  
the input voltage can be inverted (VOUT = VIN), divided  
(VOUT =VIN/2) or multiplied (VOUT = ±nVIN).  
50mA Output Current  
Plug-In Compatible with ICL7660/LTC1044  
ROUT = 35Maximum  
300µA Maximum No Load Supply Current at 5V  
Boost Pin (Pin 1) for Higher Switching Frequency  
97% Minimum Open-Circuit Voltage Conversion  
Efficiency  
95% Minimum Power Conversion Efficiency  
Wide Operating Supply Voltage Range: 1.5V to 6V  
Easy to Use  
Low Cost  
Designed to be pin-for-pin and functionally compatible  
with the ICL7660 and LTC1044, the LTC1046 provides 2.5  
times the output drive capability.  
U
, LTC and LT are registered trademarks of Linear Technology Corporation.  
APPLICATIO S  
Conversion of 5V to ±5V Supplies  
Precise Voltage Division, VOUT = VIN/2  
Supply Splitter, VOUT = ±VS/2  
U
TYPICAL APPLICATIO  
Output Voltage vs Load Current for V+ = 5V  
–5  
T
= 25°C  
A
Generating 5V from 5V  
–4  
–3  
–2  
–1  
0
LTC1046  
ICL7660/LTC1044,  
= 55Ω  
1
2
3
4
8
7
6
5
R
+
OUT  
5V INPUT  
BOOST  
V
+
CAP  
OSC  
LV  
LTC1046,  
= 27Ω  
+
R
OUT  
GND  
10µF  
CAP  
V
OUT  
–5V INPUT  
10µF  
+
1046 TA01  
0
10  
20  
30  
40  
50  
LOAD CURRENT, I (mA)  
L
1046 TA02  
1
LTC1046  
W
U
W W W  
U
/O  
ABSOLUTE AXI U RATI GS  
PACKAGE RDER I FOR ATIO  
(Note 1)  
Supply Voltage ....................................................... 6.5V  
Input Voltage on Pins 1, 6 and 7  
ORDER PART  
TOP VIEW  
NUMBER  
(Note 2) ............................ 0.3 < VIN < (V+) +0.3V  
Current into Pin 6 .................................................. 20µA  
Output Short Circuit Duration  
+
BOOST  
1
2
3
4
8
7
6
5
V
LTC1046CN8  
LTC1046CS8  
LTC1046IN8  
LTC1046IS8  
LTC1046MJ8  
+
CAP  
OSC  
LV  
GND  
(V+ 6V) ...............................................Continuous  
Operating Temperature Range  
LTC1046C .................................... 0°C TA 70°C  
LTC1046I ................................. 40°C TA 85°C  
LTC1046M .................................... 55°C to 125°C  
Storage Temperature Range ............... 65°C to +150°C  
Lead Temperature (Soldering, 10 sec.)................. 300°C  
CAP  
V
OUT  
J8 PACKAGE  
N8 PACKAGE  
8-LEAD CERDIP 8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PART MARKING  
TJMAX = 160°C, θJA = 100°C (J8)  
TJMAX = 110°C, θJA = 130°C (N8)  
JMAX = 150°C, θJA = 150°C (S8)  
1046  
1046I  
T
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, COSC = 0pF, unless otherwise noted.  
LTC1046C  
TYP  
LTC1046I/M  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
R = , Pins 1 and 7 No Connection  
MIN  
MAX  
MIN  
MAX  
UNITS  
I
Supply Current  
165  
35  
300  
165  
35  
300  
µA  
µA  
S
L
R = , Pins 1 and 7 No Connection,  
L
+
V = 3V  
+
+
V
V
Minimum Supply Voltage  
R = 5kΩ  
1.5  
1.5  
V
V
L
L
Maximum Supply Voltage R = 5kΩ  
6
6
H
L
+
R
OUT  
Output Resistance  
V = 5V, I = 50mA (Note 3)  
27  
27  
60  
35  
45  
85  
27  
27  
60  
35  
50  
90  
L
+
V = 2V, I = 10mA  
L
+
f
Oscillator Frequency  
Power Efficiency  
V = 5V (Note 4)  
20  
4
30  
5.5  
20  
4
30  
5.5  
kHz  
kHz  
OSC  
+
V = 2V  
P
V
R = 2.4kΩ  
L
95  
97  
97  
95  
97  
97  
%
%
EFF  
Voltage Conversion  
Efficiency  
R = ∞  
L
99.9  
99.9  
OUTEFF  
+
I
Oscillator Sink or Source  
Current  
V
= 0V or V  
OSC  
OSC  
Pin 1 = 0V  
Pin 1 = V  
4.2  
15  
35  
45  
4.2  
15  
40  
50  
µA  
µA  
+
Note 1: Absolute Maximum Ratings are those values beyond which  
Note 3: R  
is measured at T = 25°C immediately after power-on.  
J
OUT  
the life of the device may be impaired.  
Note 2: Connecting any input terminal to voltages greater than V or  
Note 4: f  
is tested with C  
= 100pF to minimize the effects of test  
OSC  
OSC  
+
fixture capacitance loading. The 0pF frequency is correlated to this 100pF  
test point, and is intended to simulate the capacitance at pin 7 when the  
device is plugged into a test socket and no external capacitor is used.  
less than ground may cause destructive latch-up. It is recommended  
that no inputs from sources operating from external supplies be  
applied prior to power-up of the LTC1046.  
2
LTC1046  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Using Test Circuit in Figure 1)  
Output Resistance vs  
Oscillator Frequency  
Output Resistance vs  
Supply Voltage  
Output Resistance vs  
Temperature  
500  
400  
300  
200  
100  
0
1000  
100  
10  
80  
70  
60  
50  
40  
30  
20  
10  
C1 = C2 = 10µF  
T
= 25°C  
= 5V  
T
L
= 25°C  
= 3mA  
A
A
+
V
I
I
L
= 10mA  
+
V
= 2V, C  
= 0pF  
OSC  
C1 = C2  
= 1µF  
C
= 100pF  
OSC  
C1 = C2  
= 10µF  
C1 = C2  
= 100µF  
+
V
= 5V, C  
= 0pF  
OSC  
C
1
= 0pF  
OSC  
100  
1k  
10k  
100k  
0
2
3
4
5
6
7
–55 –25  
0
25  
50  
75 100 125  
+
OSCILLATOR FREQUENCY, f  
(Hz)  
AMBIENT TEMPERATURE (°C)  
SUPPLY VOLTAGE, V (V)  
OSC  
1046 G01  
1046 G02  
1046 G03  
Power Conversion Efficiency vs  
Load Current for V+ = 2V  
Power Conversion Efficiency vs  
Load Current for V+ = 5V  
Power Conversion Efficiency vs  
Oscillator Frequency  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
100  
90  
10  
A = 100µF, 1mA  
B = 100µF, 15mA  
C = 10µF, 1mA  
9
8
7
6
5
4
3
2
1
0
P
EFF  
A
P
EFF  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
D = 10µF, 15mA  
E = 1µF, 1mA  
70  
F = 1µF, 15mA  
C
I
S
+
60  
50  
40  
30  
20  
10  
0
V
= 5V  
= 25°C  
B
T
A
C1 = C2  
I
E
S
T
= 25°C  
D
T
= 25°C  
A
A
+
+
V
= 5V  
V
= 2V  
F
C1 = C2 = 10µF  
C1 = C2 = 10µF  
f
= 30kHz  
f
= 8kHz  
OSC  
OSC  
100  
1k  
10k  
100k  
(Hz)  
1M  
0
10  
20  
30  
40  
50  
60  
70  
0
1
2
3
4
5
6
7
8
9
10  
OSCILLATOR FREQUENCY, f  
LOAD CURRENT, I (mA)  
OSC  
LOAD CURRENT, I (mA)  
L
L
1046 G06  
1046 G05  
1046 G04  
Output Voltage vs Load Current  
for V+ = 2V  
Output Voltage vs Load Current  
for V+ = 5V  
Oscillator Frequency as a  
Function of COSC  
100  
10  
1
2.5  
2.0  
5
4
+
T
V
f
= 25°C  
= 5V  
T
V
f
= 25°C  
V
T
= 5V  
= 25°C  
A
A
+
+
= 2V  
A
= 30kHz  
= 8kHz  
OSC  
OSC  
1.5  
1.0  
0.5  
0.0  
3
2
1
0
C1 = C2 = 10µF  
C1 = C2 = 10µF  
+
PIN 1 = V  
PIN 1 = OPEN  
–0.5  
–1.0  
–1  
–2  
–1.5  
–2.0  
–2.5  
–3  
–4  
–5  
SLOPE = 52Ω  
SLOPE = 27Ω  
50 60 70 80 90 100  
0.1  
1
10  
100  
1000  
10000  
(pF)  
0
2
6
10 12 14 16 18 20  
4
8
0
10 20 30 40  
EXTERNAL CAPACITOR (PIN 7 TO GND), C  
LOAD CURRENT, I (mA)  
LOAD CURRENT, I (mA)  
OSC  
L
L
1046 G09  
1046 G07  
1046 G08  
3
LTC1046  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Using Test Circuit in Figure 1)  
Oscillator Frequency as a  
Function of Supply Voltage  
100  
Oscillator Frequency vs  
Temperature  
40  
+
T
= 25°C  
V
C
= 5V  
= 0pF  
A
C
= 0pF  
OSC  
OSC  
38  
36  
34  
32  
30  
28  
26  
10  
1
0
1
2
3
4
5
6
7
–55 –25  
0
25  
50  
75 100 125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
1046 G10  
1046 G11  
TEST CIRCUIT  
+
V
(5V)  
LTC1046  
I
S
1
2
3
4
8
7
6
5
+
BOOST  
V
EXTERNAL  
OSCILLATOR  
+
CAP  
OSC  
LV  
I
L
+
R
L
C1  
10µF  
GND  
CAP  
V
OUT  
V
OUT  
C
C2  
10µF  
OSC  
+
1046 F01  
Figure 1  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Theory of Operation  
If the switch is cycled “f” times per second, the charge  
transfer per unit time (i.e., current) is:  
To understand the theory of operation of the LTC1046, a  
review of a basic switched capacitor building block is  
helpful.  
I = f • q = f • C1(V1 – V2).  
V1  
V2  
InFigure2,whentheswitchisintheleftposition,capacitor  
C1 will charge to voltage V1. The total charge on C1 will be  
q1 = C1V1. The switch then moves to the right, discharg-  
ing C1 to voltage V2. After this discharge time, the charge  
on C1 is q2 = C1V2. Note that charge has been transferred  
from the source, V1, to the output, V2. The amount of  
charge transferred is:  
f
R
L
C1  
C2  
1046 F02  
Figure 2. Switched Capacitor Building Block  
q = q1 – q2 = C1(V1 – V2).  
4
LTC1046  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Rewriting in terms of voltage and impedance equivalence,  
As frequency is decreased, the output impedance will  
eventually be dominated by the 1/fC1 term and power  
efficiency will drop. The typical curves for power effi-  
ciency versus frequency show this effect for various capaci-  
tor values.  
V1– V2  
REQUIV  
V1 V2  
I =  
=
.
1/ fC1  
(
)
A new variable, REQUIV, has been defined such that  
REQUIV =1/fC1.Thus,theequivalentcircuitfortheswitched  
capacitor network is as shown in Figure 3.  
Note also that power efficiency decreases as frequency  
goes up. This is caused by internal switching losses which  
occur due to some finite charge being lost on each  
switching cycle. This charge loss per unit cycle, when  
multiplied by the switching frequency, becomes a current  
loss. At high frequency this loss becomes significant and  
the power efficiency starts to decrease.  
R
EQUIV  
V1  
V2  
C2  
R
L
1
fC1  
R
=
EQUIV  
1046 F03  
LV (Pin 6)  
The internal logic of the LTC1046 runs between V+ and LV  
(Pin 6). For V+ greater than or equal to 3V, an internal  
switch shorts LV to GND (Pin 3). For V+ less than 3V, the  
LV pin should be tied to ground. For V+ greater than or  
equalto3V,theLVpincanbetiedtogroundorleftfloating.  
Figure 3. Switched Capacitor Equivalent Circuit  
Examination of Figure 4 shows that the LTC1046 has the  
same switching action as the basic switched capacitor  
building block. With the addition of finite switch ON  
resistance and output voltage ripple, the simple theory,  
although not exact, provides an intuitive feel for how the  
device works.  
OSC (Pin 7) and BOOST (Pin 1)  
The switching frequency can be raised, lowered or driven  
from an external source. Figure 5 shows a functional  
diagram of the oscillator circuit.  
+
V
(8)  
SW1  
SW2  
+
CAP  
(2)  
BOOST  
+
φ
φ
3x  
(1)  
V
+
C1  
OSC  
+2  
OSC  
(7)  
CAP  
(4)  
V
OUT  
(5)  
2I  
I
BOOST  
(1)  
C2  
+
1046 F04  
LV  
(6)  
GND  
(3)  
CLOSED WHEN  
+
V
> 3.0V  
OSC  
(7)  
SCHMITT  
TRIGGER  
Figure 4. LTC1046 Switched Capacitor  
Voltage Converter Block Diagram  
14pF  
2I  
I
For example, if you examine power conversion efficiency  
as a function of frequency (see typical curve), this simple  
theory will explain how the LTC1046 behaves. The loss,  
and hence the efficiency, is set by the output impedance.  
LV  
(6)  
1046 F05  
Figure 5. Oscillator  
5
LTC1046  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
By connecting the BOOST (Pin 1) to V+, the charge and  
discharge current is increased and, hence, the frequency  
is increased by approximately three times. Increasing the  
frequency will decrease output impedance and ripple for  
higher load currents.  
are necessary to minimize voltage losses at high currents.  
For CIN the effect of the ESR of the capacitor will be  
multiplied by four, due to the fact that switch currents are  
approximately two times higher than output current, and  
losses will occur on both the charge and discharge cycle.  
This means that using a capacitor with 1of ESR for CIN  
will have the same effect as increasing the output imped-  
ance of the LTC1046 by 4. This represents a significant  
increase in the voltage losses. For COUT the effect of ESR  
is less dramatic. COUT is alternately charged and dis-  
charged at a current approximately equal to the output  
current, and the ESR of the capacitor will cause a step  
function to occur, in the output ripple, at the switch  
transitions. This step function will degrade the output  
regulation for changes in output load current, and should  
be avoided. Realizing that large value tantalum capacitors  
can be expensive, a technique that can be used is to  
parallel a smaller tantalum capacitor with a large alumi-  
num electrolytic capacitor to gain both low ESR and  
reasonable cost. Where physical size is a concern some  
of the newer chip type surface mount tantalum capacitors  
can be used. These capacitors are normally rated at  
working voltages in the 10V to 20V range and exhibit very  
low ESR (in the range of 0.1).  
Loading Pin 7 with more capacitance will lower the fre-  
quency. Using the BOOST pin in conjunction with external  
capacitance on Pin 7 allows user selection of the fre-  
quency over a wide range.  
Driving the LTC1046 from an external frequency source  
can be easily achieved by driving Pin 7 and leaving the  
BOOST pin open, as shown in Figure 6. The output current  
from Pin 7 is small, typically 15µA, so a logic gate is  
capableofdrivingthiscurrent.ThechoiceofusingaCMOS  
logicgateisbestbecauseitcanoperateoverawidesupply  
voltage range (3V to 15V) and has enough voltage swing  
to drive the internal Schmitt trigger shown in Figure 5. For  
5V applications, a TTL logic gate can be used by simply  
adding an external pull-up resistor (see Figure 6).  
Capacitor Selection  
While the exact values of CIN and COUT are noncritical,  
good quality, low ESR capacitors such as solid tantalum  
+
REQUIRED FOR TTL LOGIC  
LTC1046  
V
1
2
3
4
8
7
6
5
+
NC  
BOOST  
V
100k  
+
OSC INPUT  
CAP  
OSC  
LV  
+
GND  
C1  
+
–(V )  
CAP  
V
OUT  
C2  
+
1046 F06  
Figure 6. External Clocking  
6
LTC1046  
U
O
TYPICAL APPLICATI S  
Negative Voltage Converter  
the typical curves of output impedance and power effi-  
ciency versus frequency. For C1 = C2 = 10µF, the output  
impedance goes from 27at fOSC = 30kHz to 225at  
fOSC = 1kHz. As the 1/fC term becomes large compared to  
switch ON resistance term, the output resistance is deter-  
mined by 1/fC only.  
Figure 7 shows a typical connection which will provide a  
negative supply from an available positive supply. This  
circuit operates over full temperature and power supply  
ranges without the need of any external diodes. The LV pin  
(Pin 6) is shown grounded, but for V+ 3V, it may be  
floated, since LV is internally switched to GND (Pin 3) for  
V+ 3V.  
Voltage Doubling  
Figure 8 shows a two diode, capacitive voltage doubler.  
With a 5V input, the output is 9.1V with no load and 8.2V  
with a 10mA load.  
The output voltage (Pin 5) characteristics of the circuit are  
thoseofanearlyidealvoltagesourceinserieswithan27Ω  
resistor. The 27output impedance is composed of two  
terms: 1) the equivalent switched capacitor resistance  
(see Theory of Operation), and 2) a term related to the ON  
resistance of the MOS switches.  
LTC1046  
+
1
2
3
4
8
7
6
5
V
+
BOOST  
V
1.5V TO 6V  
+
+
V
CAP  
OSC  
LV  
D
V
D
+
V
= 2  
OUT  
REQUIRED  
FOR  
GND  
Atanoscillatorfrequencyof30kHzandC1=10µF, thefirst  
term is:  
(V – 1)  
IN  
+
CAP  
V
OUT  
V
< 3V  
+
+
10µF  
10µF  
1046 F08  
1
REQUIV  
=
=
fOSC /2 • C1  
(
)
Figure 8. Voltage Doubler  
1
= 6.7Ω.  
15 • 103 10 • 10–6  
Ultraprecision Voltage Divider  
An ultraprecision voltage divider is shown in Figure 9. To  
achieve the 0.0002% accuracy indicated, the load current  
should be kept below 100nA. However, with a slight loss  
in accuracy, the load current can be increased.  
Notice that the equation for REQUIV is not a capacitive  
reactance equation (XC = 1/ωC) and does not contain a 2π  
term.  
The exact expression for output impedance is complex,  
butthedominanteffectofthecapacitorisclearlyshownon  
LTC1046  
+
1
2
3
4
8
7
6
5
V
+
LTC1046  
BOOST  
V
3V TO 12V  
+
1
2
3
4
8
7
6
5
V
+
+
CAP  
OSC  
LV  
BOOST  
V
1.5V TO 6V  
+
C1  
+
GND  
CAP  
OSC  
LV  
10µF  
+
+
REQUIRED FOR V < 3V  
CAP  
V
OUT  
GND  
10µF  
+
+
CAP  
V
OUT  
V
= –V  
V
OUT  
1046 F09  
±0.002%  
2
+
10µF  
+
+
C2  
10µF  
REQUIRED FOR V < 6V  
T
I
T T  
A MAX  
MIN  
100nA  
T
T T  
1046 F07  
L
MIN  
A
MAX  
Figure 9. Ultraprecision Voltage Divider  
Figure 7. Negative Voltage Converter  
7
LTC1046  
U
O
TYPICAL APPLICATI S  
Battery Splitter  
equal to one half the input voltage. The output voltages are  
both referenced to Pin 3 (output common). If the input  
voltage between Pin 8 and Pin 5 is less than 6V, Pin 6  
should also be connected to Pin 3, as shown by the  
dashed line.  
A common need in many systems is to obtain positive and  
negative supplies from a single battery or single power  
supplysystem. Wherecurrentrequirementsaresmall, the  
circuit shown in Figure 10 is a simple solution. It provides  
symmetrical positive or negative output voltages, both  
Paralleling for Lower Output Resistance  
AdditionalflexibilityoftheLTC1046isshowninFigures11  
and 12. Figure 11 shows two LTC1046s connected in  
parallel to provide a lower effective output resistance. If,  
however, the output resistance is dominated by 1/fC1,  
increasing the capacitor size (C1) or increasing the fre-  
quency will be of more benefit than the paralleling  
circuit shown.  
LTC1046  
1
2
3
4
8
7
6
5
+V /2  
B
+
BOOST  
V
4.5V  
V
B
+
9V  
CAP  
OSC  
LV  
+
REQUIRED FOR V < 6V  
B
C1  
10µF  
GND  
–V /2  
B
–4.5V  
CAP  
V
OUT  
C2  
Figure 12 makes use of “stacking” two LTC1046s to  
provide even higher voltages. In Figure 12, a negative  
voltage doubler or tripler can be achieved depending upon  
how Pin 8 of the second LTC1046 is connected, as shown  
schematically by the switch.  
+
10µF  
OUTPUT COMM0N  
1046 F10  
3V V 12V  
B
Figure 10. Battery Splitter  
+
V
LTC1046  
LTC1046  
1
2
3
4
1
2
3
4
8
7
6
5
8
7
6
5
+
+
BOOST  
V
BOOST  
V
+
+
CAP  
OSC  
LV  
CAP  
OSC  
LV  
+
+
C1  
10µF  
C1  
10µF  
GND  
GND  
+
CAP  
V
CAP  
V
OUT  
V
= –(V )  
OUT  
OUT  
C2  
20µF  
1/4 CD4077  
+
OPTIONAL SYNCHRONIZATION  
CIRCUIT TO MINIMIZE RIPPLE  
1046 F11  
Figure 11. Paralleling for 100mA Load Current  
+
+
FOR V  
= –3V  
FOR V  
= –2V  
OUT  
OUT  
+
V
+
LTC1046  
LTC1046  
C1  
10µF  
1
2
3
4
1
8
7
6
5
8
7
6
5
+
BOOST  
V
BOOST  
V
2
3
4
+
+
CAP  
OSC  
LV  
CAP  
OSC  
LV  
+
10µF  
GND  
GND  
+
CAP  
V
–(V )  
CAP  
V
OUT  
V
OUT  
OUT  
10µF  
10µF  
+
+
1046 F12  
Figure 12. Stacking for Higher Voltage  
8
LTC1046  
U
PACKAGE DESCRIPTIO Dimensions in inches (milimeters) unless otherwise noted.  
J8 Package  
8-Lead CERDIP (Narrow 0.300, Hermetic)  
(LTC DWG # 05-08-1110)  
0.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
6
5
4
8
7
2
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
3
0.200  
0.300 BSC  
(5.080)  
MAX  
(0.762 BSC)  
0.015 – 0.060  
(0.381 – 1.524)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
J8 1298  
9
LTC1046  
U
Dimensions in inches (milimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
10  
LTC1046  
U
Dimensions in inches (milimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1046  
RELATED PARTS  
PART NUMBER  
LTC1044A  
LT®1054  
DESCRIPTION  
COMMENTS  
12V CMOS Voltage Converter  
Doubler or Inverter, 20mA I , 1.5V to 12V Input Range  
OUT  
Switched Capacitor Voltage Converter with Regulator  
Low Noise, Switched Capacitor Regulated Inverter  
1.4MHz Inverting Switching Regulator  
Doubler or Inverter, 100mA I , SO-8 Package  
OUT  
LTC1550  
<1mV Output Ripple, 900kHz Operation, SO-8 Package  
P-P  
LT1611  
5V to –5V at 150mA, Low Output Noise, SOT-23 Package  
5V to 5V at 20µA Supply Current, SOT-23 Package  
5V/50mA, 13µA Supply Current, 2.7V to 5.5V Input Range  
LT1617  
Micropower Inverting Switching Regulator  
Micropower Regulated 5V Charge Pump in SOT-23  
LTC1754-5  
1046fa LT/TP 1099 2K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
LINEAR TECHNOLOGY CORPORATION 1991  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1047

Dual Micropower Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1047C

Dual Micropower Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1047CN8

Dual Micropower Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1047CS

Dual Micropower Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1047CS#PBF

IC,OP-AMP,DUAL,CMOS,SOP,16PIN,PLASTIC
Linear

LTC1047CSW

Dual Micropower Zero-Drift Operational Amplifier with Internal Capacitors
Linear

LTC1047CSW#TR

暂无描述
Linear

LTC1047_09

Dual Micropower Zero-Drift Operational Amplifier with Internal Capacitors
Linear

LTC1049

Low Power Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1049C

Low Power Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1049CH

IC OP-AMP, 10 uV OFFSET-MAX, 0.8 MHz BAND WIDTH, MBCY8, Operational Amplifier
Linear

LTC1049CJ8

Low Power Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear