LTC1049CH [Linear]

IC OP-AMP, 10 uV OFFSET-MAX, 0.8 MHz BAND WIDTH, MBCY8, Operational Amplifier;
LTC1049CH
型号: LTC1049CH
厂家: Linear    Linear
描述:

IC OP-AMP, 10 uV OFFSET-MAX, 0.8 MHz BAND WIDTH, MBCY8, Operational Amplifier

运算放大器
文件: 总12页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1049  
Low Power Zero-Drift  
Operational Amplifier  
with Internal Capacitors  
U
FEATURES  
DESCRIPTIO  
TheLTC®1049isahighperformance, lowpowerzero-drift  
operationalamplifier.Thetwosample-and-holdcapacitors  
usually required externally by other chopper stabilized  
amplifiersareintegratedonthechip.Further,theLTC1049  
offers superior DC and AC performance with a nominal  
supply current of only 200µA.  
Low Supply Current: 200µA  
No External Components Required  
Maximum Offset Voltage: 10µV  
Maximum Offset Voltage Drift: 0.1µV/°C  
Single Supply Operation: 4.75V to 16V  
Input Common Mode Range Includes Ground  
Output Swings to Ground  
The LTC1049 has a typical offset voltage of 2µV, drift of  
0.02µV/°C, 0.1Hz to 10Hz input noise voltage of 3µVP-P  
and typical voltage gain of 160dB. The slew rate is 0.8V/µs  
with a gain bandwidth product of 0.8MHz.  
Typical Overload Recovery Time: 6ms  
Available in 8-Pin SO and PDIP Packages  
U
APPLICATIO S  
Overload recovery time from a saturation condition is  
6ms, a significant improvement over chopper amplifiers  
using external capacitors.  
4mA to 20mA Current Loops  
Thermocouple Amplifiers  
Electronic Scales  
The LTC1049 is available in a standard 8-pin plastic dual  
in line, as well as an 8-pin SO package. The LTC1049 can  
be a plug-in replacement for most standard op amps with  
improvedDCperformanceandsubstantialpowersavings.  
Medical Instrumentation  
Strain Gauge Amplifiers  
High Resolution Data Acquisition  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Single Supply Thermocouple Amplifier  
0.068µF  
V
= 5V  
IN  
246k  
1k  
7
2
3
6
2
V
OUT  
= 0V TO 4V  
LTC1049  
FOR 0°C TO 400°C  
7
K
+
+
4
LT®1025A  
0.1µF  
GND  
4
R
TYPE K  
5
SUPPLY CURRENT = 280µA  
LTC1049 • TA01  
1049fb  
1
LTC1049  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (V+ to V)............................... 18V Operating Temperature Range .................–40°C to 85°C  
Input Voltage (Note 2) .......... (V+ + 0.3V) to (V– 0.3V) Storage Temperature Range ................. 65°C to 150°C  
Output Short-Circuit Duration.......................... Indefinite Lead Temperature (Soldering, 10 sec).................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
NC  
–IN  
+IN  
1
2
3
4
NC  
8
7
6
5
NUMBER  
TOP VIEW  
NC  
–IN  
+IN  
NC  
+
V
+
1
2
3
4
8
7
6
5
V
LTC1049CN8  
LTC1049CS8  
+
OUT  
NC  
OUT  
NC  
V
V
N8 PACKAGE 8-LEAD PDIP  
= 110°C, θ = 130°C/W  
T
S8 PART MARKING  
1049  
JMAX  
JA  
S8 PACKAGE  
J8 PACKAGE 8-LEAD CERDIP  
= 150°C, θ = 100°C/W  
8-LEAD PLASTIC SO  
LTC1049CJ8  
T
JMAX  
JA  
T
= 110°C, θ = 200°C/W  
JA  
JMAX  
OBSOLETE PACKAGE  
Consider the N8 Package as an Alternate Source  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at T = 25°C. V = ±5V, unless noted.  
A
S
PARAMETER  
CONDITIONS  
(Note 3)  
(Note 3)  
MIN  
TYP  
±2  
±0.02  
50  
MAX  
±10  
±0.1  
UNITS  
µV  
µV/°C  
nVmo  
pA  
pA  
pA  
pA  
µVP-P  
µVP-P  
Input Offset Voltage  
Average Input Offset Drift  
Long Term Offset Voltage Drift  
Input Offset Current  
±30  
±100  
±150  
±50  
±150  
Input Bias Current  
Input Noise Voltage  
±15  
0.1Hz to 10Hz  
0.1Hz to 1Hz  
3
1
Input Noise Current  
f = 10Hz (Note 4)  
VCM = Vto 2.7V  
VS = ±2.375V to ±8V  
RL = 100k, VOUT = ±4.75V  
RL = 10kΩ  
2
130  
130  
160  
4.9/4.2  
fAHz  
dB  
dB  
dB  
V
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Maximum Output Voltage Swing  
110  
110  
130  
4.6/3.2  
V
RL = 100kΩ  
RL = 10k, CL = 50pF  
±4.9  
±4.97  
0.8  
0.8  
V
V/µs  
MHz  
Slew Rate  
Gain Bandwidth Product  
Supply Current  
No Load  
200  
330  
495  
µA  
µA  
Internal Sampling Frequency  
700  
Hz  
1049fb  
2
LTC1049  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: These parameters are guaranteed by design. Thermocouple effects  
preclude measurement of these voltage levels in high speed automatic test  
systems. V is measured to a limit determined by test equipment  
OS  
capability.  
+
Note 2: Connecting any terminal to voltages greater than V or less than  
Note 4: Current Noise is calculated from the formula:  
V may cause destructive latch-up. It is recommended that no sources  
I = (2q • I )  
where q = 1.6 • 10 Coulomb.  
N
b
operating from external supplies be applied prior to power-up of the  
LTC1049.  
–19  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Common Mode Input Range vs  
Supply Voltage  
Voltage Noise vs Frequency  
Gain/Phase vs Frequency  
140  
60  
8
6
120  
100  
80  
V = ± 5V  
S
V
CM  
= V  
NO LOAD  
80  
120  
100  
100  
120  
140  
160  
180  
200  
220  
4
PHASE  
2
60  
0
40  
80  
60  
GAIN  
20  
–2  
–4  
–6  
–8  
0
40  
20  
–20  
–40  
4
5
0
1
2
3
6
7
8
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
LTC1049 • TPC03  
LTC1049 • TPC02  
LTC1049 • TP01  
Output Short-Circuit Current vs  
Supply Voltage  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
500  
400  
300  
200  
100  
0
1.2  
0.8  
0.4  
0
400  
340  
280  
220  
160  
100  
–3  
–6  
–9  
5
6
7
8
9
10 11 12 13 14 15  
–50  
0
25  
50  
75  
125  
–25  
100  
4
6
8
10  
12  
14  
16  
+
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TOTAL SUPPLY VOLTAGE, V TO V (V)  
LTC1049 • TPC04  
LTC1049 • TPC05  
LTC1049 • TPC06  
1049fb  
3
LTC1049  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Sampling Frequency vs  
Supply Voltage  
Sampling Frequency vs  
Temperature  
CMRR vs Frequency  
5
4
3
2
1
0
3000  
2500  
2000  
1500  
160  
140  
120  
100  
80  
V
= ± 5V  
V
= ± 5V  
S
S
60  
40  
20  
1000  
0
–50  
0
25  
50  
75 100 125  
4
6
8
10  
12  
14  
16  
–25  
1
10  
100  
1k  
10k  
100k  
+
TOTAL SUPPLY VOLTAGE, V TO V (V)  
AMBIENT TEMPERATURE (°C)  
FREQUENCY (Hz)  
LTC1049 • TPC09  
LTC1049 • TPC08  
LTC1049 • TPC07  
Small-Signal Transient  
Response  
Large-Signal Transient  
Response  
Overload Recovery  
400mV  
0.2V/DIV  
2V/DIV  
100mV  
STEP  
6V  
STEP  
0V  
0V  
1µs/DIV  
5µs/DIV  
–5V  
AV = –100  
VS = ± 5V  
0.5ms/DIV  
AV = 1  
AV = 1  
RL = 10k  
CL = 50pF  
RL = 10k  
CL = 50pF  
VS = ±5V  
LTC1049 • TPC11  
LTC1049 • TPC12  
LTC1049 • TPC10  
VS = ±5V  
LTC1049 DC to 1Hz Noise  
V
= ± 5V  
S
1Hz NOISE  
1µV/DIV  
NOISE VOLTAGE  
1µV/DIV  
10s/DIV  
LTC1049 • TPC13  
1049fb  
4
LTC1049  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC1049 DC to 10Hz Noise  
V
= ± 5V  
S
NOISE VOLTAGE  
10Hz NOISE  
1µV/DIV  
1µV/DIV  
1s/DIV  
LTC1049•TPC14  
TEST CIRCUITS  
Electrical Characteristics Test Circuit  
DC to 10Hz and DC to 1Hz Noise Test Circuit  
140  
8
V
= V  
CM  
6
120  
100  
4
2
0
80  
60  
–2  
–4  
–6  
–8  
40  
20  
4
5
10  
100  
1k  
10k  
100k  
0
1
2
3
6
7
8
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
LTC1049 • TPC02  
LTC1049 • TP01  
1049fb  
5
LTC1049  
W U U  
U
APPLICATIO S I FOR ATIO  
ACHIEVING PICOAMPERE/MICROVOLT  
PERFORMANCE  
Minimizing thermal EMF-induced errors is possible if  
judicious attention is given to circuit board layout and  
component selection. It is good practice to minimize the  
number of junctions in the amplifier’s input signal path.  
Avoid connectors, sockets, switches, and relays where  
possible. In instances where this is not possible, attempt  
to balance the number and type of junctions so that  
differential cancellation occurs. Doing this may involve  
deliberately introducing junctions to offset unavoidable  
junctions.  
Picoamperes  
In order to realize the picoampere level of accuracy of the  
LTC1049, proper care must be exercised. Leakage  
currents in circuitry external to the amplifier can signifi-  
cantlydegradeperformance.Highqualityinsulationshould  
be used (e.g., Teflon™, Kel-F); cleaning of all insulating  
surfacestoremovefluxesandotherresidueswillprobably  
be necessary—particularly for high temperature perfor-  
mance. Surface coating may be necessary to provide a  
moisture barrier in high humidity environments.  
PACKAGE-INDUCED OFFSET VOLTAGE  
Package-induced thermal EMF effects are another impor-  
tant source of errors. It arises at the copper/kovar  
junctions formed when wire or printed circuit traces  
contact a package lead. Like all the previously mentioned  
thermal EMF effects, it is outside the LTC1049’s offset  
nulling loop and cannot be cancelled. The input offset  
voltage specification of the LTC1049 is actually set by the  
package-induced warm-up drift rather than by the circuit  
itself. The thermal time constant ranges from 0.5 to 3  
minutes, depending on package type.  
Board leakage can be minimized by encircling the input  
connections with a guard ring operated at a potential close  
to that of the inputs: in inverting configurations, the guard  
ring should be tied to ground; in noninverting connec-  
tions, to the inverting input. Guarding both sides of the  
printed circuit board is required. Bulk leakage reduction  
depends on the guard ring width.  
Microvolts  
ThermocoupleeffectsmustbeconsiderediftheLTC1049’s  
ultralow drift is to be fully utilized. Any connection of  
dissimilar metals forms a thermoelectric junction produc-  
ing an electric potential which varies with temperature  
(Seebeck effect). As temperature sensors, thermocouples  
exploitthisphenomenontoproduceusefulinformation. In  
low drift amplifier circuits the effect is a primary source of  
error.  
LOW SUPPLY OPERATION  
The minimum supply for proper operation of the LTC1049  
is typically below 4.0V (±2.0V). In single supply applica-  
tions, PSRR is guaranteed down to 4.7V (±2.35V) to  
ensure proper operation down to the minimum TTL  
specified voltage of 4.75V.  
Connectors, switches, relay contacts, sockets, resistors,  
solder, and even copper wire are all candidates for thermal  
EMF generation. Junctions of copper wire from different  
manufacturerscangeneratethermalEMFsof200nV/°C—  
twicethemaximumdriftspecificationoftheLTC1049. The  
copper/kovarjunction,formedwhenwireorprintedcircuit  
traces contact a package lead, has a thermal EMF of  
approximately 35µV/°C—300 times the maximum drift  
specification of the LTC1049.  
PIN COMPATIBILITY  
The LTC1049 is pin compatible with the 8-pin versions of  
7650, 7652 and other chopper-stabilized amplifiers. The  
7650 and 7652 require the use of two external capacitors  
connected to Pins 1 and 8 which are not needed for the  
LTC1049. Pins 1, 5, and 8 of the LTC1049 are not con-  
nected internally; thus, the LTC1049 can be a direct plug-  
in for the 7650 and 7652, even if the two capacitors are left  
on the circuit board.  
1049fb  
6
LTC1049  
U
TYPICAL APPLICATIO S  
Low Power, Low Hold Step Sample-and-Hold  
5V  
13  
LTC201  
5V  
7
2
3
4.5  
6
V
OUT  
LTC1049  
3
2
V
+
IN  
4
DROOP 1mV/s  
HOLD STEP 20µV  
0.47µF  
MYLAR  
1
I
= 250µA TYP  
S
S/H  
LTC1049 • TA02  
1049fb  
7
LTC1049  
U
TYPICAL APPLICATIO S  
Low Power, Single Supply, Low Offset Instrumentation Amp  
5V  
198k  
2k  
2k  
198k  
2
3
2
7
7
6
6
V
OUT  
LTC1049  
LTC1049  
3
+
+
4
4
+ V  
IN  
– V  
IN  
GAIN = 100  
= 400µA  
I
S
CMRR 60dB, WITH 0.1% RESISTORS (RESISTORS LIMITED)  
LTC1049 • TA03  
1049fb  
8
LTC1049  
U
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
6
5
4
8
7
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(0.635)  
RAD TYP  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
2
3
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
OBSOLETE PACKAGE  
1049fb  
9
LTC1049  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1049fb  
10  
LTC1049  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045  
±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160  
±
.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030  
±
.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1049fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1049  
U
TYPICAL APPLICATIO  
Thermocouple-Based Temperature to Frequency Converter  
6V  
0.02µF  
6V  
TYPE K  
Q1  
2N3904  
THERMO-  
COUPLE  
+
V
NC  
10k  
100k  
K
LT1025  
+
1M  
Q2  
2N3906  
LTC1049  
R
l
l
l
3
GND  
OUTPUT  
100k  
1
2
+
0 – 100°C =  
0 – 1kHz  
C1  
100pF  
6.81k*  
1.5k  
C3  
0.47µF  
C4  
300pF  
240k  
6V  
100°C  
TRIM  
+
LT1004 – 1.2  
6.8µF  
9
16  
*IRC/TRW–MTR–5/+120ppm  
†POLYSTYRENE  
15  
11  
14  
10  
C2  
390pF  
S4  
S1  
= 74C14  
I
= 360µA  
S
S2  
S3  
SUPPLY RANGE = 4.5V to 10V  
6
7
LTC201  
2
3
1
8
LTC1049 • TA04  
1049fb  
LT 0406 REV B • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 1991  

相关型号:

LTC1049CJ8

Low Power Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1049CJ8#PBF

IC OP-AMP, Operational Amplifier
Linear

LTC1049CN8

Low Power Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1049CN8PBF

Low Power Zero-Drift Operational Amplifier
Linear

LTC1049CS8

Low Power Chopper Stabilized Operational Amplifier with Internal Capacitors
Linear

LTC1049CS8#PBF

暂无描述
Linear

LTC1049CS8#TR

LTC1049 - Low Power Zero-Drift Operational Amplifier with Internal Capacitors; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1049CS8#TRPBF

LTC1049 - Low Power Zero-Drift Operational Amplifier with Internal Capacitors; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1049IJ8

IC OP-AMP, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LTC1049MH

Chopper-Stabilized Operational Amplifier
ETC

LTC1049MJ8

Chopper-Stabilized Operational Amplifier
ETC

LTC1049_09

Low Power Zero-Drift Operational Amplifier with Internal Capacitors
Linear