LTC1052MN [Linear]

IC OP-AMP, 5 uV OFFSET-MAX, PDIP, 0.300 INCH, PLASTIC, DIP, Operational Amplifier;
LTC1052MN
型号: LTC1052MN
厂家: Linear    Linear
描述:

IC OP-AMP, 5 uV OFFSET-MAX, PDIP, 0.300 INCH, PLASTIC, DIP, Operational Amplifier

运算放大器
文件: 总24页 (文件大小:846K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1052/LTC7652  
Zero-Drift  
Operational Amplifier  
U
FEATURES  
DESCRIPTIO  
The LTC®1052 and LTC7652 are low noise zero-drift op  
amps manufactured using Linear Technology’s enhanced  
LTCMOSTM silicon gate process. Chopper-stabilization  
constantlycorrectsoffsetvoltageerrors.Bothinitialoffset  
and changes in the offset due to time, temperature and  
common mode voltage are corrected. This, coupled with  
picoampere input currents, gives these amplifiers  
unmatched performance.  
Guaranteed Max Offset: 5µV  
Guaranteed Max Offset Drift: 0.05µV/°C  
Typ Offset Drift: 0.01µV/°C  
Excellent Long Term Stability: 100nV/Month  
Guaranteed Max Input Bias Current: 30pA  
Over Operating Temperature Range:  
Guaranteed Min Gain: 120dB  
Guaranteed Min CMRR: 120dB  
Guaranteed Min PSRR: 120dB  
Low frequency (1/f) noise is also improved by the  
chopping technique. Instead of increasing continuously  
ata3dB/octaverate, theinternalchoppingcausesnoiseto  
decrease at low frequencies.  
Single Supply Operation: 4.75V to 16V  
(Input Voltage Range Extends to Ground)  
External Capacitors can be Returned to Vwith No  
Noise Degradation  
The chopper circuitry is entirely internal and completely  
transparent to the user. Only two external capacitors  
are required to alternately sample-and-hold the offset  
correction voltage and the amplified input signal. Control  
circuitry is brought out on the 14-pin and 16-pin versions  
to allow the sampling of the LTC1052 to be synchronized  
with an external frequency source.  
U
APPLICATIO S  
Thermocouple Amplifiers  
Strain Gauge Amplifiers  
Low Level Signal Processing  
Medical Instrumentation  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
LTCMOS is a trademark of Linear Technology Corporation.  
Teflon is a trademark of DuPont.  
U
TYPICAL APPLICATIO  
Ultralow Noise, Low Drift Amplifier  
Noise Spectrum  
5V  
160  
140  
120  
100  
80  
3
7
+
6
LTC1052  
2
8
4
1
0.1µF  
0.1µF  
0.1µF  
–5V  
5V  
60  
68k  
5V  
100k  
3K  
1
1.5k  
3
2
5V  
40  
7
+
INPUT  
8
LT®1007  
OUTPUT  
100k  
20  
6
4
– 5V  
0
0
100  
200  
300  
400  
500  
FREQUENCY (Hz)  
V
V
OS = 3µV  
OST = 50nV/°C  
100Ω  
LTC1052/7652 • TA02  
NOISE = 0.06µV 0.1Hz TO 10Hz  
LTC1052/7652 • TA01  
P-P  
1052fa  
1
LTC1052/LTC7652  
W W  
U W  
ABSOLUTE AXI U RATI GS (Notes 1 and 2)  
Total Supply Voltage (V+ to V) ............................... 18V Operating Temperature Range  
Input Voltage ........................ (V+ + 0.3V) to (V– 0.3V)  
Output Short Circuit Duration .......................... Indefinite  
LTC1052C/LTC7652C ..........................–40°C to 85°C  
LTC1052M (OBSOLETE).....................–55°C to 125°C  
Storage Temperature Range .................. –55°C to 150°C Lead Temperature (Soldering, 10 sec).................. 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
EXTB  
TOP VIEW  
C
C
C
EXTB  
INT/EXT  
CLK IN  
1
2
3
14  
13  
12  
8
EXTA  
+
C
V /CASE  
1
EXTA  
7
5
NC (GUARD)  
CLK OUT  
V+  
+
– IN  
+ IN  
4
5
6
7
+
11  
10  
9
OUTPUT  
2
6
– IN  
OUTPUT  
OUTPUT CLAMP  
3
NC (GUARD)  
V –  
LTC1052 OUTPUT CLAMP  
LTC7652 C  
+ IN  
4
RETURN  
C
RETURN  
8
V
N PACKAGE, 14-LEAD CERDIP  
= 110°C, θ = 130°C/W  
METAL CAN H PACKAGE  
T
JMAX  
JA  
J PACKAGE, 14-LEAD CERDIP  
OBSOLETE PACKAGE  
OBSOLETE PACKAGE  
Consider the N14 Package for Alternate Source  
Consider the N8 Package for Alternate Source  
ORDER PART NUMBER  
LTC7652CH  
REPLACES  
ORDER PART NUMBER  
REPLACES  
ICL7652CTV  
ICL7652ITV  
ICL7650CTV-1  
ICL7650ITV-1  
ICL7650CTV  
ICL7650ITV  
ICL7650MTV  
LTC1052CN  
LTC1052CJ  
LTC1052MJ  
ICL7652CPD  
ICL7650CPD  
ICL7652IJD  
ICL7650IJD  
ICL7650MJD  
LTC1052CH  
LTC1052MH  
TOP VIEW  
TOP VIEW  
C
1
2
3
4
5
6
7
8
16  
EXTB  
INT/EXT  
CLK IN  
C
C
EXTA  
1
EXTB  
8
7
6
15  
14  
13  
12  
11  
10  
9
C
EXTA  
+
IN  
+
V
2
3
CLK OUT  
V+  
NC (GUARD)  
– IN  
+ N  
OUTPUT  
OUTPUT  
CLAMP  
V
4
5
OUTPUT  
OUTPUT CLAMP  
+ IN  
NC (GUARD)  
V –  
N8 PACKAGE  
8-LEAD PDIP  
C
RETURN  
T
= 110°C, θ = 150°C/W  
JMAX  
JA  
NC  
NC  
J8 PACKAGE, 8-LEAD CERDIP  
SW PACKAGE  
16-LEAD PLASTIC (WIDE) SO  
OBSOLETE PACKAGE  
T
= 110°C, θ = 150°C/W  
JMAX JA  
Consider the N8 Package for Alternate Source  
ORDER PART NUMBER  
REPLACES  
ORDER PART NUMBER  
LTC1052CSW  
REPLACES  
LTC1052CS  
LTC1052CN8  
LTC1052CJ8  
LTC1052MJ8  
ICL7650CPA  
ICL7650IJA  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
1052fa  
2
LTC1052/LTC7652  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = ±5V, test circuit TC1, unless otherwise noted.  
LTC1052M  
TYP  
LTC1052C/LTC7652C  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
(Note 3)  
(Note 3)  
±0.5  
±5  
±0.5  
±0.01  
100  
±5  
µV  
µV/°C  
OS  
V /Temp Average Input Offset Drift  
±0.01 ±0.05  
±0.05  
OS  
V /Time Long-Term Offset Voltage Stability  
100  
nV/Month  
OS  
I
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
±30  
±90  
±2000  
±30  
±90  
±350  
pA  
pA  
OS  
I
±1  
±30  
±1000  
±1  
±30  
±175  
pA  
pA  
B
e
R = 100, DC to 10HZ, TC3  
R = 100, DC to 1HZ, TC3  
S
1.5  
0.5  
1.5  
0.5  
µV  
µV  
nP-P  
S
P-P  
P-P  
I
Input Noise Current  
f = 10Hz (Note 5)  
0.6  
140  
150  
150  
0.6  
140  
150  
150  
fA/Hz  
dB  
n
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
V
= V to 2.7V  
120  
120  
120  
120  
120  
CM  
SUPPLY  
= ±2.375V to ±8V  
= ±4V  
dB  
A
V
R = 10k, V  
OUT  
120  
dB  
VOL  
OUT  
L
Maximum Output Voltage Swing  
(Note 4)  
R = 10k  
±4.7 ±4.85  
±4.95  
±4.7  
±4.85  
±4.95  
V
V
L
R = 100k  
L
SR  
Slew Rate  
R = 10k, C = 50pF  
4
4
V/µs  
L
L
GBW  
Gain Bandwidth Product  
Supply Current  
1.2  
1.7  
1.2  
1.7  
MHz  
I
No Load  
2.0  
3.0  
2.0  
3.0  
mA  
mA  
S
f
Internal Sampling Frequency  
Clamp On Current  
330  
330  
100  
10  
Hz  
S
R = 100k  
25  
100  
10  
25  
µA  
L
Clamp Off Current  
4V < V  
< 4V  
100  
2
100  
1
pA  
nA  
OUT  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
testing. V is measured to a limit determined by test equipment  
OS  
of a device may be impaired.  
capability. Voltages on C  
and C  
, A , CMRR and PSRR are  
EXTA  
EXTB VOL  
+
measured to insure proper operation of the nulling loop to ensure meeting  
the V and V drift specifications. See Package-Induced V in the  
Note 2: Connecting any terminal to voltages greater than V , or less than  
V , may cause destructive latch-up. It is recommended that no sources  
OS  
OS  
OS  
Applications Information section.  
Note 4: Output clamp not connected.  
operating from external supplies be applied prior to power-up of the  
LTC1052/LTC7652.  
Note 3: These parameters are guaranteed by design. Thermocouple effects  
1/2  
Note 5: Current noise is calculated from the formula: i = (2q I ) , where  
n
B
19  
preclude measurement of the voltage levels in high speed automatic  
q = 1.6 • 10  
coulomb.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Noise Voltage  
VS = ±5V, TEST CIRCUIT (TC3)  
5µV  
DC TO 1Hz  
0
5µV  
DC TO 10Hz  
0
10 SEC.  
1052fa  
3
LTC1052/LTC7652  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Offset Voltage vs Sampling  
Frequency  
1OHzP-P Noise vs Sampling  
Frequency  
Input Bias Current vs  
Temperature  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
5
4
3
2
1
0
12  
10  
V
SUPPLY= ± 5V  
V
SUPPLY= ±5V  
GUARANTEED  
8
6
4
2
0
GUARANTEED  
100  
1k  
SAMPLING FREQUENCY, f (Hz)  
10k  
–50  
0
25  
50  
75  
125  
0
500  
1000  
1500  
2000  
–25  
100  
SAMPLING FREQUENCY, f (Hz)  
AMBIENT TEMPERATURE, T (°C)  
S
S
A
LTC1052/7652 • TPC03  
LTC1052/7652 • TPC01  
LTC1052/7652 • TPC02  
Common Mode Input Range vs  
Supply Voltage  
Overload Recovery  
(Output Clamp Not Used)  
Aliasing Error  
8
6
VS = ±5V  
AV = –1  
VS = ±5V  
TEST CIRCUIT TC2  
4
2
0
– 2  
– 4  
– 6  
– 8  
V
= V  
CM  
50ms/DIV  
OVERDRIVE  
REMOVED  
fI–fS  
fS  
fI  
50Hz/DIV  
A
V = 100  
4
5
0
1
2
3
6
7
8
SUPPLY VOLTAGE (±V)  
LTC1052/7652 • TPC04  
Small-Signal Transient Response*  
Large-Signal Transient Response*  
Gain Phase vs Frequency  
120  
100  
80  
60  
V = ± 5V  
S
80  
C = 100pF  
L
100  
120  
140  
160  
180  
200  
220  
PHASE  
60  
GAIN  
40  
20  
0
AV = 1  
2µs/DIV  
AV = 1  
2µs/DIV  
–20  
–40  
RL = 10k  
CL = 100pF  
VS = ±5V  
RL = 10k  
CL = 100pF  
VS = ±5V  
3
4
5
6
100  
10  
10  
10  
10  
107  
*RESPONSE IS NOT DEPENDENT ON PHASE OF CLOCK  
FREQUENCY (Hz)  
LTC1052/LTC7652 • TPC06  
1052fa  
4
LTC1052/LTC7652  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Broadband Noise, CEXT = 0.1µF  
Broadband Noise, CEXT = 1.0µF  
Broadband Noise Test Circuit (TC2)  
R2  
1M  
R1  
5V  
1k  
2
7
6
R3  
1k  
LTC1052  
3
8
+
4
1
C
C
EXTA  
EXTB  
AV = 1000  
1ms/DIV  
AV = 1000  
1ms/DIV  
– 5V  
LTC1052/7652 • TPC07  
Output Short-Circuit Current vs  
Supply Voltage  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
8
6
3.0  
2.0  
2.5  
2.0  
1.5  
1.0  
SUPPLY VOLTAGE = ± 5V  
I
V
= V  
SOURCE OUT  
4
2
0
1.0  
0
– 10  
– 20  
– 30  
0.5  
0
+
I
V
= V  
SINK OUT  
12  
+
16  
4
5
6
8
10  
14  
50  
100 125  
–50 –25  
0
25  
75  
4
5
6
8
10  
12  
14  
16  
+
AMBIENT TEMPERATURE, T (°C)  
TOTAL SUPPLY VOLTAGE, V TO V (V)  
TOTAL SUPPLY VOLTAGE, V TO V (V)  
A
LTC1052/LTC7652 • TPC08  
LTC1052/LTC7652 • TPC10  
LTC1052/LTC7652 • TPC09  
Sampling Frequency vs  
Temperature  
Sampling Frequency vs Voltage  
Comparator Operation  
600  
500  
400  
300  
600  
500  
400  
300  
200  
100  
0
SUPPLY VOLTAGE = ± 5V  
T
= 25°C  
A
5V  
5
1k  
2
V
*
REF  
7
6
LTC1052  
1k  
3
8
V
+
IN  
4
1
0.1µF  
0.1µF  
200  
100  
0
* – 5V V  
2.7V  
– 5V  
REF  
LTC1052/7652 • TPC13  
50  
100 125  
50 25  
0
25  
75  
4
5
6
8
10  
12  
14  
16  
+
AMBIENT TEMPERATURE, T (°C)  
TOTAL SUPPLY VOLTAGE, V TO V (V)  
A
LTC1052/LTC7652 • TPC11  
LT1052/LTC7652 • TPC12  
1052fa  
5
LTC1052/LTC7652  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Response Time vs Overdrive  
VREF + OVERDRIVE  
INPUT  
{
VREF – 1mV  
10µV  
5V  
50µV  
5µV  
OUTPUT  
{
–5V  
20ms/DIV  
TEST CIRCUITS  
Electrical Characteristics Test Circuit (TC1)  
DC to 10Hz and DC to 1HZ Noise Test Circuit (TC3)  
C2  
C3  
R2  
1M  
R2  
R4  
R1  
1k  
+
3
2
V
+
2
3
7
+
6
V
OUTPUT  
(NOISE x 20,000)  
C4  
LT1001  
34k  
2
3
R3  
6
7
OUTPUT  
LTC1052  
6
8
+
LTC1052  
R1  
R
4
L
8
1
+
4
1
0.1µF  
0.1µF  
34k  
0.1µF  
0.1µF  
V
LTC1052/7652 • TC01  
V
BANDWIDTH  
10Hz  
R1  
16.2  
16.2Ω  
R2  
162k  
162k  
R3  
16.2k  
162k  
R4  
16.2k  
162k  
C2  
0.1µF  
1.0µF  
C3  
1.0µF  
1.0µF  
C4  
1.0µF  
1.0µF  
1Hz  
LTC1052/7652 • TC02  
U
THEORY OF OPERATIO  
DC OPERATION  
The shaded portion of the LTC1052 block diagram  
(Figure 1a) entirely determines the amplifier’s DC  
characteristics. During the auto zero portion of the cycle,  
the gm1 inputs are shorted together and a feedback path is  
closed around the input stage to null its offset. Switch S2  
and capacitor CEXTA act as a sample-and-hold to store the  
nulling voltage during the next step—the sampling cycle.  
stage. CEXTB and S2 act as a sample-and-hold to store the  
amplified input signal during the auto zero cycle.  
By switching between these two states at a frequency  
much higher than the signal frequency, a continuous  
output results.  
Notice that during the auto zero cycle the gm1 inputs are  
not only shorted together, but are also shorted to the  
invertinginput.Thisforcesnullingwiththecommonmode  
voltage present and accounts for the extremely high  
In the sampling cycle, the zeroed amplifier is used to  
amplify the differential input voltage. Switch S2 connects  
the amplified input voltage to CEXTB and the output gain  
CMRR of the LTC1052. In the same fashion, variations in  
1052fa  
6
LTC1052/LTC7652  
U
THEORY OF OPERATIO  
power supply are also nulled. For nulling to take place, the  
offset voltage, common mode voltage and power supply  
must not change at a frequency which is high compared to  
the frequency response of the nulling loop.  
For frequencies above this pole, I2 is:  
1
SC2  
I2 = VIN gm6  
• SC1  
and  
C1  
C2  
I1 – I2 = VIN gm1 – VIN gm6  
AC OPERATION AND ALIASING ERRORS  
The LTC1052 is very carefully designed so that gm1 = gm6  
and C1 = C2. Substituting these values in the above equa-  
tion shows I1 – I2 = 0.  
So far, the DC performance of the LTC1052 has been  
explained. As the input signal frequency increases, the  
problem of aliasing must be addressed. Aliasing is the  
spurious formation of low and high frequency signals  
caused by the mixing of the input signal with the sampling  
frequency, fS. The frequency of the error signals, fE, is:  
The gm6 input stage, with Cl and C2, not only filters the  
input to the sampling loop, but also acts as a high  
frequency path to give the LTC1052 good high frequency  
response. The unity-gain cross frequencies for both the  
DC path and high frequency path are identical  
fE = fS ±fI  
where fI = input signal frequency.  
1
2π  
1
2π  
[f3dB =  
(gm1/C1) =  
(gm6/C2)]  
Normally it is the difference frequency (fS – fI ) which is of  
concern because the high frequency (fS + fI) can be easily  
filtered. As the input frequency approaches the sampling  
frequency, the difference frequency approaches zero and  
willcauseDCerrors—theexactproblemthatthezero-drift  
amplifier is meant to eliminate.  
thereby making the frequency response smooth and con-  
tinuous while eliminating sampling noise in the output as  
the loop transitions from the high gain DC loop to the high  
frequency loop.  
The typical curves show just how well the amplifier works.  
The output spectrum shows that the difference frequency  
(fI–fS = 100Hz) is down by 80dB and the frequency  
response curve shows no abnormalities or perturbations.  
Also note the well-behaved small and large-signal step  
responses and the absence of the sampling frequency in  
the output spectrum. If the dynamics of the amplifier  
(i.e., slew rate and overshoot), depend on the sampling  
clock, the sampling frequency will appear in the output  
spectrum.  
Thesolutionissimple;filtertheinputsothesamplingloop  
never sees any frequency near the sampling frequency.  
At a frequency well below the sampling frequency, the  
LTC1052 forces I1 to equal I2 (see Figure 1b). This makes  
δ l zero, thus the gain of the sampling loop zero at this and  
higher frequencies (i.e., a low pass filter). The corner  
frequency of this low pass filter is set by the output stage  
pole (1/RL4 gm5 RL5 C2).  
C1  
S3  
V
REF  
C2  
+ IN  
– IN  
S2  
S1  
+
+
g
g
m2  
g
+
g
+
V
m1  
m5  
m4  
OUT  
R
R
L2  
C
C
L1  
EXT B  
R
R
L4  
L5  
EXT A  
V
NULL  
g
m3  
V –  
g
m6  
LTC1052/7652 • TPC13  
+
Figure 1a. LTC1052 Block Diagram  
Auto Zero Cycle  
1052fa  
7
LTC1052/LTC7652  
U
THEORY OF OPERATIO  
C1  
S3  
V
REF  
C2  
R
l
2
+ IN  
– IN  
S2  
S1  
+
δl  
+
g
g
m2  
g
g
+
V
+
m1  
m5  
m4  
OUT  
l
R
R
L2  
1
L1  
C
EXT B  
R
L4  
L5  
C
EXT A  
g
m3  
V
l
3
LTC1052/7652 • TO02  
g
m6  
+
Figure 1b. LTC1052 Block Diagram  
Sampling Cycle  
W U U  
U
APPLICATIO S I FOR ATIO  
EXTERNAL CAPACITORS  
CEXTA and CEXTB are the holding elements of a sample-  
and-hold circuit. The important capacitor characteristics  
are leakage current and dielectric absorption. A high  
qualityfilm-typecapacitorsuchasmylarorpolypropylene  
provides excellent performance. However, low grade  
capacitors such as ceramic are suitable in many  
applications.  
On competitive devices, connecting CEXTA and CEXTB to  
Vcausesanincreaseinamplifiernoise.Designchanges  
have eliminated this problem on the LTC1052. On the  
14-pin LTC1052 and 8-pin LTC7652, the capacitors can  
be returned to Vor CRETURN with no change in noise  
performance.  
ACHIEVING PICOAMPERE/MICROVOLT PERFORMANCE  
Picoamperes  
Capacitors with very high dielectric absorption (ceramic)  
can take several seconds to settle after power is first  
turned on. This settling appears as clock ripple on the  
output and, as the capacitor settles, the ripple gradually  
disappears. If fast settling after power turn-on is  
important, mylar or polypropylene is recommended.  
In order to realize the picoampere level of accuracy of the  
LTC1052, proper care must be exercised. Leakage  
currents in circuitry external to the amplifier can  
significantlydegradeperformance. Highqualityinsulation  
should be used (e.g., Teflon, Kel-F); cleaning of all  
insulating surfaces to remove fluxes and other residues  
will probably be necessary—particularly for high  
temperature performance. Surface coating may be  
necessary to provide a moisture barrier in high humidity  
environments.  
Above 85°C, leakage, both from the holding capacitors  
and the printed circuit board, becomes important. To  
maintain the capabilities of the LTC1052 it may be  
necessary to use Teflon™ capacitors and Teflon standoffs  
when operating at 125°C (see Achieving Picoampere/  
Microvolt Performance).  
CEXTA and CEXTB are normally in the range of 0.1µF  
to 1.0µF. All specifications are guaranteed with 0.1µF and  
the broadband noise (refer to Typical Performance Char-  
acteristics) is only very slightly degraded with 0.1µF.  
Output clock ripple is not present for capacitors of 0.1µF  
or greater at any temperature.  
Board leakage can be minimized by encircling the input  
connections with a guard ring operated at a potential  
close to that of the inputs: in inverting configurations, the  
guard ring should be tied to ground; in noninverting  
Teflon is a trademark of Dupont.  
1052fa  
8
LTC1052/LTC7652  
W U U  
APPLICATIO S I FOR ATIO  
U
connections, to the inverting input. Guarding both sides  
of the printed circuit board is required. Bulk leakage  
reduction depends on the guard ring width.  
Figure 2 is an example of the introduction of an  
unnecessary resistor to promote differential thermal  
balance. Maintaining compensating junctions in close  
physicalproximitywillkeepthematthesametemperature  
and reduce thermal EMF errors.  
NOMINALLY UNNECESSARY  
RESISTOR USED TO  
LEAD WIRE/SOLDER/COPPER  
THERMALLY BALANCE OTHER  
TRACE JUNCTION  
INPUT RESISTOR  
+
OUTPUT  
LTC1052  
RESISTOR LEAD, SOLDER,  
COPPER TRACE JUNCTION  
Microvolts  
ThermocoupleeffectsmustbeconsiderediftheLTC1052’s  
ultralow drift is to be fully utilized. Any connection  
of dissimilar metals forms a thermoelectric junction  
producing an electric potential which varies with  
temperature (Seebeck effect). As temperature sensors,  
thermocouples exploit this phenomenon to produce  
useful information. In low drift amplifier circuits the effect  
is a primary source of error.  
LTC1052/7652 • AI03  
Figure 2  
When connectors, switches, relays and/or sockets are  
necessary they should be selected for low thermal EMF  
activity. The same techniques of thermally balancing and  
coupling the matching junctions are effective in reducing  
the thermal EMF errors of these components.  
Connectors, switches, relay contacts, sockets, resistors,  
solder, and even copper wire are all candidates for  
thermal EMF generation. Junctions of copper wire from  
different manufacturers can generate thermal EMFs of  
200nV/°C—4 times the maximum drift specification of  
the LTC1052. The copper/kovar junction, formed when  
wire or printed circuit traces contact a package lead, has  
a thermal EMF of approximately 35µV/°C700 times the  
maximum drift specification of the LTC1052.  
Resistors are another source of thermal EMF errors.  
Table 1 shows the thermal EMF generated for different  
resistors. The temperature gradient across the resistor is  
important, not the ambient temperature. There are two  
junctions formed at each end of the resistor and if these  
junctions are at the same temperature, their thermal EMFs  
will cancel each other. The thermal EMF numbers are  
approximate and vary with resistor value. High values give  
higher thermal EMF.  
Minimizing thermal EMF-induced errors is possible if  
judicious attention is given to circuit board layout and  
component selection. It is good practice to minimize the  
number of junctions in the amplifier’s input signal path.  
Avoid connectors, sockets, switches and relays where  
possible. In instances where this is not possible, attempt  
to balance the number and type of junctions so that  
differential cancellation occurs. Doing this may involve  
deliberately introducing junctions to offset unavoidable  
junctions.  
Table 1. Resistor Thermal EMF  
RESISTOR TYPE  
Tin Oxide  
THERMAL EMF/°C GRADIENT  
~mV/’C  
Carbon Composition  
Metal Film  
~450µV/°C  
~20µV/°C  
Wire Wound  
Evenohm  
Manganin  
~2µV/°C  
~2µV/°C  
1052fa  
9
LTC1052/LTC7652  
W U U  
U
APPLICATIO S I FOR ATIO  
When all of these errors are considered, it may seem  
impossible to take advantage of the extremely low drift  
specifications of the LTC1052. To show that this is not the  
case, examine the temperature test circuit of Figure 3. The  
lead lengths of the resistors connected to the amplifier’s  
inputs are identical. The thermal capacity and thermal  
resistance each input sees is balanced because of the  
symmetrical connection of resistors and their identical  
size. Thermal EMF-induced shifts are equal in phase and  
amplitude, thus cancellation occurs.  
Figure 4 shows the response of this circuit under  
temperature transient conditions. Metal film resistors and  
an 8-pin DIP socket were used. Care was taken in the  
construction to thermally balance the inputs to the  
amplifier. The units were placed in an oven and allowed to  
stabilize at 25°C. The recording was started and after  
100 seconds the oven, preset to 125°C, was switched on.  
The test was first performed on an 8-pin plastic package  
andthenwasrepeatedforaTO-5packagepluggedintothe  
same test board. It is significant that the change in VOS,  
even under these severe thermal transient conditions,  
is quite good. As temperature stabilizes, note that the  
steady-state change of VOS is well within the maximum  
±0.05µV/°C drift specification.  
50k  
5V  
2
3
7
4
6
100  
LTC1052  
8
+
Very slight air currents can still affect even this  
arrangement. Figure 5 shows strip charts of output noise  
bothwiththecircuitcoveredandwithnocoverinstillair.  
This data illustrates why it is often prudent to enclose the  
LTC1052 and its attendant components inside some form  
of thermal baffle.  
V
• 1000  
OS  
1
0.1µF  
50k  
0.1µF  
0.1µF  
–5V  
LTC1052/7652 • AI04  
Figure 3. Offset Drift Test Circuit  
0 MIN  
5 MIN  
20 MIN  
25 MIN  
10  
0
25°C TO 125°C  
PLASTIC  
±0.05µV/°C  
10  
0
25°C TO 125°C  
METAL CAN  
±0.05µV/°C  
OVEN SWITCHED  
ON (25°C)  
OVEN STABILIZED  
AT 12 MIN  
100 SECONDS/IN  
Figure 4. Transient Response of Offset Drift Test Circuit with 100°C Temperature Step  
1052fa  
10  
LTC1052/LTC7652  
W U U  
APPLICATIO S I FOR ATIO  
U
#1 COVERED  
1µV  
#1 UNCOVERED  
#2 UNCOVERED  
20 SEC  
Figure 5. DC to 1Hz (Test Circuit TC3)  
PACKAGE-INDUCED OFFSET VOLTAGE  
CLOCK  
Since the LTC1052 is constantly fixing its own offset, it  
may be asked why there is any error at all, even under  
transient temperature conditions. The answer is simple.  
The LTC1052 can only fix offsets inside its own nulling  
loop. There are many thermal junctions outside this loop  
that cannot be distinguished from legitimate signals.  
The LTC1052 has an internal clock, setting the nominal  
sampling frequency at 330Hz. On 8-pin devices, there is  
no way to control the clock externally. In some applica-  
tions it may be desirable to control the sampling clock and  
this is the function of the 14-pin device.  
CLK IN, CLK OUT and INT/EXT are provided to accomplish  
this.Withnoexternalconnection,aninternalpull-upholds  
INT/EXT at the V+ supply and the 14-pin device self-  
oscillates at 330Hz. In this mode there is a signal on the  
CLK IN pin of 660Hz (2 times sampling frequency) with a  
30% duty cycle. A divide-by-two drives the CLK OUT pin  
and sets the sampling frequency.  
To use an external clock, connect INT/EXT to Vand the  
external clock to CLK IN. The logic threshold of CLK IN is  
2.5V below the positive supply; this allows CMOS logic to  
drive it directly with logic supplies of V+ and ground. CLK  
IN can be driven from V+ to Vif desired. The duty cycle of  
the external clock is not particularly critical but should be  
kept between 30% and 60%.  
Some have been discussed previously, but the package  
thermal EMF effects are an important source of errors.  
Notice the difference in the thermal response curves of  
Figure 4. This can only be attributed to the package since  
everything else is identical. In fact, the VOS specification is  
set by the package-induced warm-up drift, not by the  
LTC1052. TO-99 metal cans exhibit the worst warm-up  
drift and Linear Technology sample tests TO-99 lots to  
minimize this problem.  
Two things make 100% screening costly: (1) The extreme  
precision required on the LTC1052 and (2) the thermal  
time constant of the package is 0.5 to 3 minutes, depend-  
ing on package type. The first precludes the use of auto-  
matic handling equipment and the second takes a long  
time. Bench test equipment is available to 100% test for  
warmed-up drift if offsets of less than ±5µV are required.  
Capacitance between CLK IN and CLK OUT (pins 13 and  
12) can cause the divide-by-two circuit to malfunction. To  
avoid this, keep this capacitance below 5pF.  
1052fa  
11  
LTC1052/LTC7652  
W U U  
U
APPLICATIO S I FOR ATIO  
OUTPUT CLAMP  
within approximately 1V of either supply rail. This switch  
is in parallel with the amplifier’s feedback resistor. As the  
output moves closer to the rail, the switch on  
resistance decreases, reducing the closed loop gain. The  
output swing is reduced when the clamp function is used.  
If the LTC1052 is driven into saturation, the nulling loop,  
attempting to force the differential input voltage to zero,  
will drive CEXTA and CEXTB to a supply rail. After the  
saturating drive is removed, the capacitors take a finite  
time to recover—this is the overload recovery time. The  
overload recovery is longest when the capacitors are  
driven to the negative rail (refer to Overload Recovery in  
the Typical Performance Characteristics section). The  
overload recovery time in this case is typically 225ms. In  
the opposite direction (i.e., CEXTA and CEXTB at positive  
rail), it is about ten times faster (25ms). The overload  
recovery time for the LTC1052 is much faster than com-  
petitive devices; however, if a faster overload recovery  
time is necessary, the output clamp function can be used.  
How much current the output clamp leaks when off  
is important because, when used, it is connected to the  
amplifier’s negative input. Any current acts like input bias  
current and will degrade accuracy. At the other extreme,  
the maximum current the clamp conducts when on deter-  
mines how much overdrive the clamp will take, and still  
keep the amplifier from saturating. Both of these numbers  
are guaranteed in the Electrical Characteristics section.  
LOW SUPPLY OPERATION  
The minimum supply voltage for proper operation of the  
LTC1052 is typically 4.0V (±2.0V). In single supply  
applications, PSRR is guaranteed down to 4.7V (±2.35V).  
This assures proper operation down to the minimum TTL  
specified voltage of 4.75V.  
When the output clamp is connected to the negative input  
it prevents the amplifier from saturating, thus keeping  
CEXTA and CEXTB at their nominal voltages. The output  
clamp is a switch that turns on when the output gets to  
U
TYPICAL APPLICATIO S  
5V Powered Ultraprecision Instrumentation Amplifier  
Fast Precision Inverter  
5V  
5V  
10k*  
10k*  
8pF  
4
INPUT  
3
2
7
+ IN  
7
8
+
6
10k  
V
LTC1052  
OUT  
8
11  
12  
1
1N4148  
4
C1  
C2  
0.1µF  
1µF  
1µF  
0.1µF  
R2  
100k  
1000pF  
300pF  
R1  
100  
5V  
2
3
13  
6
7
– IN  
5V  
14  
5
5V  
7
+
6
2
3
LTC1043  
0.22µF  
+
OUTPUT  
LT318A  
6
LTC1052  
4
10k  
43k  
8
10k  
4
–5V  
1
+
2
C4  
1µF  
10k  
0.1µF  
0.1µF  
C3  
1µF  
1N914  
3
– 5V  
*1% METAL FILM  
FULL POWER BANDWIDTH = 2MHz  
– 0.5V  
18  
17  
15  
16  
SLEW RATE = 40V/µs  
SETTLING (10V STEP) = 12µs TO 0.01%  
BIAS CURRENT DC = 30pA  
OFFSET DRIFT = 50nV/°C  
0.0047µF  
CIRCUITRY WITHIN DASHED LINES MAY BE DELETED IF OUTPUT  
DOES NOT HAVE TO SWING ALL THE WAY TO GROUND  
DRIFT = 50nV/°C  
OFFSET VOLTAGE = 5µV  
LTC1052/7652 • TA04  
V
= 3µV  
OS  
R2  
GAIN =  
+ 1  
R1  
CMRR = >120dB DC – 20kHz  
BANDWIDTH = 10Hz  
LTC1052/7652 • TA03  
1052fa  
12  
LTC1052/LTC7652  
U
TYPICAL APPLICATIO S  
Offset Stabilized Comparator  
5V  
4
5V  
+
14  
13  
330150Ω  
2k  
8
2
3
+
12  
11  
6
COMPARATOR  
INPUTS  
7
COMPARATOR  
OUTPUT (± 5V)  
LT1011  
5
1
4
10k  
– 5V  
1µF  
8
5
7
6
GROUND OR  
INPUT COMMON-  
MODE VOLTAGE  
5V  
7
LTC1043  
1M  
2
3
+
6
LTC1052  
8
4
2
3
1
0.1µF  
0.1µF  
– 5V  
STATUS OUTPUT  
OV = ZERO  
5V  
15  
16  
18  
5V = COMPARE  
ZERO COMMAND  
5V = ZERO  
– 5V = COMPARE  
17  
5V  
LTC1052/7652 • TA05  
1HZ to 1.25MHz Voltage-to-Frequency Converter (5V Supply)  
470Ω  
5V  
0.01µF  
470Ω  
10k  
3
2
7
+
6
3.3k  
Q1  
2N2907  
NC  
2N3904  
LTC1052  
8
4
1
5V  
74C04  
330pF  
0.1µF  
0.1µF  
10k  
OUTPUT  
1H to 1.25MHz  
0.01µF  
10k  
5V  
2k  
3.3pF  
FULL-SCALE TRIM  
(1.25MHz)  
5V  
30.1k*  
V
IN  
OV TO 5V  
10k  
4
8
7
0.22µF  
11  
12  
LT1004-1.2V  
100pF**  
0.1µF  
*TRW MTR–5/ +1200ppm/°C  
**POLYSTYRENE–WESCO #32–P/ – 120ppm/°C  
± 0.05%  
>120dB  
0.01Hz/°C  
20ppm/°C  
LINEARITY  
14  
13  
16  
DYNAMIC RANGE  
ZERO POINT DRIFT  
GAIN DRIFT  
1/2  
LTC1043  
17  
LTC1052/7652 • TA06  
1052fa  
13  
LTC1052/LTC7652  
U
TYPICAL APPLICATIO S  
No VOS Adjust* CMOS DAC Buffer—Single Supply  
Air Flow Detector  
15V  
C *  
F
10k  
5V  
5
15V  
R
1k  
FB  
2
3
l
OUT1  
+
7
100k  
± 1%  
6
12–BIT CMOS DAC  
V
LTC1052  
OUT  
5
8
2
3
l
FOR HIGHER SPEED, REFER TO  
“FAST PRECISION INVERTER”  
UNDER TYPICAL APPLICATIONS  
OUT2  
+
4
7
1k  
6
5V = NO AIR FLOW  
0V = AIR FLOW  
1
LT1004-1.2  
LTC1052  
15V  
4
0.1µF  
0.1µF  
8
43.2  
± 1%  
4
1
43k  
0.1µF  
0.1µF  
6
5
AMBIENT  
TEMPERATURE  
STILL AIR  
+
10k  
240Ω  
TYPE K  
+
LTC1052/7652 • TA08  
11  
+
1µF  
1N914  
0.1µF  
NON POLARIZED  
*OFFSET VOLTAGE CAUSES  
NONLINEARITY ERRORS.  
SEE: “APPLICATION GUIDE  
TO CMOS MULTIPLYING D/A  
CONVERTERS,”  
AIR FLOW  
12  
– 0.5V  
ANALOG DEVICES, INC.  
LTC1052/7652 • TA07  
1pF  
1/2  
16  
LTC1043  
17  
1Hz to 30MHz Voltage-to-Frequency Converter  
5V  
120  
CURRENT  
12k  
SOURCE  
STABILIZING  
AMP  
0.1µF  
120Ω  
3
7
+
7.5k  
6
2N3906  
LTC1052  
2
8
NC  
FET BUFFER  
2N5486  
4
1
RESET DIODE  
2N3904  
1Hz TO 30MHz  
OUTPUT  
0.1µF  
0.1µF  
5V  
100pF  
50Ω  
74S132  
0.0.1µF  
– 5V  
OUT  
2k  
30MHz  
TRIM  
2N5486  
10k  
0.22µF  
16.2k*  
5V  
5V  
IN  
TRIGGER  
HP5082-2810  
50Ω  
CHARGE  
PUMP  
OV TO 3V  
2k  
– 5V  
8
7
100k  
1000M  
11  
LT1004–1.2V  
10k  
1Hz TRIM  
100pF  
0.22µF  
100k  
– 5V  
10  
12  
*TRW MTR-5/ + 120ppm/°C  
†WESCO #32-P/ – 120ppm/°C  
0.3Hz/°C ZERO-DRIFT  
±0.08% LINEARITY  
20ppm/°C GAIN DRIFT  
150dB DYNAMIC RANGE  
13  
16  
5V  
5
5V  
14  
11  
3
14  
5
1/2  
LTC1043  
1/2 74S74  
7
7490  
10  
12  
1
LTC1052/7652 • TA09  
1052fa  
14  
LTC1052/LTC7652  
U
TYPICAL APPLICATIO S  
±100mA Output Drive  
Increasing Output Current  
5V  
100k  
220pF  
V
IN  
74C04  
5V  
5V  
100pF  
1M  
V
2
3
7
5V  
10k  
6
2
3
7
LTC1010  
LTC1052  
INPUT  
OUT  
8
OUTPUT  
6
LTC1052  
+
4
±100mA  
8
1
+
– 5V  
4
R
L
1
0.1µF  
0.1µF  
0.1µF  
0.1µF  
– 5V  
100k  
LOAD OUTPUT SWING  
V
V
= 5µV  
/T = 50µV/°C  
OS  
OS  
100  
2000pF  
GAIN = 10  
10k  
5k  
2.5k  
1k  
± 4.92V  
± 4.84V  
± 4.65V  
± 3.65V  
FULL POWER BANDWIDTH = 1kHz  
LTC1052/7652 • TA10  
220Ω  
LTC1052/7652 • TA11  
Single 5V Thermocouple Amplifier with Cold Junction Compensation  
5V  
+
V
T
1k  
100k  
R1  
LT1004-1.2  
5V  
4
1690Ω  
5k AT 25°C  
5V  
3
2
7
7
8
6
R
R
F
V
= V 1 +  
LTC1052  
OUT  
T
(
)
1820Ω  
187Ω  
l
8
+
4
11  
12  
1
1µF  
1µF  
0.1µF  
0.1µF  
R
C *  
F
F
13  
6
14  
5
43k  
5V  
R
l
2
+
1µF  
IN914  
1µF  
NONPOLARIZED  
3
10k  
– 0.5V  
18  
16  
15  
LTC1052/7652 • TA12  
THERMOCOUPLE  
TYPE  
R1  
LTC1043  
17  
J
K
T
S
232k  
301k  
301k  
2.1M  
YELLOW SPRINGS INST. CO. PART #44007  
*CHOOSE C TO FILTER NOISE  
0.0047µF  
F
1052fa  
15  
LTC1052/LTC7652  
U
TYPICAL APPLICATIO S  
Increasing Output Current and Voltage (VSUPPLY = ±15V)  
DC Stabilized FET Probe  
INPUT CAPACITANCE BOOTSTRAP  
5V  
FAST SOURCE  
FOLLOWER  
Q1  
2N5486  
INPUT  
7V  
2N3904  
5V  
15V  
30k  
6
33pF  
1N4148  
0.1µF  
3k  
NC  
2
3
7
INPUT  
LT1010  
– 5V  
OUTPUT  
10M  
3
6
7
LT318A  
4
LTC1052  
+
V+  
10M  
8
OUTPUT  
±12V AT 20mA | LIMIT  
+
7
4
3
2
DRAIN CURRENT SINK  
10k  
Q2  
+
2
1
6
3k  
0.1µF  
LTC1052  
0.1µF  
0.1µF  
2N2222  
8
0.01µF  
1
2N3904  
NC  
4
100  
–15V  
– 7V  
1k  
0.1µF  
0.1µF  
0.1µF  
– 5V  
2000pF  
DC STABILIZATION  
STABLE FOR ALL GAINS, INVERTING  
AND NONINVERTING, OBSERVE  
LTC1052 COMMON MODE INPUT LIMITS  
LTC1052/7652 • TA13  
BANDWIDTH: 20MHz  
: 100ns  
1k  
0.1µF  
RISE  
DELAY: 5ns  
LTC1052/7652 • TA14  
Precision Multiplexed Differential Thermocouple Amplifier  
5V  
COLD JUNCTION  
COMPENSATOR  
100k  
4
R1  
LT1004–1.2V  
3
7
7
8
6
LTC1052  
V
= 1001 • V  
THERMOCOUPLE  
OUT  
5k AT  
25°C  
8
2
+
4
11  
12  
1690  
187Ω  
1
1µF  
1µF  
0.1µF  
0.1µF  
0.1µF  
1820Ω  
1M  
1k  
– 5V  
13  
6
14  
5
5V  
16  
12  
13  
3
2
3
1µF  
1µF  
1
14  
5
YELLOW SPRINGS INST. CO. PART #44007  
18  
16  
15  
LTC1043  
THERMOCOUPLE  
TYPE  
R1  
15  
2
J
K
T
S
232k  
301k  
301k  
2.1M  
0.0047µF  
17  
– 5V  
11  
4
9
ADDRESS  
10  
8
7
CD4052B  
– 5V  
LTC1052/7652 • TA15  
1052fa  
16  
LTC1052/LTC7652  
U
TYPICAL APPLICATIO S  
Direct Thermocouple-to-Frequency Converter  
R
T
COLD JUNCTION TEMPERATURE TRACKING  
1N4148  
+
TYPE K  
THERMOCOUPLE 41.4µV/°C  
STABILIZING AMP  
470  
1.8k*  
5V  
7
3
+
A
10k  
B
C
E
33k  
D
6
LTC1052  
1N914  
100k  
2
74C04  
8
4
0.68µF  
1µF  
1
0.1µF  
0.1µF  
OPTIONAL INPUT  
820pF  
FILTER-AND-OVERLOAD  
CLAMP  
– 5V  
3300pF  
150k**  
5V  
5V  
50k  
60°C TRIM  
74C04  
OUTPUT  
F
0Hz TO 600Hz  
0°C TO 60°C  
5V  
16  
– 5V  
33k**  
3k  
74C903  
A
LTC1043  
4.75k*  
1k*  
5
6
1µF  
*0.01% FILM-TRW MAR-6  
**TRW/MTR/5/ + 120  
0.1µF  
LT1004–1.2V  
2
R
= YELLOW SPRINGS INST. #44007  
T
100pF = POLYSTYRENE  
100pF  
FOR GENERAL PURPOSE (1mV FULL-SCALE)  
10-BIT A-TO-D, REMOVE THERMOCOUPLE—  
COLD JUNCTION NETWORK, GROUND POINT A,  
AND DRIVE LTC1052 POSITIVE INPUT  
COLD JUNCTION BIAS  
487*  
301k*  
187*  
LTC1052/7652 • TA16  
Direct 10-Bit Strain Gauge Digitizer  
5V  
74C00  
5V  
1000pF  
1
– 5V  
20  
STRAIN GAUGE  
TRANSDUCER  
28k  
14k  
CLOCK  
0.003µF  
20Ω  
5V  
Z
Z
= 350Ω  
3
2
IN  
+
= 350Ω  
OUT  
8
1k  
6
INTEGRATOR  
5V  
LM301A  
2N2905  
5V  
1000pF  
FREQUENCY  
OUT B  
4
2
3
7
10k  
5V  
14  
1
4 3  
7
– 5V  
1/2 74C903  
470k*  
6
2
5
LTC1052  
1/2 74C74  
5V  
8
+
FREQUENCY  
OUT A  
7
6
4
1
3.3M*  
1/2 LTC1043  
– 5V  
– 5V  
OUTPUT  
GATING  
0.01µF  
0.01µF  
BRIDGE DRIVE  
7
8
– 5V  
OUT A  
OUT B  
SW1  
= 1000 COUNTS FULL-SCALE  
DATA OUTPUT =  
1N4148  
1N4148  
*0.1% METAL FILM TRW MAR-5  
SW1 = MAIN CURRENT SWITCH  
SW2 = CURRENT LOADING COMPENSATION SWITCH  
11  
12  
16  
14  
– 5V  
3.3M  
CONNECT DIRECTLY  
ACROSS BRIDGE  
DRIVE POINTS  
100k  
SW2  
CONNECT TO BRIDGE  
END OF 470k RESISTOR  
13  
10k  
(OPTIONAL)  
TRANSDUCER ZERO NETWORK  
LTC1052/7652 • TA17  
+
22.3k*  
33µF  
1k*  
1052fa  
17  
LTC1052/LTC7652  
U
TYPICAL APPLICATIO S  
16-Bit A/D Converter  
74C00  
5V  
28k  
14k  
CLOCK  
820pF  
0.01µF  
B
OUT  
10k  
5V  
5V  
7
1/3 74C903  
95k*  
E
2
IN  
14  
1
4 2  
OV TO 5V  
10pF  
6
2
10k  
FULL-SCALE  
TRIM  
5V  
LTC1052  
1/2 74C74  
3
A2  
+
1
A
OUT  
7
5 6  
8
INTEGRATOR  
4
– 5V  
0.1µF  
0.1µF  
5V  
5V  
– 5V  
1k  
16  
13  
4
3
7
14  
+
6
2N4338  
LTC1052  
2
8
1
12  
11  
4
1µF  
0.01µF  
39pF  
LT1009  
0.1µF  
0.1µF  
– 5V  
20k  
75k*  
7
8
LINEARITY  
TRIM  
18  
15  
CURRENT SINK  
– 5V  
3
A
B
OUT  
OUT  
DATA OUTPUT =  
LTC1043  
17  
100,000 COUNTS FULL-SCALE  
NO ZERO TRIM  
20ppm/°C GAIN DRIFT  
*VISHAY S-102 RESISTOR  
– 5V  
LTC1052/7652 • TA18  
CURRENT SWITCH  
1052fa  
18  
LTC1052/LTC7652  
U
TYPICAL APPLICATIO S  
Precision Isolation Amplifier  
1k*  
INPUT SIDE OUTPUT SIDE  
10k  
74C04  
10k  
20k  
ZERO TRIM  
– 15V  
15V  
4
4
5
1
+
100k*  
2N5434  
2N5434  
30pF  
2N5434  
22M  
1
100k  
LTC1052  
14–PIN  
10  
3
2
2
L2  
+
8
2
6
STANCOR PCT-39  
OUT  
7
1000pF  
LTC1052  
4
1
5
2N5434  
3
1k GAIN TRIM  
INPUT  
14  
7
– 15V  
6
100k  
0.1µF  
0.1µF  
15V  
13  
10k  
13.3k*  
10k*  
11  
5
5
74C04  
10k  
IN4148  
14 11  
14  
11  
74C90  
÷10  
74C90  
÷10  
100pF  
10M  
2k  
2k  
(SELECT)  
12  
12  
10  
10  
1
1
330  
15V  
1.8k  
68pF  
1N4148 1N4148  
NC  
2N3904  
1k  
– 15V  
25mA  
7
1
74C04  
2.2µF  
+
FLOATING  
SUPPLY  
OUTPUTS  
2N2222  
2N3904  
NC  
L1  
11k  
POWER  
DALE TC–10–11  
8
DRIVER  
2
– 15V  
15V  
25mA  
20k  
1000pF  
1N4148  
15V  
+
4.3k  
2.2µF  
20k  
FLOATING COMMON  
68pF  
1k  
2N2222  
9
3
LTC1052/7652 • TA19  
1.8k  
15V  
250V ISOLATION  
0.03% ACCURACY  
*1% FILM RESISTOR  
1052fa  
19  
LTC1052/LTC7652  
U
PACKAGE DESCRIPTIO  
H Package  
8-Lead TO-5 Metal Can (.200 Inch PCD)  
(Reference LTC DWG # 05-08-1320)  
.335 – .370  
(8.509 – 9.398)  
DIA  
.305 – .335  
(7.747 – 8.509)  
.040  
(1.016)  
MAX  
.050  
(1.270)  
MAX  
.165 – .185  
(4.191 – 4.699)  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
.500 – .750  
(12.700 – 19.050)  
.010 – .045*  
(0.254 – 1.143)  
.016 – .021**  
(0.406 – 0.533)  
.027 – .045  
(0.686 – 1.143)  
PIN 1  
45°TYP  
.028 – .034  
(0.711 – 0.864)  
.200  
(5.080)  
TYP  
.110 – .160  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND THE SEATING PLANE  
.016 – .024  
(0.406 – 0.610)  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
H8(TO-5) 0.200 PCD 0801  
OBSOLETE PACKAGE  
1052fa  
20  
LTC1052/LTC7652  
U
PACKAGE DESCRIPTIO  
J Package  
14-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.785  
(19.939)  
MAX  
.005  
(0.127)  
MIN  
14  
13  
12  
11  
10  
9
8
.220 – .310  
.025  
(5.588 – 7.874)  
(0.635)  
RAD TYP  
2
3
4
5
6
1
7
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.100  
(2.54)  
BSC  
.125  
(3.175)  
MIN  
.014 – .026  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
(0.360 – 0.660)  
J14 0801  
OBSOLETE PACKAGE  
1052fa  
21  
LTC1052/LTC7652  
U
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
6
5
4
8
7
2
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
(0.635)  
RAD TYP  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
3
.200  
.300 BSC  
(5.080)  
MAX  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
OBSOLETE PACKAGE  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1052fa  
22  
LTC1052/LTC7652  
U
PACKAGE DESCRIPTIO  
N Package  
14-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.770*  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
7
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
5
6
4
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
.130 ± .005  
(3.302 ± 0.127)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
+.035  
.325  
.005  
(0.125)  
MIN  
–.015  
.120  
(3.048)  
MIN  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
–0.381  
NOTE:  
INCHES  
MILLIMETERS  
N14 1002  
1. DIMENSIONS ARE  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1052fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC1052/LTC7652  
U
PACKAGE DESCRIPTIO  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
TYP  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
1052fa  
LW/TP 1202 1K REV A • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1985  

相关型号:

LTC1052MN8

IC OP-AMP, PDIP8, PLASTIC, DIP-8, Operational Amplifier
Linear

LTC1052MP

OP-AMP, 5uV OFFSET-MAX, 1.2MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8
TI

LTC1052_09

Zero-Drift Operational Amplifier
Linear

LTC1053

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1053C

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1053CN

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1053CN#PBF

LTC1053 - Dual/Quad Precision Zero-Drift Operational Amplifiers With Internal Capacitors; Package: PDIP; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1053CS

Dual/Quad Precision Chopper Stabilized Operational Amplifiers with Internal Capacitors
Linear

LTC1053CSW

Dual/Quad Precision Zero-Drift Operational Amplifiers With Internal Capacitors
Linear

LTC1053CSW#TR

LTC1053 - Dual/Quad Precision Zero-Drift Operational Amplifiers With Internal Capacitors; Package: SO; Pins: 18; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1053CSW#TRPBF

暂无描述
Linear

LTC1053IN

IC QUAD OP-AMP, 70 uV OFFSET-MAX, PDIP, 0.300 INCH, PLASTIC, DIP, Operational Amplifier
Linear