LTC1063MJ8#TR [Linear]

IC SWITCHED CAPACITOR FILTER, BUTTERWORTH, LOWPASS, CDIP8, 0.300 INCH, CERAMIC, DIP-8, Active Filter;
LTC1063MJ8#TR
型号: LTC1063MJ8#TR
厂家: Linear    Linear
描述:

IC SWITCHED CAPACITOR FILTER, BUTTERWORTH, LOWPASS, CDIP8, 0.300 INCH, CERAMIC, DIP-8, Active Filter

时钟
文件: 总16页 (文件大小:271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1063  
DC Accurate, Clock-Tunable  
5th Order Butterworth  
Lowpass Filter  
U
DESCRIPTIO  
FEATURES  
The LTC®1063 is the first monolithic filter providing both  
clock-tunability, low DC output offset and over 12-bit DC  
accuracy. The frequency response of the LTC1063 closely  
approximates a 5th order Butterworth polynomial. With  
appropriate PCB layout techniques the output DC offset is  
typically 1mV and is constant over a wide range of clock  
frequencies. With ±5V supplies and ±4V input voltage  
range, the CMR of the device is 80dB.  
Clock-Tunable Cutoff Frequency  
1mV DC Offset (Typical)  
80dB CMRR (Typical)  
Internal or External Clock  
50µVRMS Clock Feedthrough  
100:1 Clock-to-Cutoff Frequency Ratio  
95µVRMS Total Wideband Noise  
0.01% THD at 2VRMS Output Level  
50kHz Maximum Cutoff Frequency  
The filter cutoff frequency is controlled either by an inter-  
nalorexternalclock. Theclock-to-cutofffrequencyratiois  
100:1. The on-board clock is power supply independent,  
and it is programmed via an external RC. The 50µVRMS  
clock feedthrough is considerably reduced over existing  
monolithic filters.  
Cascadable for Faster Roll-Off  
Operates from ±2.375 to ±8V Power Supplies  
Self-Clocking with 1 RC  
Available in 8-Pin DIP and 16-Pin SO Wide Packages  
U
APPLICATIO S  
The LTC1063 wideband noise is 95µVRMS, and it can  
process large AC input signals with low distortion. With  
±7.5V supplies, for instance, the filter handles up to  
4VRMS (92dB S/N ratio) while the standard 1kHz THD is  
below 0.02%; 80dB dynamic ranges (S/N +THD) is ob-  
Audio  
Strain Gauge Amplifiers  
Anti-Aliasing Filters  
Low Level Filtering  
Digital Voltmeters  
tained with input levels between 1VRMS and 2.3VRMS  
.
60Hz Lowpass Filters  
The LTC1063 is available in 8-pin miniDIP and 16-pin SO  
wide packages. For a linear phase response, see LTC1065  
data sheet.  
Smoothing Filters  
Reconstruction Filters  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Frequency Response  
10  
2.5kHz 5th Order Lowpass Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1
2
3
4
8
7
6
5
V
**  
IN  
V
OUT  
LTC1063  
*19.1k  
5V  
0.1µF  
–5V  
200pF*  
0.1µF  
*
SELF-CLOCKING SCHEME  
+
** IF THE INPUT VOLTAGE CAN EXCEED V ,  
CONNECT A SIGNAL DIODE BETWEEN PIN 1 AND V .  
1
10  
100  
+
FREQUENCY (kHz)  
1063 TA01  
1063 TA02  
1063fa  
1
LTC1063  
W W U W  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Total Supply Voltage (V+ to V) .......................... 16.5V  
Power Dissipation............................................. 400mW  
Voltage at Any Input .... (V– 0.3V) VIN (V+ + 0.3V)  
Burn-In Voltage ...................................................... 16V  
Operating Temperature Range ............... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W U  
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
NUMBER  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
ADJ  
OS  
V
1
2
3
4
8
7
6
5
V
V
V
ADJ  
OS  
IN  
V
IN  
NC  
LTC1063CN8  
LTC1063CSW  
GND  
OUT  
+
GND  
V
OUT  
V
NC  
NC  
CLK OUT  
CLK IN  
+
V
V
NC  
NC  
NC  
NC  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
T
JMAX  
= 100°C, θ = 110°C/W (N)  
JA  
CLK OUT  
CLK IN  
J8 PACKAGE  
8-LEAD CERAMIC DIP  
LTC1063CJ8  
LTC1063MJ8  
SW PACKAGE  
16-LEAD PLASTIC SO WIDE  
= 100°C, θ = 85°C/W  
T
JMAX  
= 150°C, θ = 100°C/W (J)  
JA  
T
JMAX  
JA  
OBSOLETE PACKAGE  
Consider the N8 Package for Alternate Source  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at V = ±5V, f  
= 500kHz, f = 5kHz, R = 10k, T = 25°C, unless otherwise specified.  
S
CLK  
C
L
A
PARAMETER  
Clock-to-Cutoff Frequency Ratio (f /f )  
CONDITIONS  
±2.375V V ±7.5V  
MIN  
TYP  
MAX  
UNITS  
100± 0.5  
CLK  
C
S
Maximum Clock Frequency (Note 2)  
V = ±7.5V  
5
4
3
MHz  
MHz  
MHz  
S
V = ±5V  
S
V = ±2.5V  
S
Minimum Clock Frequency (Note 3)  
Input Frequency Range  
Filter Gain  
±2.5V V ±7.5V, T < 85°C  
30  
Hz  
S
A
0
0.9f  
CLK  
V = ±5V, f  
= 25kHz, f = 250Hz  
C
S
CLK  
f
= 250Hz  
– 3.5  
– 3.6  
– 3.0  
– 3.0  
2.5  
– 2.4  
dB  
dB  
IN  
V = ±5V, f  
IN  
= 500kHz, f = 5kHz  
C
S
CLK  
f
= 100Hz  
0
dB  
f
= 1kHz = 0.2f  
– 0.06  
– 0.01  
– 0.01  
0.04  
dB  
dB  
IN  
C
– 0.075  
0.055  
f
f
= 2.5kHz = 0.5f  
– 0.09  
– 0.14  
0.16  
0.16  
0.41  
0.46  
dB  
dB  
IN  
C
= 4kHz = 0.8f  
– 0.5  
– 0.6  
– 0.2  
– 0.2  
0.1  
0.2  
dB  
dB  
IN  
C
1063fa  
2
LTC1063  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at V = ±5V, f  
= 500kHz, f = 5kHz, R = 10k, T = 25°C, unless otherwise specified.  
S
CLK  
C
L
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
= 5kHz = f  
– 3.5  
– 3.6  
– 3.0  
– 3.0  
2.5  
2.4  
dB  
dB  
IN  
IN  
C
f
= 20kHz = 4f  
– 57.5  
– 57.0  
– 60.0  
60.0  
62.0  
62.5  
dB  
dB  
C
Filter Gain  
V = ±2.375V, f  
= 500kHz, f = 5kHz  
CLK C  
S
f
IN  
f
IN  
f
IN  
f
IN  
= 1kHz  
= 2.5kHz  
= 4kHz  
= 5kHz  
– 0.066  
– 0.081  
0.004  
0.004  
0.074  
0.089  
dB  
dB  
– 0.24  
– 0.29  
0.16  
0.16  
0.56  
0.61  
dB  
dB  
– 0.6  
– 0.7  
– 0.2  
– 0.2  
0.2  
0.3  
dB  
dB  
3.5  
3.6  
– 3.0  
– 3.0  
– 2.5  
– 2.4  
dB  
dB  
Clock Feedthrough  
±2.375 V ± 7.5V  
50  
µV  
µV  
S
RMS  
Wideband Noise (Note 4)  
THD + Wideband Noise (Note 5)  
±2.375 V ± 7.5V, 1Hz < f < f  
100  
–80  
S
CLK  
RMS  
V = ±7.5V, f = 20kHz, f = 1kHz,  
dB  
S
C
IN  
1V  
RMS  
V 2.3V  
IN RMS  
Filter Output ± DC Swing  
V = ±2.375V  
1.6/2.0  
1.4/1.8  
1.7/2.2  
4.3/4.8  
6.8/7.3  
V
V
S
V = ±5V  
S
4.0/4.5  
3.8/4.3  
V
V
V = ±7.5V  
S
6.5/7.0  
6.3/6.8  
V
V
Input Bias Current  
10  
nA  
Dynamic Input Impedance  
Output DC Offset (Note 6)  
800  
MΩ  
V = ±2.375V  
S
V = ±7.5V  
S
2
0
– 4  
mV  
mV  
mV  
S
V = ±5V  
±5  
Output DC Offset Drift  
V = ±2.375V  
S
V = ±7.5V  
S
10  
20  
25  
µV/°C  
µV/°C  
µV/°C  
S
V = ±5V  
Self-Clocking Frequency (f  
)
R (Pin 4 to 5) = 20k, C (Pin 5 to GND) = 470pF  
V = ±2.375V  
OSC  
99  
95  
105  
103  
112  
114  
kHz  
kHz  
S
V = ±5V  
S
102  
98  
108  
106  
114  
114  
kHz  
kHz  
V = ±7.5V  
S
104  
101  
110  
109  
116  
116  
kHz  
kHz  
External CLK Pin Logic Thresholds  
V = ±2.375V  
S
Min Logical “1”  
Max Logical “0”  
1.43  
0.47  
V
V
V = ±5V  
S
Min Logical “1”  
Max Logical “0”  
3
1
V
V
V = ±7.5V  
S
Min Logical “1”  
Max Logical “0”  
4.5  
1.5  
V
V
1063fa  
3
LTC1063  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at V = ±5V, f  
= 500kHz, f = 5kHz, R = 10k, T = 25°C, unless otherwise specified.  
S
CLK  
C
L
A
PARAMETER  
CONDITIONS  
V = ±2.375V, f  
MIN  
TYP  
MAX  
UNITS  
Power Supply Current  
= 500kHz  
CLK  
2.7  
4.0  
5.5  
mA  
mA  
S
V = ±5V, f  
= 500kHz  
5.5  
7.0  
8
11  
mA  
mA  
S
CLK  
V = ±7.5V, f  
S
= 500kHz  
CLK  
11  
14.5  
mA  
mA  
Note 4: The wideband noise specification does not include the clock  
feedthrough.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 5: To properly evaluate the filter’s harmonic distortion an inverting  
output buffer is recommended as shown in the Test Circuit. An output  
buffer is not necessarily needed when measuring output DC offset or  
wideband noise.  
Note 2: The maximum clock frequency criterion is arbitrarily defined as:  
The frequency at which the filter AC response exhibits 1dB of gain  
peaking.  
Note 3: At limited temperature ranges (i.e., T 50°C) the minimum clock  
A
Note 6: The output DC offset is optimized for ±5V supply. The output DC  
offset shifts when the power supplies change; however this phenomenon  
is repeatable and predictable.  
frequency can be as low as 10Hz. The minimum clock frequency is  
arbitrarily defined as: the clock frequency at which the output DC offset  
changes by more than 1mV.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Offset vs Clock,  
Low Clock Rates  
Output Offset vs Clock,  
Medium Clock Rates  
Self-Clocking Frequency vs R  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
5
4
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= ±5V  
S
V
= ± 7.5V  
LTC1063  
S
3
5
4
A: T = 25°C  
B: T = 85°C  
A
A
2
R
C
C = 200pF  
1
f
1/RC  
OSC  
V
= ±5V  
S
0
–1  
–2  
–3  
–4  
–5  
V
= ±2.5V  
S
B
A
0
100  
300  
500  
0
500  
EXTERNAL CLOCK FREQUENCY (kHz)  
1000  
110  
EXTERNAL CLOCK FREQUENCY (Hz)  
210  
10  
FREQUENCY (kHz)  
1063 G01  
1063 G03  
1063 G02  
1063fa  
4
LTC1063  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain vs Frequency; V = ±2.5V  
Gain vs Frequency; V = ±5V  
Gain vs Frequency; V = ±7.5V  
S
S
S
10  
0
10  
0
10  
0
D
E
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
A
B
C
A
A
B
C
B C  
D
A. f  
B. f  
C. f  
D. f  
= 1MHz  
= 2MHz  
= 3MHz  
= 4MHz  
= 5MHz  
CLK  
CLK  
CLK  
CLK  
CLK  
A. f  
CLK  
B. f  
CLK  
C. f  
CLK  
D. f  
CLK  
= 1MHz  
= 2MHz  
= 3MHz  
= 4MHz  
A. f  
B. f  
C. f  
= 0.5MHz  
= 1MHz  
= 2MHz  
CLK  
CLK  
CLK  
E. f  
V
A
= 2.5V  
RMS  
V
A
= 1.5V  
RMS  
V
A
= 750mV  
RMS  
IN  
IN  
IN  
T
= 25°C  
T
= 25°C  
T
= 25°C  
1
10  
INPUT FREQUENCY (kHz)  
100 200  
1
10  
INPUT FREQUENCY (kHz)  
100 200  
1
10  
INPUT FREQUENCY (kHz)  
100 200  
1063 G06  
1063 G04  
1063 G05  
THD vs Frequency;  
S
THD + Noise vs Input Voltage;  
S
THD + Noise vs Input Voltage;  
S
V = Single 5V  
V = Single 5V  
V = ±5V  
1
0.1  
1
0.1  
1
0.1  
f
= 1kHz, T = 25°C  
A
V
f
= 0.75V  
RMS  
IN  
f
= 1kHz, T = 25°C  
A
IN  
= 5kHz, f  
IN  
5 REPRESENTATIVE UNITS  
= 500kHz  
5 REPRESENTATIVE UNITS  
C
CLK  
S/N = 78dB, T = 25°C  
A
5 REPRESENTATIVE UNITS  
B
B
A
A
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
A. f = 5kHz, f  
C
= 0.5MHz  
= 1MHz  
CLK  
A. f = 10kHz, f  
C
= 1MHz  
= 2MHz  
C
CLK  
CLK  
CLK  
B. f = 10kHz, f  
B. f = 20kHz, f  
C
0.1  
1
5
1
2
FREQUENCY (kHz)  
5
3
4
0.1  
1
5
INPUT (V  
)
INPUT (V  
)
RMS  
RMS  
1063 G07  
1063 G08  
1063 G09  
THD + Noise vs Input Voltage;  
S
THD vs Frequency;  
S
V = ±7.5V  
THD vs Frequency; V = ±5V  
V = ±7.5V  
S
1
0.1  
1
0.1  
1
0.1  
V
f
= 1.5V  
V
C
= 2.5V  
IN RMS  
f
= 1kHz, T = 25°C  
A
IN  
C
RMS  
CLK  
IN  
= 10kHz, f  
= 1MHz  
f
= 10kHz, f = 1MHz  
CLK  
5 REPRESENTATIVE UNITS  
S/N = 83.5dB, T = 25°C  
S/N = 88dB, T = 25°C  
A
A
5 REPRESENTATIVE UNITS  
5 REPRESENTATIVE UNITS  
B
A
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
A. f = 10kHz, f  
C
= 1MHz  
= 2MHz  
C
CLK  
CLK  
B. f = 20kHz, f  
1
10  
1
10  
5
5
0.1  
1
5
FREQUENCY (kHz)  
FREQUENCY (kHz)  
INPUT (V  
)
RMS  
1063 G10  
1063 G12  
1063 G11  
1063fa  
5
LTC1063  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Passband Gain and Phase  
Phase Matching  
vs Input Frequency  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
1
0
±2.5V V ±7.5V, T = 25°C  
V
V
= ± 7.5V  
S
A
S
= 1V  
IN  
RMS  
= 2MHz  
–20  
f
f
CLK  
C
= 20kHz  
–60  
–1  
–2  
–3  
–4  
–5  
–6  
A
A
B
B
–100  
–140  
–180  
–220  
–260  
PHASE  
PHASE  
f
C
=100kHz  
f
C
=1MHz  
CLK  
f =1kHz  
CLK  
f =10kHz  
0
2
6
8
12 14 16 18 20 22 24  
4
10  
100  
1k  
10k  
100k  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (Hz)  
1063 G14  
1063 G13  
Power Supply Current vs  
Power Supply Voltage  
Transient Response  
10  
9
8
7
6
5
4
3
2
1
0
–40°C  
25°C  
85°C  
HORIZONTAL: 0.1ms/DIV, VERTICAL: 2V/DIV  
S = ±5V, fC = 10kHz, VIN = 1kHz ±3VP  
SQUARE WAVE  
V
0
2
4
6
8
12 14 16  
20  
18  
10  
1063 G16  
TOTAL POWER SUPPLY VOLTAGE (V)  
1063 G15  
1063fa  
6
LTC1063  
U
U
U
PI FU CTIO S  
DC level. The DC gain from the VOS adjust pin to the filter  
output pin equals two.  
Power Supply Pins (Pins 6, 3, N Package)  
The positive and negative supply pin should be bypassed  
withahighquality0.1µFceramiccapacitor.Inapplications  
where the clock pin (5) is externally swept to provide  
several cutoff frequencies, the output DC offset variation  
is minimized by connecting an additional 1µF solid tanta-  
lum capacitor in parallel with the 0.1µF disc ceramic. This  
technique was used to generate the graphs of the output  
DC offset variation versus clock; they are illustrated in the  
Typical Performance Characteristics section.  
Any DC voltage applied to this pin will reflect at the output  
pin of the filter multiplied by two.  
If the VOS adjust pin is not used, it should be shorted to the  
groundpin.TheDCbiascurrentflowingintotheVOS adjust  
pin is typically 10pA.  
Pin 8 should always be connected to an AC ground; AC  
signals applied to this pin will degrade the filter response.  
Whenthepowersupplyvoltageexceeds ±7V, andwhenV–  
is applied before V+, if V+ is allowed to go below ground,  
connect a signal diode between the positive supply pin and  
ground to prevent latch-up (see Typical Applications).  
Input Pin (Pin 1, N Package)  
Pin 1 is the filter input and it is connected to an internal  
switched-capacitor resistor. If the input pin is left floating,  
the filter output will saturate. The DC input impedance of  
pin 1 is very high; with ±5V supplies and 1MHz clock, the  
DC input impedance is typically 1G. A resistor, RIN, in  
series, with the input pin will not alter the value of the  
filter’s DC output offset (Figure 1). RIN should, however,  
be limited to a maximum value (Table 1), otherwise the  
filter’s passband flatness will be affected. Refer to the  
Applications Information section for more details.  
Ground Pin (Pin 2, N Package)  
The ground pin merges the internal analog and digital  
ground paths. The potential of the ground pin is the  
reference for the internal switched-capacitor resistors,  
and the reference for the external clock. The positive input  
of the internal op amp is also tied to the ground pin.  
For dual supply operation, the ground pin should be  
connected to a high quality AC and DC ground. A ground  
plane, if possible, should be used. A poor ground will  
degrade DC offset and it will increase clock feedthrough,  
noise and distortion.  
R
IN  
1
2
3
4
8
7
6
5
V
IN  
V
V
OUT  
LTC1063  
+
V
f
CLK  
1063 F01  
A small amount of AC current flows out of the ground pin  
whether or not the internal oscillator is used. The fre-  
quency of the ground current equals the frequency of the  
internalorexternalclock. Theaveragevalueofthiscurrent  
is approximately 55µA, 110µA, 170µA for ±2.5V, ±5V and  
±7.5V supplies respectively.  
Figure 1.  
Table 1. R  
vs Clock and Power Supply  
IN(MAX)  
R
IN(MAX)  
V = ±7.5V  
V = ± 5V  
S
V = ±2.5V  
S
S
f
f
= 4MHz  
2.2k  
3.4k  
CLK  
CLK  
For single supply operation, the ground pin should be  
preferablybiasedathalfsupply(seeTypicalApplications).  
= 3MHz  
2.9k  
f
f
f
f
= 2MHz  
= 1MHz  
= 500kHz  
= 100kHz  
5.5k  
11k  
24k  
5k  
11k  
23k  
120k  
2.7k  
9.2k  
21k  
CLK  
CLK  
CLK  
CLK  
VOS Adjust Pin (Pin 8, N Package)  
120k  
110k  
The VOS adjust pin can be used to trim any small amount  
ofoutputDCoffsetvoltageortointroduceadesiredoutput  
1063fa  
7
LTC1063  
U
U
U
PI FU CTIO S  
Output Pin (Pin 7, N Package)  
Clock Output Pin (Pin 4, N Package)  
Pin 7 is the filter output. This pin can typically source over  
20mA and sink 2mA. Pin 7 should not drive long coax  
cables, otherwise the filter’s total harmonic distortion will  
degrade.  
Any external clock applied to the clock input pin appears  
at the clock output pin. The duty cycle of the clock output  
equals the duty cycle of the external clock applied to the  
clock input pin. The clock output pin swings to the power  
supply rails. When the LTC1063 is used in a self-clocking  
mode, the clock of the internal oscillator appears at the  
clock output pin with a 30% duty cycle. The clock output  
pin can be used to drive other LTC1063s or other ICs. The  
maximum capacitance, CL(MAX), the clock output pin can  
drive is illustrated in Figure 2.  
Clock Input Pin (Pin 5, N Package)  
An external clock when applied to pin 5 tunes the filter  
cutoff frequency. The clock-to-cutoff frequency ratio is  
100:1. The high (VHIGH) and low (VLOW) clock logic  
threshold levels are illustrated in Table 2. Square wave  
clockswithdutycyclesbetween30%and50%arestrongly  
recommended. Sinewave clocks are not recommended.  
200  
T
= 25°C  
A
180  
160  
140  
120  
100  
80  
V
= ±2.5V  
S
Table 2. Clock Pin Threshold Levels  
POWER SUPPLY  
V = ±2.5V  
V = ±5V  
S
V
1.5V  
3V  
V
LOW  
0.5V  
1V  
HIGH  
S
V
= ±5V  
S
V
= ±7.5V  
S
V = ±7.5V  
4.5V  
4.8V  
4V  
1.5V  
1.6V  
3V  
S
60  
V = ±8V  
S
V = 5V, 0V  
S
40  
V = 12, 0V  
V =15V, 0V  
S
9.6V  
12V  
7.2V  
9V  
S
20  
0
1
3
6
9 10  
8
2
4
5
7
CLOCK FREQUENCY (MHz)  
1063 F02  
Figure 2. Maximum Load Capacitance at the Clock Output Pin  
TEST CIRCUIT  
+
V
LT1022  
50k  
OUT  
1
8
7
6
5
V
IN  
50k  
2
LTC1063  
3
+
V
V
20pF  
0.1µF  
4
0.1µF  
CLOCK IN  
1063 TC01  
Figure 3. Test Circuit for THD  
1063fa  
8
LTC1063  
W U U  
APPLICATIO S I FOR ATIO  
U
Note a 4pF parasitic capacitance is assumed in parallel  
with the external 200pF timing capacitor. Figure 5 shows  
the clock frequency variation from – 40°C to 85°C. The  
200kHzclockofExample1willchangeby1.75%at85°C.  
Self-Clocking Operation  
The LTC1063 features an internal oscillator which can be  
tunedviaanexternalRC.TheLTC1063’sinternaloscillator  
is primarily intended for generation of clock frequencies  
below 500kHz. The first curve of the Typical Performance  
Characteristics section shows how to quickly choose the  
value of the RC for a given frequency. More precisely, the  
frequency of the internal oscillator is equal to:  
4
C = 200pF  
T
A
= –40°C  
3
2
V
S
= ±5V  
V
S
= ±2.5V  
1
V
S
= ±7.5V  
fCLK = K/RC  
0
T
= 85°C  
For clock frequencies (fCLK) below 100kHz, K equals 1.07.  
Figure 4b shows the variation of the parameter K versus  
clock frequency and power supply. First choose the de-  
sired clock frequency, (fCLK < 500kHz), then through  
Figure 4b pick the right value of K, setC = 200pF and solve  
for R.  
A
–1  
–2  
–3  
–4  
V
S
= ±7.5V  
V
= ±5V  
S
V
= ±2.5V  
S
0
100  
200  
300  
400  
500  
CLOCK FREQUENCY (kHz)  
1063 F05  
Example 1: fCUTOFF = 2kHz, fCLK = 200kHz, VS = ±5V,  
TA = 25°C, K = 1.0, C = 200pF  
Figure 5. f  
vs Temperature  
CLK  
then,  
R = (1.0)/(200kHz × 204pF) = 24.5k.  
Foraverylimitedtemperaturerange,theinternaloscillator  
of the LTC1063 can be used to generate clock frequencies  
above 500kHz (Figures 6 and 7). The data of Figure 6 is  
derived from several devices. For a given external (RC)  
value,theobserveddevice-to-deviceclockfrequencyvaria-  
tion was ±1% (VS = ±5V), and ±1.25% for VS = ±2.5V.  
1
2
3
4
8
7
6
5
V
IN  
V
V
OUT  
+
LTC1063  
V
Example 2: fCUTOFF = 20kHz, fCLK = 2MHz, VS = ±7.5V,  
TA = 25°C, C = 10pF  
R
C
from Figure 6, K = 0.575,  
1063 F04a  
Figure 4a.  
and,  
R = (0.575)/(2MHz × 14pF) = 20.5k.  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
f
= K/RC  
F
= K/RC  
CLK  
C = 10pF  
A
CLK  
C = 200pF  
= 25°C  
T
= 25°C  
T
A
V
= ±7.5V  
S
V
= ±7.5V  
= ±2.5V  
300  
S
V
= ±5V  
V
S
= ±5V  
S
V
S
V
S
= ±2.5V  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
100  
400  
500  
200  
CLOCK FREQUENCY (MHz)  
INTERNAL CLOCK FREQUENCY (kHz)  
1063 F06  
1063 F04b  
Figure 4b. f  
vs K  
Figure 6. f  
vs K  
CLK  
CLK  
1063fa  
9
LTC1063  
APPLICATIO S I FOR ATIO  
W U U  
U
0.80  
Common Mode Rejection Ratio  
f
= K/RC  
CLK  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
C = 10pF  
= 70°C  
T
Thecommonmoderejectionratioisdefinedasthechange  
oftheoutputDCoffsetwithrespecttotheDCchangeofthe  
input voltage applied to the filter.  
A
V
= ±7.5V  
S
CMRR = 20log (VOS OUT/VIN)(dB)  
V
= ±5V  
S
Table 3 illustrates the common mode rejection for three  
power supplies and three temperatures. The common  
mode rejection improves if the output offset is adjusted to  
approximately 0V. The output offset can be adjusted via  
pin 8 (N package) (see Typical Applications).  
V
= ±2.5V  
S
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
CLOCK FREQUENCY (MHz)  
1063 F07  
Figure 7. f  
vs K  
Table 3. CMRR Data, f  
= 100kHz  
CLK  
CLK  
25°C  
OS  
A 4pF parasitic capacitance is assumed in parallel with the  
external 10pF capacitor. A ±1% clock frequency variation  
from device to device can be expected. The 2MHz clock  
frequencydesignedabovewilltypicallydriftto1.74MHzat  
70°C (Figure 7).  
POWER SUPPLY V  
40°C  
76dB  
74dB  
70dB  
25°C  
85°C  
76dB  
75dB  
74dB  
(V Nulled)  
IN  
±2.5V  
±5V  
±1.8V  
± 4V  
78dB  
79dB  
72dB  
85dB  
82dB  
76dB  
±7.5V  
± 6V  
The above data is valid for clock frequencies up to 800kHz, 900kHz, 1MHz, for  
V = ± 2.5V, ±5V, ±7.5V respectively.  
The internal clock of the LTC1063 can be overridden by an  
external clock provided that the external clock source can  
drive the timing capacitor, C, which is connected from the  
clock input pin to ground.  
S
Clock Feedthrough  
ClockfeedthroughisdefinedastheRMSvalueoftheclock  
frequency and its harmonics which are present at the  
filter’s output pin. The clock feedthrough is tested with the  
filter input grounded and it depends on the quality of the  
PC board layout and power supply decoupling. Any para-  
sitic switching transients, during the rise and fall of the  
incoming clock, are not part of the clock feedthrough  
specifications; their amplitude strongly depends on scope  
probing techniques as well as ground quality and power  
supply bypassing. For a power supply VS = ±5V, the clock  
feedthrough of the LTC1063 is 50µVRMS; for VS = ±7.5V,  
the clock feedthrough approaches 75µVRMS. Figure 8  
shows a typical scope photo of the LTC1063 output pin  
when the input pin is grounded. The filter cutoff frequency  
was 1kHz, while scope bandwidth was chosen to be 1MHz  
such as switching transients above the 100kHz clock  
frequency will show.  
Output Offset  
The DC output offset of the LTC1063 is trimmed to  
typically less than ±1mV . The trimming is done at VS =  
±5V.ToobtainoptimumDCoffsetperformance,appropri-  
ate PC layout techniques should be used and the filter IC  
should be soldered to the PC board. A socket will degrade  
theoutputDCoffsetbytypically1mV.TheoutputDCoffset  
is sensitive to the coupling of the clock output pin 4 (N  
package) to the negative power supply pin 3 (N package).  
The negative supply pin should be well decoupled. When  
the surface mount package is used, all the unused pins  
should be grounded.  
When the power supplies are fixed, the output DC offset  
should not change by more than ±100µV over 10Hz to  
1MHz clock frequency variation. When the filter clock  
frequency is fixed, the output DC offset will typically  
change by 4mV (2mV) when the power supply varies  
from ±5V to ± 7.5V (±2.5V). See Typical Performance  
Characteristics.  
Wideband Noise  
The wideband noise of the filter is the RMS value of the  
device’s output noise spectral density. The wideband  
noise data is used to determine the operating signal-to-  
1063fa  
10  
LTC1063  
W U U  
APPLICATIO S I FOR ATIO  
U
noise ratio at a given distortion level. The wideband noise  
(µVRMS) is nearly independent of the value of the clock  
frequency and excludes the clock feedthrough. The  
LTC1063’s typical wideband noise is 95µVRMS. Figure 9  
shows the same scope photo as Figure 8 but with a more  
sensitive vertical scale: The clock feedthrough is imbed-  
ded in the filter’s wideband noise. The peak-to-peak  
wideband noise of the filter can be clearly seen; it is  
approximately 500µVP-P. Note that 500µVP-P equals the  
95µVRMS wideband noise of the part, multiplied by a crest  
factor or 5.25.  
Aliasing  
Aliasingisaninherentphenomenonofsampleddatafilters  
and it primarily occurs when the frequency of an input  
signal approaches the sampling frequency. For the  
LTC1063, an input signal whose frequency is in the range  
of fCLK ±6% will generate an alias signal into the filter’s  
passband and stopband. Table 4 shows details.  
Example: LTC1063, fCLK = 20kHz, fC = 200kHz,  
fIN = (19.6kHz, 100mVRMS  
)
fALIAS = (400Hz, 3.16mVRMS  
)
An input RC can be used to attenuate incoming signals  
closetothefilterclockfrequency(Figure10).AButterworth  
passband response will be maintained if the value of the  
input resistor follows Table 1.  
Table 4. Aliasing Data  
OUTPUT AMPLITUDE  
REFERENCED TO  
INPUT SIGNAL  
INPUT FREQUENCY  
OUTPUT FREQUENCY  
0.9995f  
0.995 f  
0.0005 f  
0.005 f  
0
0
dB  
dB  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
0.99  
f
0.01  
f
– 3 dB  
10.2 dB  
– 17.7 dB  
– 24.3 dB  
– 30 dB  
– 40 dB  
– 48 dB  
– 54.5 dB  
– 60.4 dB  
– 65.5 dB  
– 70.16 dB  
– 78.25 dB  
– 85.3 dB  
100.3 dB  
2µs/DIV  
0.9875f  
0.985 f  
0.9825f  
0.0125 f  
0.015 f  
0.0175 f  
1063 F08  
fCLK = 100kHz, fC = 1kHz, VS = ±5V, 1MHz SCOPE BW  
Figure 8. LTC1063 Output Clock Feedthrough + Noise  
0.98  
0.975 f  
0.97  
0.965 f  
0.96  
0.955 f  
f
0.02  
0.025 f  
0.03  
0.035 f  
0.04  
0.045 f  
f
f
f
f
f
0.95  
0.94  
0.93  
0.9  
f
f
f
f
0.05  
0.06  
0.07  
0.1  
f
f
f
f
R
1
2
3
4
8
7
6
5
V
IN  
C
V
OUT  
LTC1063  
+
V
2µs/DIV  
V
1063 F09  
fCLK = 100kHz, fC = 1kHz, VS = ±5V, 1MHz SCOPE BW  
0.1µF  
0.1µF  
f
CLK  
f
1
2πRC  
f
CLK  
10  
CLK  
20  
Figure 9. LTC1063 Output Clock Feedthrough + Noise  
1063 F10  
Figure 10. Adding an Input Anti-Aliasing RC  
1063fa  
11  
LTC1063  
W U U  
U
APPLICATIO S I FOR ATIO  
Group Delay  
100  
90  
80  
70  
60  
50  
40  
30  
20  
(A) LTC1063  
The group delay of the LTC1063 closely approximates the  
delay of an ideal 5-pole Butterworth lowpass filter (Figure  
11, Curve A). To linearize the group delay of the LTC1063  
(Figure 11, Curve B), use an input resistor about six times  
higher than the maximum value of RIN, shown in Table 1.  
The passband response of the group delay corrected filter  
approximates a 5-pole Bessel response while its transi-  
tion band rolls off like a Butterworth.  
BUTTERWORTH  
(B) GROUP  
DELAY  
CORRECTED  
0
2
3
4
5
6
8
10  
1
7
9
INPUT FREQUENCY (kHz)  
1063 F11  
Figure 11. Group Delay  
U
TYPICAL APPLICATIO S  
7.5V  
10k  
Adjusting V  
±7.5 Supply Operation  
for  
Single 5V Supply Operation (f = 3.4kHz)  
OS(OUT)  
C
5V  
1
2
3
4
8
7
6
5
10k  
V
IN  
4.99k  
4.53k  
LT1009  
V
OUT  
1
2
3
4
8
7
6
5
0.1µF  
+
LTC1063  
13k  
1µF  
TANT  
V
IN  
2.5mV  
5V  
0.1µF  
V
OUT  
+
LTC1063  
V
V
7.5V  
–7.5V  
200pF  
+
f
CLK  
0.1µF  
1µF  
TANT  
0.1µF  
*
1063 TA03  
* OPTIONAL, 1N4148  
1063 TA05  
Cascading Two LTC1063s for Steeper Roll-Off  
Sharing Clock for Multichannel Applications  
1
2
3
4
8
7
6
5
V
*
IN  
1
2
3
4
8
7
6
5
V
*
IN  
LTC1063  
V
OUT  
5V  
LTC1063  
–5V  
0.1µF  
5V  
–5V  
0.1µF  
0.1µF  
R
C
0.1µF  
R
C
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
*
IN  
V
OUT  
LTC1063  
V
OUT  
5V  
LTC1063  
–5V  
5V  
–5V  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
f
(1/RC)(1/100)  
C
WIDEBAND NOISE = 140µV  
RMS  
ATTENUATION AT f = 2f = 60dB  
C
+
+
* IF THE INPUT VOLTAGE CAN EXCEED V ,  
CONNECT A SIGNAL DIODE BETWEEN PIN 1 AND V . 1063 TA06  
* IF THE INPUT VOLTAGE CAN EXCEED V ,  
+
+
1063 TA04  
CONNECT A SIGNAL DIODE BETWEEN PIN 1 AND V .  
1063fa  
12  
LTC1063  
U
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
6
5
4
8
7
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.025  
.220 – .310  
(5.588 – 7.874)  
.045 – .068  
(0.635)  
RAD TYP  
(1.143 – 1.650)  
FULL LEAD  
OPTION  
1
2
3
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.015 – .060  
(0.381 – 1.524)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
.014 – .026  
(0.360 – 0.660)  
.100  
(2.54)  
BSC  
J8 0801  
OBSOLETE PACKAGE  
1063fa  
13  
LTC1063  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.400*  
(10.160)  
MAX  
8
7
6
5
4
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
.130 ± .005  
.300 – .325  
.045 – .065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
.325  
–.015  
.018 ± .003  
(0.457 ± 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
1063fa  
14  
LTC1063  
U
PACKAGE DESCRIPTIO  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
TYP  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
1063fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1063  
TYPICAL APPLICATIO S  
U
Low Noise DC Accurate Clock-Tunable Notch  
R1  
10k ± 0.1%  
+
1
2
3
4
8
7
6
5
V
R2  
IN  
LT1007  
9.53k ± 0.1%  
LTC1063  
+
V
5V  
–5V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
+
f
CLK  
1µF  
TANT  
0.1µF  
0.1µF  
81Hz  
f
CLK  
119.04  
• f  
=
NOTCH  
• NOTCH DEPTH > 50dB  
f
f
= 100kHz  
CLK  
= 840Hz  
(LTC1063)V  
2
RMS  
OS  
• OUPUT DC OFFSET =  
500µV  
n
• OUTPUT NOISE = 50µV  
NOTCH  
f(–20dB)BW  
215  
340  
465  
590  
715  
1215 1340 1465  
840  
965 1090  
INPUT FREQUENCY (Hz)  
f
10.4  
1
=
1063 TA07  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1065  
Clock-Tunable 5th Order Bessel Lowpass Filter  
650kHz Linear Phase Lowpass Filter  
1mV Offset, 80dB CMR  
LTC1565-31  
LTC1566-1  
LT1567  
Continuous Time, Fully Differential In/Out  
Continuous Time, Fully Differential In/Out  
Single Ended to Differential Conv  
Low Noise, 2.3MHz Lowpass Filter  
Low Noise Op Amp and Inverter Building Block  
Low Noise, 10MHz 4th Order Building Block  
Linear Phase, DC Accurate, 10th Order Lowpass  
Linear Phase, DC Accurate, 10th Order Lowpass  
Low Noise Differential Amp and 10MHz Lowpass  
Low Noise Differential Amp and 20MHz Lowpass  
LT1568  
Lowpass or Bandpass, Differential Outputs  
LTC1569-6  
LTC1569-7  
LT6600-2.5  
LT6600-10  
Resistor Set Clock, F < 64kHz  
C
Resistor Set Clock, F < 300kHz  
C
55µV  
86µV  
Noise 100kHz-10MHz 3V Supply  
Noise 100kHz-20MHz 3V Supply  
RMS  
RMS  
1063fa  
LT/LT 0905 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 1993  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY