LTC1068IG-25 [Linear]

Clock-Tunable, Quad Second Order, Filter Building Blocks; 时钟可调,四阶,过滤积木
LTC1068IG-25
型号: LTC1068IG-25
厂家: Linear    Linear
描述:

Clock-Tunable, Quad Second Order, Filter Building Blocks
时钟可调,四阶,过滤积木

有源滤波器 过滤器 光电二极管 LTE 时钟
文件: 总28页 (文件大小:538K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1068 Series  
Clock-Tunable, Quad  
Second Order, Filter Building Blocks  
U
DESCRIPTIO  
EATURE  
Four Identical 2nd Order Filter Sections in an  
S
F
The LTC®1068 product family consists of four monolithic  
clock-tunablefilterbuildingblocks.Eachproductcontains  
fourmatched,lownoise,highaccuracy2ndorderswitched-  
capacitorfiltersections. Anexternalclocktunesthecenter  
frequency of each 2nd order filter section. The LTC1068  
products differ only in their clock-to-center frequency  
ratio. The clock-to-center frequency ratio is set to 200:1  
(LTC1068-200), 100:1 (LTC1068), 50:1 (LTC1068-50) or  
25:1 (LTC1068-25). External resistors can modify the  
clock-to-center frequency ratio. High performance, quad  
2nd order, dual 4th order or 8th order filters can be  
designed with an LTC1068 family product. Designing  
filters with an LTC1068 product is fully supported by  
FilterCADTM filter design software for Windows®.  
SSOP Package  
2nd Order Section Center Frequency Error:  
±
0.3% Typical and  
±0.8% Maximum  
Low Noise per 2nd Order Section, Q 5:  
LTC1068-200 50µV  
LTC1068-50 75µV  
, LTC1068 50µV  
RMS RMS  
, LTC1068-25 90µV  
RMS  
RMS  
Low Power Supply Current: 4.5mA, Single 5V,  
LTC1068-50  
Operation with ±5V Power Supply, Single 5V  
Supply or Single 3.3V Supply  
O U  
PPLICATI  
A
S
Lowpass or Highpass Filters:  
The LTC1068 products are available in a 28-pin SSOP  
surface mount package. A customized version of an  
LTC1068 family product can be obtained in a 16-lead SO  
package with internal thin-film resistors. Please contact  
LTC Marketing for details.  
LTC1068-200, 0.5Hz to 25kHz; LTC1068, 1Hz to  
50kHz; LTC1068-50, 2Hz to 50kHz; LTC1068-25,  
4Hz to 200kHz  
Bandpass or Bandreject (Notch) Filters:  
LTC1068-200, 0.5Hz to 15kHz; LTC1068, 1Hz to  
30kHz; LTC1068-50, 2Hz to 30kHz; LTC1068-25,  
4Hz to 140kHz  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
FilterCAD is a trademark of Linear Technology Corporation.  
Windows is a registered trademark of Microsoft Corporation.  
U
O
TYPICAL APPLICATI  
Dual, Matched, 4th Order Butterworth Lowpass Filters, Clock-Tunable  
Up to 200kHz f – 3dB = fCLK/25, 4th Order Filter Noise = 60µVRMS  
R12 14k  
R11 20k  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
IN1  
R21 14k  
R31 20k  
R22 20k  
R32 10k  
Gain vs Frequency  
3
10  
0
4
V
LPB  
LPC  
OUT1  
5
–10  
20  
30  
40  
50  
60  
70  
80  
SB  
SC  
LTC1068-25  
6
5V  
NC  
V
1µF  
7
AGND  
NC  
CLK  
8
+
5V  
f
= (25)(f – 3dB)  
CLK  
V
0.1µF  
9
NC  
NC  
10  
11  
12  
13  
14  
SA  
SD  
V
LPA  
LPD  
OUT2  
R33 20k  
R23 14k  
R34 10k  
R24 20k  
BPA  
HPA/NA  
INVA  
BPD  
0.1  
1
10  
RELATIVE FREQUENCY [f /(f – 3dB)]  
IN  
HPD/ND  
INVD  
R13 20k  
1068 TA20b  
V
IN2  
R14 14k  
1068 TA20a  
1
LTC1068 Series  
W W W  
U
ABSOLUTE AXI U RATI GS (Note 1)  
Total Supply Voltage (V+ to V) .............................. 12V  
Power Dissipation............................................. 500mW  
Input Voltage at Any Pin .... V– 0.3V VIN V+ + 0.3V  
Storage Temperature Range ................. 65°C to 150°C  
Operating Temperature Range  
LTC1068C................................................ 0°C to 70°C  
LTC1068I........................................... 40°C to 85°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
1
2
INV C  
HPC/NC  
BPC  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
INV B  
HPB/NB  
BPB  
NUMBER  
TOP VIEW  
INV B  
1
2
INV C  
HPC/NC  
BPC  
LTC1068CN  
LTC1068IN  
24  
23  
22  
21  
20  
19  
3
LTC1068CG  
HPB/NB  
BPB  
4
LPC  
LPB  
LTC1068CG-200  
LTC1068CG-50  
LTC1068CG-25  
LTC1068IG  
3
5
SC  
SB  
LPB  
4
LPC  
6
V
NC  
SB  
5
SC  
7
NC  
AGND  
AGND  
6
V
+
+
8
CLK  
NC  
V
V
7
18 CLK  
LTC1068IG-200  
LTC1068IG-50  
LTC1068IG-25  
SA  
LPA  
8
SD  
17  
16  
15  
14  
13  
9
NC  
SA  
9
LPD  
10  
11  
12  
13  
14  
SD  
BPA  
10  
11  
12  
BPD  
LPD  
BPD  
HPD/ND  
INV D  
LPA  
HPA/NA  
INV A  
HPD/ND  
INV D  
BPA  
HPA/NA  
INV A  
N PACKAGE  
24-LEAD PDIP  
TJMAX = 110°C, θJA = 65°C/W  
G PACKAGE  
28-LEAD PLASTIC SSOP  
TJMAX = 110°C, θJA = 95°C/W  
Consult factory for Military grade parts.  
LTC1068 (Internal Op Amps) VS = ±5V, TA = 25°V, unless otherwise noted.  
ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Voltage Range  
Voltage Swings  
3.14  
±5.5  
V
V = 3.14V, R = 5k (Note 2)  
1.2  
2.6  
±3.4  
1.6  
3.2  
±4.1  
V
V
S
L
P-P  
V = 4.75V, R = 5k (Note 3)  
S
L
P-P  
V
V = ±5V, R = 5k  
S
L
Output Short-Circuit Current (Source/Sink)  
V = ±4.75V  
V = ±5V  
S
17/6  
20/15  
mA  
mA  
S
DC Open-Loop Gain  
GBW Product  
R = 5k  
85  
dB  
MHz  
V/µs  
V
L
V = ±5V  
S
6
10  
Slew Rate  
V = ±5V  
S
Analog Ground Voltage (Note 4)  
V = 5V, Voltage at AGND  
S
2.5V ±2%  
2
LTC1068 Series  
ELECTRICAL CHARACTERISTICS  
LTC1068 (Complete Filter) VS = ±5V, TA = 25°V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Clock-to-Center Frequency Ratio (Note 5)  
V = 4.75V, f  
= 1MHz, Mode 1 (Note 3),  
CLK  
100 ±0.3  
100 ±0.8  
100 ±0.9  
%
%
S
f = 10kHz, Q = 5, V = 0.5V  
,
O
IN  
RMS  
R1 = R3 = 49.9k, R2 = 10k  
V = ±5V, f = 1MHz, Mode 1,  
100 ±0.3  
100 ±0.8  
100 ±0.9  
%
%
S
CLK  
f = 10kHz, Q = 5, V = 1V  
,
O
IN  
RMS  
R1 = R3 = 49.9k, R2 = 10K  
Clock-to-Center Frequency Ratio,  
Side-to-Side Matching (Note 5)  
V = 4.75V, f = 1MHz, Q = 5 (Note 3)  
±0.25  
±0.25  
±0.9  
±0.9  
%
%
S
CLK  
V = ±5V, f  
= 1MHz, Q = 5  
S
CLK  
Q Accuracy (Note 5)  
V = 4.75V, f  
= 1MHz, Q = 5 (Note 3)  
CLK  
= 1MHz, Q = 5  
±1  
±1  
±3  
±3  
%
%
S
V = ±5V, f  
S
CLK  
f Temperature Coefficient  
±1  
±5  
0
ppm/°C  
ppm/°C  
mV  
O
Q Temperature Coefficient  
DC Offset Voltage (Note 5)  
(See Table 1)  
V = ±5V, f  
= 1MHz, V  
±15  
±25  
±40  
S
CLK  
OS1  
(DC Offset of Input Inverter)  
V = ±5V, f = 1MHz, V  
OS2  
±2  
±5  
mV  
mV  
S
CLK  
(DC Offset of First Integrator)  
V = ±5V, f = 1MHz, V  
S
CLK  
OS3  
(DC Offset of Second Integrator)  
Clock Feedthrough  
V = ±5V, f = 1MHz  
0.1  
5.6  
mV  
RMS  
S
CLK  
Max Clock Frequency (Note 6)  
Power Supply Current  
V = ±5V, Q 2.0, Mode 1  
S
MHz  
V = 3.14V, f  
V = 4.75V, f  
S
= 1MHz (Note 2)  
= 1MHz (Note 3)  
3.5  
6.5  
9.5  
8
11  
15  
mA  
mA  
mA  
S
CLK  
CLK  
V = ±5V, f  
= 1MHz  
S
CLK  
LTC1068-200 (Internal Op Amps) VS = ±5V, TA = 25°V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Voltage Range  
Voltage Swings  
3.14  
±5.5  
V
V = 3.14V, R = 5k (Note 2)  
1.2  
2.6  
±3.4  
1.6  
3.2  
±4.1  
V
V
S
L
P-P  
V = 4.75V, R = 5k (Note 3)  
S
L
P-P  
V
V = ±5V, R = 5k  
S
L
Output Short-Circuit Current (Source/Sink)  
V = ±4.75V  
V = ±5V  
S
17/6  
20/15  
mA  
mA  
S
DC Open-Loop Gain  
GBW Product  
R = 5k  
85  
dB  
MHz  
V/µs  
V
L
V = ±5V  
S
6
10  
Slew Rate  
V = ±5V  
S
Analog Ground Voltage (Note 4)  
V = 5V, Voltage at AGND  
S
2.5V ±2%  
LTC1068-200 (Complete Filter) VS = ±5V, TA = 25°V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
V = 4.75V, f  
MIN  
TYP  
MAX  
UNITS  
Clock-to-Center Frequency Ratio (Note 5)  
= 1MHz, Mode 1 (Note 3),  
CLK  
200 ±0.3  
200 ±0.8  
200 ±0.9  
%
%
S
f = 5kHz, Q = 5, V = 0.5V  
,
O
IN  
RMS  
R1 = R3 = 49.9k, R2 = 10k  
V = ±5V, f = 1MHz, Mode 1,  
200 ±0.3  
200 ±0.8  
200 ±0.9  
%
%
S
CLK  
f = 5Hz, Q = 5, V = 1V  
,
RMS  
O
IN  
R1 = R3 = 49.9k, R2 = 10K  
3
LTC1068 Series  
ELECTRICAL CHARACTERISTICS  
LTC1068-200 (Complete Filter) VS = ±5V, TA = 25°V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
V = 4.75V, f  
MIN  
TYP  
MAX  
UNITS  
Clock-to-Center Frequency Ratio,  
Side-to-Side Matching (Note 5)  
= 1MHz, Q = 5 (Note 3)  
CLK  
= 1MHz, Q = 5  
±0.25  
±0.25  
±0.9  
±0.9  
%
%
S
V = ±5V, f  
S
CLK  
Q Accuracy (Note 5)  
V = 4.75V, f  
= 1MHz, Q = 5 (Note 3)  
CLK  
= 1MHz, Q = 5  
±1  
±1  
±3  
±3  
%
%
S
V = ±5V, f  
S
CLK  
f Temperature Coefficient  
±1  
±5  
0
ppm/°C  
ppm/°C  
mV  
O
Q Temperature Coefficient  
DC Offset Voltage (Note 5)  
(See Table 1)  
V = ±5V, f  
= 1MHz, V  
±15  
±25  
±40  
S
CLK  
OS1  
(DC Offset of Input Inverter)  
V = ±5V, f = 1MHz, V  
OS2  
±2  
±5  
mV  
mV  
S
CLK  
(DC Offset of First Integrator)  
V = ±5V, f = 1MHz, V  
S
CLK  
OS3  
(DC Offset of Second Integrator)  
Clock Feedthrough  
V = ±5V, f = 1MHz  
0.1  
5.6  
mV  
RMS  
S
CLK  
Max Clock Frequency (Note 6)  
Power Supply Current  
V = ±5V, Q 2.0, Mode 1  
S
MHz  
V = 3.14V, f  
V = 4.75V, f  
S
= 1MHz (Note 2)  
= 1MHz (Note 3)  
3.5  
6.5  
9.5  
8
11  
15  
mA  
mA  
mA  
S
CLK  
CLK  
V = ±5V, f  
= 1MHz  
S
CLK  
LTC1068-50 (Internal Op Amps) VS = ±5V, TA = 25°V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Voltage Range  
Voltage Swings  
3.14  
±5.5  
V
V = 3.14V, R = 5k (Note 2)  
1.2  
2.6  
±3.4  
1.8  
3.6  
±4.1  
V
V
S
L
P-P  
V = 4.75V, R = 5k (Note 3)  
S
L
P-P  
V
V = ±5V, R = 5k  
S
L
Output Short-Circuit Current (Source/Sink)  
V = ±3.14V  
V = ±5V  
S
17/6  
20/15  
mA  
mA  
S
DC Open-Loop Gain  
GBW Product  
R = 5k  
85  
dB  
MHz  
V/µs  
V
L
V = ±5V  
S
4
Slew Rate  
V = ±5V  
S
7
Analog Ground Voltage (Note 4)  
V = 5V, Voltage at AGND  
S
2.175V ±2%  
LTC1068-50 (Complete Filter) VS = ±5V, TA = 25°V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
V = 3.14V, f  
MIN  
TYP  
MAX  
UNITS  
Clock-to-Center Frequency Ratio (Note 5)  
= 250kHz, Mode 1 (Note 2),  
CLK  
50 ±0.3  
50 ±0.8  
50 ±0.9  
%
%
S
f = 5kHz, Q = 5, V = 0.34V  
,
O
IN  
RMS  
R1 = R3 = 49.9k, R2 = 10k  
V = ±5V, f = 500kHz, Mode 1,  
50 ±0.3  
50 ±0.8  
50 ±0.9  
%
%
S
CLK  
f = 10kHz, Q = 5, V = 1V  
,
O
IN  
RMS  
R1 = R3 = 49.9k, R2 = 10K  
Clock-to-Center Frequency Ratio,  
Side-to-Side Matching (Note 5)  
V = 3.14V, f = 250kHz, Q = 5 (Note 2)  
±0.25  
±0.25  
±0.9  
±0.9  
%
%
S
CLK  
V = ±5V, f  
= 500kHz, Q = 5  
S
CLK  
Q Accuracy (Note 5)  
V = 3.14V, f  
= 250kHz, Q = 5 (Note 2)  
CLK  
= 500kHz, Q = 5  
±1  
±1  
±3  
±3  
%
%
S
V = ±5V, f  
S
CLK  
4
LTC1068 Series  
ELECTRICAL CHARACTERISTICS  
LTC1068-50 (Complete Filter) VS = ±5V, TA = 25°V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
±1  
±5  
0
MAX  
UNITS  
ppm/°C  
ppm/°C  
mV  
f Temperature Coefficient  
O
Q Temperature Coefficient  
DC Offset Voltage (Note 5)  
(See Table 1)  
V = ±5V, f  
= 500kHz, V  
OS1  
±15  
±25  
±40  
S
CLK  
(DC Offset of Input Inverter)  
V = ±5V, f = 500kHz, V  
OS2  
–2  
–5  
mV  
mV  
S
CLK  
(DC Offset of First Integrator)  
V = ±5V, f = 500kHz, V  
OS3  
S
CLK  
(DC Offset of Second Integrator)  
Clock Feedthrough  
V = ±5V, f = 500kHz  
0.16  
3.4  
mV  
RMS  
S
CLK  
Max Clock Frequency (Note 6)  
Power Supply Current  
V = ±5V, Q 1.6, Mode 1  
S
MHz  
V = 3.14V, f  
V = 4.75V, f  
S
= 250kHz (Note 2)  
= 250kHz (Note 3)  
3.0  
4.3  
6.0  
5
8
11  
mA  
mA  
mA  
S
CLK  
CLK  
V = ±5V, f  
= 500kHz  
S
CLK  
LTC1068-25 (Internal Op Amps) VS = ±5V, TA = 25°V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Voltage Range  
Voltage Swings  
3.14  
±5.5  
V
V = 3.14V, R = 5k (Note 2)  
1.2  
2.6  
±3.4  
1.6  
3.4  
±4.1  
V
V
S
L
P-P  
V = 4.75V, R = 5k (Note 3)  
S
L
P-P  
V
V = ±5V, R = 5k  
S
L
Output Short-Circuit Current (Source/Sink)  
V = ±4.75V  
V = ±5V  
S
17/6  
20/15  
mA  
mA  
S
DC Open-Loop Gain  
GBW Product  
R = 5k  
85  
dB  
MHz  
V/µs  
V
L
V = ±5V  
S
6
10  
Slew Rate  
V = ±5V  
S
Analog Ground Voltage (Note 4)  
V = 5V, Voltage at AGND  
S
2.5V ±2%  
LTC1068-25 (Complete Filter) VS = ±5V, TA = 25°V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
V = 4.75V, f  
MIN  
TYP  
MAX  
UNITS  
Clock-to-Center Frequency Ratio (Note 5)  
= 500kHz, Mode 1 (Note 3),  
CLK  
25 ±0.3  
25 ±0.8  
25 ±0.9  
%
%
S
f = 20kHz, Q = 5, V = 0.5V  
,
O
IN  
RMS  
R1 = R3 = 49.9k, R2 = 10k  
V = ±5V, f = 1MHz, Mode 1,  
25 ±0.3  
25 ±0.8  
25 ±0.9  
%
%
S
CLK  
f = 40kHz, Q = 5, V = 1V  
,
O
IN  
RMS  
R1 = R3 = 49.9k, R2 = 10K  
Clock-to-Center Frequency Ratio,  
Side-to-Side Matching (Note 5)  
V = 4.75V, f = 500kHz, Q = 5 (Note 3)  
±0.25  
±0.25  
±0.9  
±0.9  
%
%
S
CLK  
V = ±5V, f  
= 1MHz, Q = 5  
S
CLK  
Q Accuracy (Note 5)  
V = 4.75V, f  
= 500kHz, Q = 5 (Note 3)  
CLK  
= 1MHz, Q = 5  
±1  
±1  
±3  
±3  
%
%
S
V = ±5V, f  
S
CLK  
f Temperature Coefficient  
±1  
±5  
ppm/°C  
ppm/°C  
O
Q Temperature Coefficient  
5
LTC1068 Series  
ELECTRICAL CHARACTERISTICS LTC1068-25 (Complete Filter) VS = ±5V, TA = 25°V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC Offset Voltage (Note 5)  
(See Table 1)  
V = ±5V, f  
= 1MHz, V  
OS1  
0
±15  
mV  
S
CLK  
(DC Offset of Input Inverter)  
V = ±5V, f = 1MHz, V  
OS2  
–2  
–5  
±25  
±40  
mV  
mV  
S
CLK  
(DC Offset of First Integrator)  
V = ±5V, f = 1MHz, V  
S
CLK  
OS3  
(DC Offset of Second Integrator)  
Clock Feedthrough  
V = ±5V, f = 1MHz  
0.25  
5.6  
mV  
RMS  
S
CLK  
Max Clock Frequency (Note 6)  
Power Supply Current  
V = ±5V, Q 1.6, Mode 1  
S
MHz  
V = 3.14V, f  
V = 4.75V, f  
S
= 1MHz (Note 2)  
= 1MHz (Note 3)  
3.5  
6.5  
9.5  
8
11  
15  
mA  
mA  
mA  
S
CLK  
CLK  
V = ±5V, f  
= 1MHz  
S
CLK  
The  
denotes specifications which apply over the full operating  
Note 4: Pin 7 (AGND) is the internal analog ground of the device. For  
single supply applications this pin should be bypassed with a 1µF  
capacitor. The biasing voltage of AGND is set with an internal resistive  
divider from Pin 8 to Pin 23 (see Block Diagram).  
temperature range.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: Production testing for single 3.14V supply is achieved by  
using the equivalent dual supplies of ±1.57V.  
Note 5: Side D is guaranteed by design.  
Note 6: See Typical Performance Characteristics.  
Note 3: Production testing for single 4.75V supply is achieved by  
using the equivalent dual supplies of ±2.375V.  
Table 1. Output DC Offsets One 2nd Order Section  
MODE  
V
V
V
V
V
OSN  
OSBP  
OSLP  
1
1b  
2
[(1/Q) + 1 + ||HOLP||] – V /Q  
V
V
– V  
OSN OS2  
OS1  
OS1  
OS3  
OS3  
OS3  
OS3  
[(1/Q) + 1 + R2/R1] – V /Q  
V
~(V  
– V )(1 + R5/R6)  
OSN OS2  
OS3  
[V (1 + R2/R1 + R2/R3 + R2/R4) – V (R2/R3)X  
[R4/(R2 + R4)] + V [R2/(R2 + R4)]  
V
V
V
– V  
OSN OS2  
OS1  
OS3  
OS2  
3
V
V
[1 + R4/R1 + R4/R2 + R4/R3] – V (R4/R2) – V (R4/R3)  
OS1 OS2 OS3  
OS2  
OS3  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC1068  
Maximum Q vs Center Frequency  
(Modes 1, 1b, 2)  
LTC1068-200  
Maximum Q vs Center Frequency  
(Modes 1, 1b, 2)  
LTC1068  
Maximum Q vs Center Frequency  
(Modes 2, 3)  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
A: V = 3.3V, f  
S
= 1.2MHz  
= 3.2MHz  
= 6.1MHz  
CLK(MAX)  
A. V = 3.3V, f  
S
= 1.5MHz  
= 3.4MHz  
= 5.6MHz  
CLK(MAX)  
A. V = 3.3V, f  
S
= 1MHz  
= 3MHz  
= 5MHz  
CLK(MAX)  
CLK(MAX)  
CLK(MAX)  
CLK(MAX)  
B: V = 5V, f  
B. V = 5V, f  
B. V = 5V, f  
S
S
CLK(MAX)  
S
S
CLK(MAX)  
S
S
CLK(MAX)  
C: V = ±5V, f  
C. V = ±5V, f  
C. V = ±5V, f  
(FOR MODE 2 R4 10R2)  
(FOR MODE 2 R4 < 10R2)  
(FOR MODE 2, R4 10R2)  
A
B
C
A
B
C
A
B
C
0
0
0
0
20  
30  
40  
50  
60  
70  
16  
CENTER FREQUENCY, f (kHz)  
32  
10  
40  
CENTER FREQUENCY, f (kHz)  
0
8
12  
20 24 28  
0
20  
30  
50  
60  
4
10  
CENTER FREQUENCY, f (kHz)  
O
O
O
1068 G01  
1068 G03  
1068 G02  
6
LTC1068 Series  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC1068-200  
Maximum Q vs Center Frequency  
(Modes 2, 3)  
LTC1068-50  
Maximum Q vs Center Frequency  
(Modes 1, 1b, 2)  
LTC1068-50  
Maximum Q vs Center Frequency  
(Modes 2, 3)  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
A: V = 3.3V, f  
S
= 1.2MHz  
= 3.2MHz  
= 6.1MHz  
A: V = 3.3V, f  
= 1.1MHz  
CLK(MAX)  
A: V = 3.3V, f  
S
= 1.1MHz  
= 2.1MHz  
= 3.6MHz  
CLK(MAX)  
CLK(MAX)  
S
CLK(MAX)  
B: V = 5V, f  
B: V = 5V, f  
= 2.1MHz  
= 3.6MHz  
B: V = 5V, f  
S
S
CLK(MAX)  
CLK(MAX)  
S
S
CLK(MAX)  
CLK(MAX)  
S
S
CLK(MAX)  
C: V = ±5V, f  
C: V = ±5V, f  
C: V = ±5V, f  
(FOR MODE 2, R4 < 10R2)  
(FOR MODE 2, R4 10R2)  
(FOR MODE 2, R4 < 10R2)  
C
B
C
B
A
B
C
A
A
0
0
0
0
8
12 16 20 24 28 32  
0
8
12 16 20 24 28 32  
0
8
12 16 20 24 28 32  
4
4
4
CENTER FREQUENCY, f (kHz)  
CENTER FREQUENCY, f (kHz)  
CENTER FREQUENCY, f (kHz)  
O
O
O
1068 G04  
1068 G05  
1068 G06  
LTC1068-25  
Maximum Q vs Center Frequency  
(Modes 1, 1b, 2)  
LTC1068-25  
Maximum Q vs Center Frequency  
(Modes 2, 3)  
LTC1068 Center Frequency  
Variation vs Clock Frequency  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1.2  
1.0  
V
= ±5V  
A: V = 3.3V, f  
S
= 1.2MHz  
= 3.4MHz  
= 6.1MHz  
CLK(MAX)  
S
A: V = 3.3V, f  
S
= 1MHz  
= 3MHz  
= 5MHz  
CLK(MAX)  
CLK(MAX)  
CLK(MAX)  
Q = 5, REFERENCE  
B: V = 5V, f  
B: V = 5V, f  
S
S
CLK(MAX)  
S
S
CLK(MAX)  
CENTER FREQUENCY  
WITH f  
C: V = ±5V, f  
C: V = ±5V, f  
0.8  
= 0.75MHz  
(FOR MODE 2, R4 10R2)  
CLK  
(FOR MODE 2, R4 < 10R2)  
MODE 3  
0.6  
0.4  
MODE 1  
0.2  
0
0.2  
0.4  
0.6  
B
B
C
C
A
A
0
0
0
64  
96 128 160 192 224  
0
64  
96 128 160 192 224  
32  
32  
0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25  
CLOCK FREQUENCY (MHz)  
CENTER FREQUENCY, f (kHz)  
FREQUENCY, f (kHz)  
O
O
1068 G07  
1068 G08  
1068 G09  
LTC1068-200 Center Frequency  
Variation vs Clock Frequency  
LTC1068-50 Center Frequency  
Variation vs Clock Frequency  
LTC1068-25 Center Frequency  
Variation vs Clock Frequency  
0.4  
0.3  
0.20  
0.15  
1.8  
1.3  
0.8  
0.3  
V
= ±5V  
S
MODE 1  
MODE 3  
Q = 5, REFERENCE  
CENTER FREQUENCY  
WITH f  
0.10  
= 0.5MHz  
CLK  
0.05  
0.2  
MODE 3  
0
0.1  
0.05  
0.10  
0.15  
0.20  
0.25  
MODE 1  
MODE 1  
0
V
= ±5V  
V
= ±5V  
S
S
Q = 5, REFERENCE  
Q = 5, REFERENCE  
MODE 3  
1.5  
0.1  
0.2  
CENTER FREQUENCY  
CENTER FREQUENCY  
WITH f  
WITH f  
= 0.5MHz  
= 0.75MHz  
CLK  
CLK  
0
0.5  
1.0  
1.25  
1.5  
1.75  
2.0  
0.5  
1.0  
2.0  
2.5  
3.0  
3.5  
0.75  
0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25  
CLOCK FREQUENCY (MHz)  
CLOCK FREQUENCY (MHz)  
CLOCK FREQUENCY (MHz)  
1068 G11  
1068 G12  
1068 G10  
7
LTC1068 Series  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC1068/LTC1068-200  
Noise vs Q  
LTC1068-50 Noise vs Q  
LTC1068-25 Noise vs Q  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
±5V  
5V  
±5V  
5V  
3.3V  
3.3V  
±5V  
5V  
3.3V  
0
0
0
25 30  
25 30  
0
5
10 15 20  
Q
35 40  
0
5
10 15 20  
Q
35 40  
25 30  
0
5
10 15 20  
Q
35 40  
1068 G14  
1068 G13  
1068 G15  
Noise Increase vs R2/R4 Ratio  
(Mode 3)  
Noise Increase vs R5/R6 Ratio  
(Mode 1b)  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
0
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
0
0.2  
0.6  
0.8 0.9  
0
1.0 1.5 2.0  
R5/R6 RATIO  
2.5 3.0 3.5  
0.3 0.4 0.5  
0.7  
1.0  
0.5  
R2/R4 RATIO  
1068 G16  
1068 G17  
LTC1068/LTC1068-200/  
LTC1068-25 Power Supply  
Current vs Power Supply  
LTC1068-50 Power Supply  
Current vs Power Supply  
10.5  
9.5  
8.5  
8
7
6
5
70°C  
25°C  
70°C  
25°C  
20°C  
20°C  
7.5  
6.5  
5.5  
4.5  
4
3
2
7
9
10  
7
9
10  
3
4
5
6
8
3
4
5
6
8
TOTAL POWER SUPPLY (V)  
TOTAL POWER SUPPLY (V)  
LT1027 • TPCXX  
1068 G19  
8
LTC1068 Series  
U
U
U
PIN FUNCTIONS  
Power Supply Pins  
Clock Input Pin  
The V+ and Vpins should each be bypassed with a 0.1µF  
capacitor to an adequate analog ground. The filter’s power  
supplies should be isolated from other digital or high  
voltage analog supplies. A low noise linear supply is  
recommended. Using a switching power supply will lower  
the signal-to-noise ratio of the filter. Figures 1 and 2 show  
typical connections for dual and single supply operation.  
Any TTL or CMOS clock source with a square-wave output  
and 50% duty cycle (±10%) is an adequate clock source  
for the device. The power supply for the clock source  
should not be the filter’s power supply. The analog ground  
for the filter should be connected to clock’s ground at a  
single point only. Table 2 shows the clock’s low and high  
level threshold values for dual or single supply operation.  
Table 2. Clock Source High and Low Threshold Levels  
Analog Ground Pin  
POWER SUPPLY  
HIGH LEVEL  
1.53V  
LOW LEVEL  
0.53V  
The filter’s performance depends on the quality of the  
analog signal ground. For either dual or single supply  
operation, an analog ground plane surrounding the pack-  
age is recommended. The analog ground plane should be  
connectedtoanydigitalgroundatasinglepoint.Forsingle  
supply operation, AGND should be bypassed to the analog  
ground plane with at least a 0.47µF capacitor (Figure 2).  
Dual Supply = ±5V  
Single Supply = 5V  
Single Supply = 3.3V  
1.53V  
0.53V  
1.20V  
0.53V  
Apulsedgeneratorcanbeusedasaclocksourceprovided  
the high level ON time is at least 25% of the pulse period.  
Sine waves are not recommended for clock input frequen-  
cies less than 100kHz, since excessively slow clock rise or  
fall times generate internal clock jitter (maximum clock  
rise or fall time 1µs). The clock signal should be routed  
from the right side of the IC package and perpendicular to  
it to avoid coupling to any input or output analog signal  
Two internal resistors bias the analog ground pin. For the  
LTC1068, LTC1068-200 and LTC1068-25, the voltage at  
the analog ground pin (AGND) for single supply is 0.5 × V+  
and for the LTC1068-50 it is 0.435 × V+.  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
ANALOG  
GROUND  
PLANE  
ANALOG  
GROUND  
PLANE  
3
3
DEVICE  
LTC1068  
LTC1068-200 10k 10k  
LTC1068-25  
LTC1068-50 11.3k 8.6k  
R
R
B
A
4
4
V
5
5
LTC1068  
0.1µF  
6
6
+
V
7
7
AGND  
V
LTC1068  
R
R
B
A
0.1µF  
8
8
+
V
0.1µF  
9
9
0.47µF  
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
(1µF FOR  
STOPBAND  
FREQUENCIES  
1kHz)  
STAR  
SYSTEM  
GROUND  
STAR  
SYSTEM  
GROUND  
200Ω  
200Ω  
CLOCK  
SOURCE  
CLOCK  
SOURCE  
DIGITAL GROUND  
DIGITAL GROUND  
FOR MODE 3, THE S NODE  
SHOULD BE TIED TO PIN 7 (AGND)  
1068 F01  
1068 F02  
Figure 1. Dual Supply Ground Plane Connections  
Figure 2. Single Supply Ground Plane Connections  
9
LTC1068 Series  
U
U
U
PIN FUNCTIONS  
path.A200resistorbetweenclocksourceandPin11will  
slow down the rise and fall times of the clock to further  
reduce charge coupling (Figures 1 and 2).  
LT®1354  
1k  
+
Output Pins  
1068 F03  
Each 2nd order section of an LTC1068 device has three  
outputs that typically source 17mA and sink 6mA. Driving  
coaxial cables or resistive loads less than 20k will degrade  
the total harmonic distortion performance of any filter  
design. When evaluating the distortion or noise perfor-  
mance of a particular filter design implemented with a  
LTC1068 device, the final output of the filter should be  
buffered with a wideband, noninverting high slew rate  
amplifier (Figure 3).  
Figure 3. Wideband Buffer  
In a printed circuit layout any signal trace, clock source  
trace or power supply trace should be at least 0.1 inches  
away from any inverting input pins  
Summing Input Pins  
Thesearevoltageinputpins.Ifused,theyshouldbedriven  
with a source impedance below 5k. When they are not  
used, they should be tied to the analog ground pin.  
Inverting Input Pins  
Thesepinsaretheinvertinginputsofinternalopampsand  
are susceptible to stray capacitive coupling from low  
impedance signal outputs and power supply lines.  
Thesummingpinconnectionsdeterminethecircuittopol-  
ogy (mode) of each 2nd order section. Please refer to  
Modes of Operation.  
W
BLOCK DIAGRAM  
HPA/NA  
(13)  
BPA  
(12)  
LPA  
(11)  
DEVICE  
LTC1068  
LTC1068-200 10k 10k  
LTC1068-25  
LTC1068-50 11.3k 8.6k  
R
R
B
A
INV A  
(14)  
+
+
+
+
+
+
Σ
AGND  
(7)  
+
*THE RATIO R /R VARIES ±2%  
A
B
BPB  
(3)  
LPB  
(4)  
HPB/NB  
(2)  
SA  
(10)  
+
V
(8)  
INV B  
(1)  
+
+
+
+
+
+
Σ
R *  
A
CLK (21)  
+
HPC/NC  
(27)  
LPC  
(25)  
BPC  
(26)  
R *  
B
V
(23)  
AGND (7)  
SB  
(5)  
INV C  
(28)  
NC (6)  
NC (9)  
+
Σ
LPD  
(18)  
HPD/ND  
(16)  
BPD  
(17)  
NC (20)  
NC (22)  
SC  
(24)  
INV D  
(15)  
+
Σ
PIN 28-LEAD SSOP PACKAGE  
1068 BD  
SD  
(19)  
10  
LTC1068 Series  
W
U
MODES OF OPERATION  
Linear Technology’s universal switched-capacitor filters  
are designed for a fixed internal, nominal fCLK/fO ratio. The  
fCLK/fO ratio is 100 for the LTC1068, 200 for the LTC1068-  
200, 50 for the LTC1068-50 and 25 for the LTC1068-25.  
FilterdesignsoftenrequirethefCLK/fO ratioofeachsection  
to be different from the nominal ratio and in most cases  
different from each other. Ratios other than the nominal  
valuearepossiblewithexternalresistors.Operatingmodes  
use external resistors, connected in different arrange-  
ments to realize different fCLK/fO ratios. By choosing the  
proper mode, the fCLK/fO ratio can be increased or de-  
creased from the part’s nominal ratio.  
Mode 1  
In Mode 1, the ratio of the external clock frequency to the  
center frequency of each 2nd order section is internally  
fixed at the part’s nominal ratio. Figure 4 illustrates Mode  
1 providing 2nd order notch, lowpass and bandpass  
outputs. Mode 1 can be used to make high order Butter-  
worth lowpass filters; it can also be used to make low Q  
notches and for cascading 2nd order bandpass functions  
tuned at the same center frequency. Mode 1 is faster than  
Mode 3.  
Please refer to the Operating Limits paragraph under Appli-  
cations Information for a guide to the use of capacitor CC.  
The choice of operating mode also effects the transfer  
function at the HP/N pins. The LP and BP pins always give  
thelowpassandbandpasstransferfunctionsrespectively,  
regardless of the mode utilized. The HP/N pins have a  
different transfer function depending on the mode used.  
Mode 1 yields a notch transfer function. Mode 3 yields a  
highpass transfer function. Mode 2 yields a highpass  
notch transfer function (i.e., a highpass with a stopband  
notch). Morecomplextransferfunctions, suchaslowpass  
notch, allpassorcomplexzeros, areachievedbysumming  
two or more of the LP, BP or HP/N outputs. This is  
illustrated in sections Mode 2n and Mode 3a.  
C
C
R3  
R2  
N
S
LP  
BP  
R1  
V
IN  
+
Σ
+
f
AGND  
CLK  
DEVICE  
RATIO  
f
=
; f = f  
O
O
n
RATIO  
LTC1068  
100  
R2  
R1  
R3  
R1  
R3  
R2  
LTC1068-200 200  
Q = ; H = –  
ON  
; H  
OBP  
= –  
LTC1068-50  
LTC1068-25  
50  
25  
H
= H  
ON  
OLP  
1068 F04  
Choosing the proper mode(s) for a particular application  
is not trivial and involves much more than just adjusting  
the fCLK/fO ratio. Listed here are four of the nearly twenty  
modes available. To make the design process simpler and  
quicker, Linear Technology has developed the FilterCAD  
for Widows design software. FilterCAD is an easy-to-use,  
powerful and interactive filter design program. The de-  
signercanenterafewfilterspecificationsandtheprogram  
producesafullschematic.FilterCADallowsthedesignerto  
concentrate on the filter’s transfer function and not get  
bogged down in the details of the design. Alternatively,  
those who have experience with the Linear Technology  
familyofpartscancontrolallofthedetailsthemselves. For  
a complete listing of all the operating modes, consult the  
appendices of the FilterCAD manual or the Help files in  
FilterCAD. FilterCAD can be obtained free of charge on the  
LinearTechnologywebsite(www.linear-tech.com)oryou  
can order the FilterCAD CD-ROM by contacting Linear  
Technology Marketing.  
Figure 4. Mode 1, 2nd Order Filter Providing Notch,  
Bandpass and Lowpass Outputs  
Mode 1b  
Mode 1b is derived from Mode 1. In Mode 1b (Figure 5)  
two additional resistors R5 and R6 are added to lower the  
amount of voltage fed back from the lowpass output into  
the input of the SA (or SB) switched-capacitor summer.  
This allows the filter’s clock-to-center frequency ratio to  
be adjusted beyond the part’s nominal ratio. Mode 1b  
maintains the speed advantages of Mode 1 and should be  
consideredanoptimummodeforhighQdesignswithfCLK  
to fCUTOFF (or fCENTER) ratios greater than the part’s  
nominal ratio.  
The parallel combination of R5 and R6 should be kept  
below 5k.  
Please refer to the Operating Limits paragraph under Appli-  
cations Information for a guide to the use of capacitor CC.  
11  
LTC1068 Series  
W
U
MODES OF OPERATION  
C
C
C
C
R4  
R3  
R2  
R6  
N
R5  
R3  
R2  
HP  
S
LP  
BP  
S
LP  
BP  
R1  
R1  
V
+
O
IN  
V
IN  
+
+
Σ
Σ
+
1/4 LTC1068  
DEVICE  
RATIO  
f
1
CLK  
R2  
R4  
R2  
R4  
R3  
R2  
LTC1068  
100  
AGND  
f
=
; Q = 1.005  
AGND  
(
)
RATIO  
R3  
LTC1068-200 200  
1 –  
(
)
(RATIO)(0.32)(R4)  
LTC1068-50  
LTC1068-25  
50  
25  
f
CLK  
R6  
(R6 + R5)  
f
=
;=f f  
n O  
O
RATIO  
R3  
R1  
1
R2  
= – ; H  
R4  
R1  
1068 F05  
H
= –  
; H  
= –  
OHP  
OBP  
OLP  
R2  
R1  
R3  
= –  
R3  
R6  
R1  
R3  
Q =  
; H = – ; H  
ON  
OBP  
1 –  
(
)
R1  
R2 (R6 + R5)  
(RATIO)(0.32)(R4)  
R2 R6 + R5  
R1  
DEVICE  
RATIO  
H
= –  
OLP  
(
)
R6  
LTC1068  
LTC1068-200 200  
100  
LTC1068-50  
LTC1068-25  
50  
25  
Figure 5. Mode 1b, 2nd Order Filter Providing Notch,  
Bandpass and Lowpass Outputs  
1068 F06  
Figure 6. Mode 3, 2nd Order Section Providing  
Highpass, Bandpass and Lowpass Outputs  
Mode 3  
In Mode 3, the ratio of the external clock frequency to the  
center frequency of each 2nd order section can be ad-  
justed above or below the parts nominal ratio. Figure 6  
illustrates Mode 3, the classical state variable configura-  
tion, providing highpass, bandpass and lowpass 2nd  
orderfilterfunctions. Mode3isslowerthanMode1. Mode  
3 can be used to make high order all-pole bandpass,  
lowpass and highpass filters.  
C
C
R4  
R3  
R2  
HPN  
S
LP  
BP  
R1  
V
+
IN  
+
Σ
Please refer to the Operating Limits paragraph under Appli-  
cations Information for a guide to the use of capacitor CC.  
DEVICE  
RATIO  
AGND  
LTC1068  
100  
LTC1068-200 200  
Mode 2  
LTC1068-50  
LTC1068-25  
50  
25  
f
f
CLK  
RATIO  
CLK  
R2  
R4  
f
=
; f =  
n
1 +  
O
RATIO  
Mode 2 is a combination of Mode 1 and Mode 3, shown in  
Figure7.WithMode2,theclock-to-centerfrequencyratio,  
fCLK/fO, is always less than the part’s nominal ratio. The  
advantage of Mode 2 is that it provides less sensitivity to  
resistor tolerances than does Mode 3. Mode 2 has a  
highpass notch output where the notch frequency de-  
pends solely on the clock frequency and is therefore less  
than the center frequency, fO.  
1068 F07  
R3  
R2  
R4  
1
R3  
Q = 1.005  
1 +  
(
)
R2  
1–  
(
)
(RATIO)(0.32)(R4)  
R2  
R1  
1
R2  
H
H
= –  
(AC GAIN, f >> f ); H  
O
= –  
OHPN  
(DC GAIN)  
OHPN  
R1  
R2  
1 +  
(
)
R4  
1
R3  
R1  
1
R2  
R4  
R2  
R1  
= –  
; H  
= –  
OLP  
OBP  
R3  
1 +  
1–  
(
)
(
)
(RATIO)(0.32)(R4)  
Please refer to the Operating Limits paragraph under Appli-  
cations Information for a guide to the use of capacitor CC.  
Figure 7. Mode 2, 2nd Order Filter Providing Highpass  
Notch, Bandpass and Lowpass Outputs  
12  
LTC1068 Series  
U
W U U  
APPLICATIONS INFORMATION  
Operating Limits  
mine the operating signal-to-noise ratio. Most of its fre-  
quency contents lie within the filter passband and cannot  
be reduced with post filtering. For a notch filter the noise  
of the filter is centered at the notch frequency.  
The Maximum Q vs Center Frequency (fO) graphs, under  
Typical Performance Characteristics, define an upper limit  
of operating Q for eachLTC1068 device2nd ordersection.  
These graphs indicate the power supply, fO and Q value  
conditions under which a filter implemented with an  
LTC1068 device will remain stable when operated at  
temperatures of 70°C or less. For a 2nd order section, a  
bandpass gain error of 3dB or less is arbitrarily defined as  
a condition for stability.  
Thetotalwidebandnoise(µVRMS)isnearlyindependentof  
the value of the clock. The clock feedthrough specifica-  
tions are not part of the wideband noise.  
For a specific filter design, the total noise depends on the  
Q of each section and the cascade sequence. Please refer  
to the Noise vs Q graphs under the Typical Performance  
Characteristics.  
When the passband gain error begins to exceed 1dB, the use  
of capacitor CC will reduce the gain error (capacitor CC is  
connected from the lowpass node to the inverting node of a  
2nd order section). Please refer to Figures 4 through 7. The  
value of CC can be best determined experimentally, and as a  
guideitshouldbeabout5pFforeach1dBofgainerrorandnot  
toexceed15pF. Whenoperatingan LTC1068 devicenearthe  
limits defined by the Maximum Q vs Frequency graphs,  
passbandgainvariationsof2dBormoreshouldbeexpected.  
Aliasing  
Aliasingisaninherentphenomenonofswitched-capacitor  
filters and occurs when the frequency of the input signals  
that produce the strongest aliased components have a  
frequency, fIN, such as (fSAMPLING – fIN) that falls into the  
filter’s passband. For an LTC1068 device the sampling  
frequency is twice fCLK. If the input signal spectrum is not  
band-limited, aliasing may occur.  
Clock Feedthrough  
Demonstration Circuit 104  
ClockfeedthroughisdefinedastheRMSvalueoftheclock  
frequency and its harmonics that are present at the filter’s  
output pins. The clock feedthrough is tested with the  
filter’s input grounded and depends on PC board layout  
and on the value of the power supplies. With proper layout  
techniques, the typical values of clock feedthrough are  
listed under Electrical Characteristics.  
DC104 is a surface mount printed circuit board for the  
evaluation of Linear Technology’s LTC1068 product fam-  
ily in a 28-lead SSOP package. The LTC1068 product  
family consists of four monolithic clock-tunable filter  
building blocks.  
Demo Board 104 is available in four assembled versions:  
Assembly104-AfeaturesthelownoiseLTC1068CG(clock-  
to-centerfrequencyratio=100), assembly104-Bfeatures  
thelownoiseLTC1068CG-200(clock-to-centerfrequency  
ratio = 200), assembly 104-C features the high frequency  
LTC1068CG-25(clock-to-centerfrequencyratio=25)and  
assembly 104-D features the low power LTC1068CG-50  
(clock-to-center frequency ratio = 50).  
Any parasitic switching transients during the rising and  
fallingedgesoftheincomingclockarenotpartoftheclock  
feedthroughspecifications. Switchingtransientshavefre-  
quency contents much higher than the applied clock; their  
amplitude strongly depends on scope probing techniques  
as well as grounding and power supply bypassing. The  
clock feedthrough, can be greatly reduced by adding a  
simple RC lowpass network at the final filter output. This  
RC will completely eliminate any switching transients.  
All DC104 boards are assembled with input, output and  
power supply test terminals, a 28-lead SSOP filter device  
(LTC1068CG Series), a dual op amp in an SO-8 for input  
or output buffers and decoupling capacitors for the filter  
and op amps. The filter and dual op amps share the power  
Wideband Noise  
The wideband noise of the filter is the total RMS value of  
the device’s noise spectral density and is used to deter-  
13  
LTC1068 Series  
U
W U U  
APPLICATIONS INFORMATION  
surface mount resistors. The printed circuit layout of  
DC104 is arranged so that most of the resistor connec-  
tions for one 8th order filter or two 4th order filters are  
available on the board. A resistor makes a connection  
between two filter nodes on the board and for most filter  
designs, no wiring is required.  
supply inputs to the board. Jumpers JPA to JPD on the  
board configure the filter’s second order circuit modes,  
jumper JP1 configures the filter for dual or single supply  
operation and jumpers JP2 (A-D) to JP3 (A-D) configure  
the op amp buffers as inverting or noninverting. Surface  
mount pads are available on the board for 1206 size  
DC104 Component Side Silkscreen  
DC104 Component Side  
DC104 Solder Side  
14  
LTC1068 Series  
U
W U U  
APPLICATIONS INFORMATION  
15  
LTC1068 Series  
U
W U U  
APPLICATIONS INFORMATION  
A Surface Mount Printed Circuit Layout  
the folowing figures for an 8th order elliptic bandpass  
filter. The total board area of this 8th order filter is 1" by  
0.8". No attempt was made to design the smallest possible  
printed circuit layout.  
A very compact surface mount printed circuit layout can  
be designed with 0603 size surface mount resistors,  
capacitors and a 28-pin SSOP of the LTC1068 product  
family. An example of a printed circuit layout is shown in  
70kHz Elliptic Bandpass Filter, fCENTER = fCLK/25 (Maximum fCENTER is 80kHz, VS = ±5V)  
R
28k  
R
R
23.2k  
11.3k  
H1  
L2  
H2  
1
2
28  
27  
INV B  
INV C  
R22 4.99k  
R32 107k  
R21 4.99k  
HPB/NB  
HPC/NC  
R11 29.4k  
R31 24.9k  
R41 20.5k  
3
4
26  
25  
BPB  
LPB  
BPC  
LPC  
V
IN  
R52  
R51  
4.99k  
5
6
7
8
24  
23  
22  
21  
4.99k R62 56.2k  
U1  
LTC1068-25  
SB  
SC  
V
–5V  
NC  
R61 11.3k  
C2  
NC  
AGND  
0.1µF  
+
1.75MHz  
CLK  
5V  
V
C1  
0.1µF  
9
20  
19  
R64 10k  
NC  
SA  
NC  
SD  
10  
R54  
4.99k  
R43 43.2k  
R33 59k  
11  
12  
13  
14  
18  
LPA  
LPD  
BPD  
R44 17.4k  
R34 63.4k  
R24 7.5k  
17  
16  
15  
BPA  
R23 4.99k  
HPA/NA  
INV A  
HPD/ND  
INV D  
R
L3  
R
15.4k  
H3  
45.3K  
V
OUT  
1068 TA07a  
Gain vs Frequency  
FilterCAD Custom Inputs for fC = 70kHz  
10  
0
2nd ORDER SECTION  
f (kHz)  
O
Q
f (kHz)  
TYPE  
HPN  
LPN  
LPN  
BP  
MODE  
2b  
N
B
C
A
D
67.7624  
67.0851  
73.9324  
73.3547  
5.7236  
20.5500  
15.1339  
16.3491  
58.3011  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
81.6810  
81.0295  
1bn  
2n  
2b  
20  
60  
FREQUENCY (kHz)  
80 90  
30 40 50  
70  
100  
1068 TA07b  
16  
LTC1068 Series  
U
W U U  
APPLICATIONS INFORMATION  
Surface Mount Components  
(Board Area = 1" × 0.8")  
R
R11  
H1  
R21  
R31  
R22  
R32  
R51  
R61  
U1  
R52  
R41  
R62  
R64  
C2  
C1  
R43  
R33  
R44  
R34  
R54  
R23  
R24  
R
H2  
R
L3  
R
R
H3  
L2  
1068 TA08  
Component Side  
Solder Side  
V
IN  
R
H1  
R11  
R51  
R61  
R21  
R31  
R41  
R22  
R52  
R32  
GND  
GND  
R62  
V
R64  
R43  
R33  
R44  
+
V
R54  
R34  
R24  
R23  
R
L3  
R
H2  
R
R
H3  
L2  
V
OUT  
1068 TA09  
1068 TA10  
17  
LTC1068 Series  
U
TYPICAL APPLICATIONS  
LTC1068-200 8th Order Linear Phase Lowpass, fCUTOFF = fCLK/400  
for Ultralow Frequency Applications  
R
R
L2  
14.3k  
L1  
23.2k  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
INV B  
INV C  
HPC/NC  
BPC  
R21 12.4k  
R31 10k  
R22 15.4k  
R32 10k  
R11  
14.3k  
HPB/NB  
BPB  
Gain and Group Delay  
vs Frequency  
3
V
IN  
R41 15.4k  
R52 5.11k  
4
10  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
LPB  
LPC  
R62 9.09k  
5
SB  
SC  
GAIN  
–10  
–20  
–30  
40  
50  
60  
–70  
80  
90  
LTC1068-200  
6
5V  
NC  
V
7
AGND  
NC  
CLK  
0.1µF  
8
+
5V  
400kHz  
V
0.1µF  
R64 9.09k  
R54 5.11k  
9
GROUP  
DELAY  
NC  
NC  
10  
11  
12  
13  
14  
SA  
SD  
R43 12.4k  
LPA  
LPD  
V
OUT  
R33 12.4k  
R23 10k  
R34 10k  
BPA  
HPA/NA  
INV A  
BPD  
R24 15.4k  
0.1  
1
10  
HPD/ND  
INV D  
FREQUENCY (Hz)  
1068 TA11b  
R
L3  
R
23.2k  
B3  
23.2k  
1068 TA11a  
FilterCAD Custom Inputs for fC = 1Hz  
2nd ORDER SECTION  
f (Hz)  
O
Q
Q
TYPE  
MODE  
N
B
C
A
D
1.7947  
1.6002  
1.7961  
1.6070  
0.7347  
0.5195  
1.1369  
0.5217  
LP  
LP  
3
1b  
3s  
1b  
1.0159  
LPBP  
LP  
18  
LTC1068 Series  
U
TYPICAL APPLICATIONS  
LTC1068-50 8th Order Linear Phase Lowpass, fCUTOFF = fCLK/50  
for Single Supply Low Power Applictions. Maximum fCUTOFF is  
20kHz with a 3.3V Supply and 40kHz with a 5V Supply  
R
R
L2  
A1  
9.09k  
56.2k  
R
R
H2  
34k  
B1  
13.3k  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
INV B  
INV C  
HPC/NC  
BPC  
R21 20.5k  
R31 10k  
R22 43.2k  
R32 43.2k  
R42 196k  
R11  
22.6k  
HPB/NB  
BPB  
Gain and Group Delay  
vs Frequency  
150  
3
V
IN  
R41 22.6k  
4
10  
0
LPB  
LPC  
5
140  
SB  
SC  
GAIN  
LTC1068-50  
6
–10  
–20  
–30  
40  
50  
60  
–70  
80  
130  
120  
NC  
V
7
AGND  
NC  
CLK  
8
110  
+
3.3V  
500kHz  
V
GROUP  
DELAY  
0.1µF  
9
100  
NC  
NC  
10  
11  
12  
13  
14  
90  
80  
70  
60  
SA  
SD  
R43 48.7k  
R44 34.8k  
R34 14.3k  
R24 16.9k  
LPA  
LPD  
R33 12.7k  
R23 10.7k  
1µF  
BPA  
HPA/NA  
INV A  
BPD  
HPD/ND  
INV D  
1
10  
100  
FREQUENCY (kHz)  
1068 TA12b  
R
L3  
R
24.9k  
B3  
26.7k  
V
OUT  
1068 TA12a  
FilterCAD Custom Inputs for fC = 10kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
Q
N
TYPE  
MODE  
4a3  
2n  
O
N
B
C
A
D
9.5241  
11.0472  
11.0441  
6.9687  
0.5248  
1.1258  
1.3392  
0.6082  
0.5248  
AP  
LPN  
LPBP  
LP  
21.7724  
1.5781  
2s  
3
19  
LTC1068 Series  
TYPICAL APPLICATIONS  
U
LTC1068-25 8th Order Lowpass, fCUTOFF = fCLK/32,  
Attenuation 50dB at (1.25)(fCUTOFF)and 60dB at  
(1.5)(fCUTOFF). Maximum fCUTOFF = 120kHz  
R
18.2k  
R
R
40.2k  
36.5k  
H1  
L2  
R
L1  
26.7k  
H2  
1
2
28  
27  
INV B  
INV C  
R22 10k  
R21 10k  
R31 10k  
HPB/NB  
HPC/NC  
R11 32.4k  
R32 32.4k  
3
4
26  
25  
BPB  
LPB  
BPC  
LPC  
V
IN  
Gain vs Frequency  
R52  
R61  
2.21k  
R51  
4.99k  
10  
0
5
6
7
8
24  
23  
22  
21  
4.99k R62 5.9k  
SB  
SC  
LTC1068-25  
V
–5V  
NC  
0.1µF  
–10  
–20  
–30  
–40  
–50  
60  
–70  
80  
NC  
AGND  
+
3.2MHz  
CLK  
5V  
V
0.1µF  
9
20  
19  
R64 3.16k  
NC  
SA  
NC  
SD  
R63 8.45k  
10  
R54  
4.99k  
R53  
4.99k  
11  
12  
13  
14  
18  
LPA  
LPD  
BPD  
R33 118k  
R34 15k  
R24 10k  
17  
16  
15  
BPA  
R23 10k  
HPA/NA  
INV A  
HPD/ND  
INV D  
20  
100  
500  
FREQUENCY (kHz)  
1069 TA13b  
R
L3  
20.5K  
R
H3  
53.6k  
V
OUT  
1068 TA13a  
FilterCAD Custom Inputs for fC = 100kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
TYPE  
LPN  
LPN  
LPN  
LP  
MODE  
1bn  
1bn  
1bn  
1b  
O
N
B
C
A
D
70.9153  
94.2154  
101.4936  
79.7030  
0.5540  
2.3848  
9.3564  
0.9340  
127.2678  
154.1187  
230.5192  
20  
LTC1068 Series  
U
TYPICAL APPLICATIONS  
LTC1068 8th Order Linear Phase Bandpass, fCENTER = fCLK/128,  
Passband 3dB at (0.88)(fCENTER) and (1.12)(fCENTER). Maximum  
fCENTER = 40kHz with ±5V Supplies  
R
L1  
63.4k  
R
R
B2  
16.2k  
H1  
7.5k  
1
2
24  
23  
INV B  
INV C  
R21  
R22  
4.99k  
4.99k  
HPB/NB  
BPB  
HPC/NC  
R11  
R31  
19.6k  
R32  
21.5k  
26.1k  
Gain vs Frequency  
3
4
22  
21  
V
IN  
BPC  
LPC  
R41  
12.1k  
10  
0
LPB  
R52  
4.99k  
R62  
7.5k  
LTC1068  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
5
6
20  
19  
SB  
AGND  
SC  
–5V  
0.1µF  
V
7
+
5V  
V
0.1µF  
18  
17  
CLK  
SD  
1.28MHz  
R64 17.8k  
8
9
SA  
R43  
10.7k  
R54  
4.99k  
16  
15  
LPA  
LPD  
BPD  
V
OUT  
R33  
14.7k  
R34  
28.7k  
10  
BPA  
R23  
4.99k  
R24  
4.99k  
1
10  
100  
11  
12  
14  
13  
FREQUENCY (kHz)  
HPA/NA  
INV A  
HPD/ND  
INV D  
1068 TA14b  
R
R
L3  
H3  
14.7k  
40.2k  
24-Lead Package  
1068 TA14a  
FilterCAD Custom Inputs for fC = 10kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
TYPE  
HPN  
BP  
MODE  
O
N
B
C
A
D
8.2199  
9.9188  
8.7411  
11.3122  
2.6702  
3.3388  
2.1125  
5.0830  
4.4025  
3a  
1b  
3a  
1b  
21.1672  
LPN  
BP  
21  
LTC1068 Series  
U
TYPICAL APPLICATIONS  
LTC1068 8th Order Linear Phase Bandpass, fCENTER = fCLK/100,  
Passband 3dB at (0.88)(fCENTER) and (1.12)(fCENTER). Maximum  
fCENTER = 50kHz with ±5V Supplies  
R
R
B2  
14.3k  
L1  
24.9k  
R
H1  
51.1k  
1
2
24  
23  
INV B  
INV C  
R21  
10k  
R22  
10k  
HPB/NB  
BPB  
HPC/NC  
BPC  
R31  
25.5k  
R32  
32.4k  
R11  
24.3k  
Gain vs Frequency  
3
4
22  
21  
V
IN  
R42  
26.1k  
R41  
107k  
10  
0
LPB  
LPC  
SC  
5
6
7
20  
19  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
SB  
AGND  
V
–5V  
0.1µF  
+
5V  
V
LTC1068  
18  
17  
0.1µF  
R63  
2.32k  
f
1MHz  
CLK  
8
9
SA  
SD  
R53  
4.99k  
R44  
12.1k  
R43  
16.9k  
16  
15  
LPA  
BPA  
LPD  
BPD  
R33  
17.4k  
R34  
19.1k  
10  
R23  
7.32k  
R24  
10k  
1
10  
100  
11  
12  
14  
13  
HPA/NA  
INV A  
HPD/ND  
INV D  
FREQUENCY (kHz)  
1068 TA15b  
R
B3  
24-Lead Package  
V
OUT  
18.7k  
1068 TA15a  
FilterCAD Custom Inputs for fC = 10kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
TYPE  
LPN  
BP  
MODE  
O
N
B
C
A
D
10.4569  
11.7607  
8.6632  
9.0909  
2.6999  
3.9841  
2.1384  
1.8356  
17.4706  
2n  
2
BP  
2b  
3
BP  
22  
LTC1068 Series  
U
TYPICAL APPLICATIONS  
LTC1068 8th Order Linear Phase Bandpass, fCENTER = fCLK/100,  
Passband 3dB at (0.7)(fCENTER) and (1.3)(fCENTER), Superior Sinewave  
Burst Response, Maximum fCENTER = 60kHz with ±5V Supplies  
R
R
L2  
10k  
L1  
348k  
R
R
H2  
200k  
H1  
11k  
1
2
24  
23  
INV B  
INV C  
R21  
R22  
14.7k  
18.2k  
HPB/NB  
BPB  
HPC/NC  
BPC  
R31  
10k  
R32  
10k  
R11  
11k  
3
4
22  
21  
Gain vs Frequency  
V
IN  
R42  
18.7k  
R41  
14.3k  
10  
0
LPC  
SC  
LPB  
5
6
7
20  
19  
SB  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
AGND  
V
–5V  
0.1µF  
+
5V  
V
LTC1068  
18  
17  
0.1µF  
f
1MHz  
CLK  
8
SA  
SD  
R43  
R44  
21.5k  
10k  
9
16  
15  
LPA  
BPA  
LPD  
BPD  
R33  
11.3k  
R34  
17.8k  
10  
R23  
21k  
R24  
15.4k  
1
10  
100  
11  
12  
14  
13  
HPA/NA  
INV A  
HPD/ND  
INV D  
FREQUENCY (kHz)  
1068 TA16b  
R
H3  
V
OUT  
95.3k  
R
L3  
24-Lead Package  
12.4k  
1068 TA16a  
FilterCAD Custom Inputs for fC = 10kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
Q
N
TYPE  
HPN  
LPN  
LPN  
BP  
MODE  
3a  
O
N
B
C
A
D
10.1389  
9.8654  
9.8830  
12.4097  
0.7087  
0.5540  
0.5434  
1.5264  
1.7779  
44.7214  
27.7227  
3a  
3a  
3
23  
LTC1068 Series  
U
TYPICAL APPLICATIONS  
LTC1068-50 8th Order Linear Phase Bandpass, fCENTER = fCLK/40,  
Passband 3dB at (0.8)(fCENTER) and (1.2)(fCENTER) for Single Supply  
Low Power Applicaions. Maximum fCENTER = 25kHz with a Single 5V Supply  
R
18.2k  
R
17.8k  
84.5k  
H1  
L2  
R
H2  
1
2
28  
27  
INV B  
INV C  
R22 11.3k  
R21 10k  
HPB/NB  
HPC/NC  
R11 36.5k  
R31 30.1k  
R41 10.7k  
R32 29.4k  
R42 10k  
Gain vs Frequency  
3
4
26  
25  
BPB  
LPB  
BPC  
LPC  
V
IN  
10  
0
R51  
4.99k  
R61  
1.74k  
5
6
7
8
24  
23  
SB  
SC  
LTC1068-50  
–10  
20  
30  
40  
50  
60  
70  
V
NC  
22  
21  
NC  
AGND  
+
CLK  
400kHz  
5V  
V
1µF  
0.1µF  
9
20  
19  
NC  
SA  
NC  
SD  
10  
R44 22.1k  
R43 12.1k  
R33 26.7k  
R23 10k  
11  
12  
13  
14  
18  
LPA  
LPD  
BPD  
R34 28k  
R24 10k  
17  
16  
15  
BPA  
80  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (kHz)  
HPA/NA  
INV A  
HPD/ND  
INV D  
1068 TA17b  
R
L3  
R
H3  
47.5k  
15.8K  
V
OUT  
1068 TA17a  
FilterCAD Custom Inputs for fC = 10kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
TYPE  
HPN  
LPN  
LPN  
BP  
MODE  
2b  
O
N
B
C
A
D
8.7384  
11.6756  
10.8117  
9.6415  
4.0091  
4.6752  
4.2066  
3.6831  
4.0678  
19.1786  
16.0127  
2n  
2n  
2
24  
LTC1068 Series  
U
TYPICAL APPLICATIONS  
LTC1068-25 8th Order Bandpass, fCENTER = fCLK/32,  
Passband 3dB at (0.965)(fCENTER) and (1.35)(fCENTER).  
Maximum fCENTER = 80kHz with ±5V Supplies  
R
118k  
R
47.5k  
B2  
H1  
1
2
28  
27  
INV B  
INV C  
R22 4.99k  
R32 130k  
R21 4.99k  
R31 97.6k  
HPB/NB  
HPC/NC  
R11 121k  
3
4
26  
25  
Gain vs Frequency  
BPB  
LPB  
BPC  
LPC  
V
IN  
10  
0
R52  
R61  
8.87k  
R51  
4.99k  
5
6
7
8
24  
23  
22  
21  
4.99k R62 9.53k  
SB  
SC  
LTC1068-25  
–10  
20  
30  
40  
50  
60  
70  
–5V  
V
NC  
0.1µF  
NC  
AGND  
+
CLK  
320kHz  
5V  
V
0.1µF  
9
20  
19  
R64 6.98k  
NC  
SA  
NC  
SD  
R63 6.49k  
10  
R54  
4.99k  
R53  
4.99k  
11  
12  
13  
14  
18  
LPA  
LPD  
BPD  
R33 124k  
R34 102k  
R24 4.99k  
17  
16  
15  
BPA  
7.5  
8
8.5  
9 9.5 10 10.5 11  
FREQUENCY (kHz)  
11.5  
12 12.5  
R23 4.99k  
HPA/NA  
INV A  
HPD/ND  
INV D  
1068 TA18b  
R
L3  
78.7K  
V
OUT  
1068 TA18a  
FilterCAD Custom Inputs for fC = 10kHz  
2nd ORDER SECTION  
f (kHz)  
Q
TYPE  
BP  
MODE  
1b  
O
B
C
A
D
10.2398  
10.3699  
9.6241  
9.7744  
15.6469  
21.1060  
18.6841  
15.6092  
BP  
1b  
LP  
1b  
LP  
1b  
25  
LTC1068 Series  
TYPICAL APPLICATIONS  
U
LTC1068-200 8th Order Highpass, fCENTER = fCLK/200,  
Attenuation 60dB at (0.6)(fCENTER).  
Maximum fCUTOFF = 20kHz with ±5V Supplies  
R
H1  
11.8k  
R
249k  
L2  
R
L1  
66.5k  
R
H2  
20.5k  
1
2
28  
27  
INV B  
INV C  
R22 21.5k  
R21 10k  
R31 16.5k  
R41 11.3k  
HPB/NB  
HPB/NC  
BPC  
Gain vs Frequency  
R11 18.2k  
R32 10.2k  
R42 18.7k  
3
4
26  
25  
BPB  
LPB  
V
IN  
10  
0
LPC  
5
6
7
8
24  
23  
SB  
SC  
10  
20  
30  
40  
50  
60  
70  
80  
LTC1068-200  
V
5V  
NC  
0.1µF  
22  
21  
NC  
AGND  
+
CLK  
200kHz  
5V  
V
0.1µF  
9
20  
19  
R63 2.55k  
NC  
SA  
NC  
SD  
10  
R53  
4.99k  
R44 21k  
R34 14.3k  
R24 20.5k  
R43 20.5k  
11  
12  
13  
14  
18  
LPA  
LPD  
BPD  
R33 36.5k  
R23 10k  
17  
16  
15  
BPA  
0.2  
1
10  
FREQUENCY (kHz)  
HPA/NA  
INV A  
HPD  
1068TA19b  
INV D  
R
H3  
10k  
V
OUT  
C23 [1/(2π • R23 • C23) = (160)(f  
)]  
CUTOFF  
1068 TA19a  
FilterCAD Custom Inputs for fC = 1kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
TYPE  
HPN  
HPN  
HPN  
HP  
MODE  
3a  
O
N
B
C
A
D
0.9407  
1.0723  
0.9088  
0.9880  
1.5964  
0.5156  
3.4293  
0.7001  
0.4212  
0.2869  
0.5815  
0.0000  
3a  
2b  
3
26  
LTC1068 Series  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
G Package  
28-Lead Plastic SSOP (0.209)  
(LTC DWG # 05-08-1640)  
0.397 – 0.407*  
(10.07 – 10.33)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
0.301 – 0.311  
(7.65 – 7.90)  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
0.205 – 0.212**  
(5.20 – 5.38)  
0.068 – 0.078  
(1.73 – 1.99)  
0° – 8°  
0.0256  
(0.65)  
BSC  
0.005 – 0.009  
(0.13 – 0.22)  
0.022 – 0.037  
(0.55 – 0.95)  
0.002 – 0.008  
(0.05 – 0.21)  
0.010 – 0.015  
(0.25 – 0.38)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
G28 SSOP 0694  
N Package  
24-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
1.265*  
(32.131)  
MAX  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
10  
14  
11  
13  
12  
0.255 ± 0.015*  
(6.477 ± 0.381)  
3
4
5
6
7
8
9
1
2
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.020  
(0.508)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
0.125  
(3.175)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.325  
–0.015  
0.100 ± 0.010  
(2.540 ± 0.254)  
+0.889  
8.255  
N24 1197  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
27  
LTC1068 Series  
TYPICAL APPLICATION  
U
LTC1068-200 8th Order Notch, fNOTCH = fCLK/256, f – 3dB at (0.9) (fNOTCH) and (1.05)(fNOTCH),  
Attenuation at fNOTCH Greater Than 70dB for fNOTCH in the Frequency Range 200Hz to 5kHz  
C22 470pF  
R
5.11k  
H1  
C21  
R
5.11k  
H2  
470pF  
1
2
28  
27  
INV B  
INV C  
R22 6.34k  
R32 84.3k  
R21 5.11k  
HPB/NB  
HPB/NC  
R11 51.1k  
R31 51.1k  
R41 100k  
3
4
26  
25  
BPB  
LPB  
BPC  
LPC  
V
IN  
R
66.5k  
R52  
L2  
R51  
5.11k  
R61  
8.06k  
5
6
7
8
24  
23  
22  
21  
5.11k R62 5.76k  
SB  
SC  
LTC1068-200  
V
–5V  
CLK  
NC  
0.1µF  
NC  
AGND  
+
CLK  
f
= (256)(f  
)
NOTCH  
5V  
V
0.1µF  
9
20  
19  
R64 7.87k  
NC  
SA  
R63  
NC  
SD  
8.06k  
10  
R54  
R53  
5.11k  
R43  
178k  
5.11k  
11  
12  
13  
14  
18  
LPA  
LPD  
BPD  
R34 75k  
17  
16  
15  
BPA  
R
G
R33 124k  
R24 7.32k  
15k  
HPA/NA  
INV A  
HPD  
R23 10k  
INV D  
R
5.11k  
475k  
H4  
+
C23 470pF  
R
H3  
5.11k  
R
L4  
LT1354  
V
OUT  
1068 TA01  
Gain vs Frequency  
10  
0
–10  
20  
30  
40  
50  
60  
–70  
80  
90  
0.8  
0.9  
1.0  
1.1  
IN NOTCH  
1.2  
)
RELATIVE FREQUENCY (f /f  
1068 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
50:1 and 100:1 Clock-to-f Ratios, f to 100kHz, V = Up to ±7.5V  
LTC1064  
Universal Filter, Quad 2nd Order  
O
O
S
LTC1067/LTC1067-50  
LTC1164  
Low Power, Dual 2nd Order  
Rail-to-Rail, V = 3V to ±5V  
S
Low Power Universal Filter, Quad 2nd Order  
High Speed Universal Filter, Quad 2nd Order  
50:1 and 100:1 Clock-to-f Ratios, f to 20kHz, V = Up to ±7.5V  
O O S  
LTC1264  
20:1 Clock-to-f Ratio, f to 200kHz, V = Up to ±7.5V  
O
O
S
1068fa LT/TP 0998 2K REV A • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
LINEAR TECHNOLOGY CORPORATION 1996  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1068IG-50

Clock-Tunable, Quad Second Order, Filter Building Blocks
Linear

LTC1068IG-50#PBF

IC QUAD SWITCHED CAPACITOR FILTER, RESISTOR PROGRAMMABLE, UNIVERSAL, PDSO28, 0.209 INCH, PLASTIC, SSOP-28, Active Filter
Linear

LTC1068IG-PBF

Clock-Tunable, Quad Second Order, Filter Building Blocks
Linear

LTC1068IN

Clock-Tunable, Quad Second Order, Filter Building Blocks
Linear

LTC1068IN#PBF

LTC1068 - Clock-Tunable, Quad Second Order, Filter Building Blocks; Package: PDIP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1068IN#TR

IC QUAD SWITCHED CAPACITOR FILTER, RESISTOR PROGRAMMABLE, UNIVERSAL, PDIP24, 0.300 INCH, PLASTIC, DIP-24, Active Filter
Linear

LTC1068IN#TRPBF

IC QUAD SWITCHED CAPACITOR FILTER, RESISTOR PROGRAMMABLE, UNIVERSAL, PDIP24, 0.300 INCH, LEAD FREE, PLASTIC, DIP-24, Active Filter
Linear

LTC1068IN-PBF

Clock-Tunable, Quad Second Order, Filter Building Blocks
Linear

LTC1069-1

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear

LTC1069-1C

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear

LTC1069-1CN8

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear

LTC1069-1CN8#PBF

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear