LTC1068IN-PBF [Linear]

Clock-Tunable, Quad Second Order, Filter Building Blocks; 时钟可调,四阶,过滤积木
LTC1068IN-PBF
型号: LTC1068IN-PBF
厂家: Linear    Linear
描述:

Clock-Tunable, Quad Second Order, Filter Building Blocks
时钟可调,四阶,过滤积木

时钟
文件: 总30页 (文件大小:388K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1068 Series  
Clock-Tunable, Quad  
Second Order, Filter Building Blocks  
FEATURES  
DESCRIPTION  
The LTC®1068 product family consists of four monolithic  
clock-tunablelterbuildingblocks.Eachproductcontains  
fourmatched,lownoise,highaccuracy2ndorderswitched-  
capacitorltersections. Anexternalclocktunesthecenter  
frequency of each 2nd order filter section. The LTC1068  
products differ only in their clock-to-center frequency  
ratio. The clock-to-center frequency ratio is set to 200:1  
(LTC1068-200), 100:1 (LTC1068), 50:1 (LTC1068-50) or  
25:1(LTC1068-25).Externalresistorscanmodifytheclock-  
to-center frequency ratio. High performance, quad 2nd  
order, dual 4th order or 8th order filters can be designed  
with an LTC1068 family product. Designing filters with an  
LTC1068 product is fully supported by FilterCAD™ filter  
design software for Windows.  
n
Four Identical 2nd Order Filter Sections in an  
SSOP Package  
2nd Order Section Center Frequency Error:  
0.3% Typical and 0.ꢀ% ꢁaꢂiꢃuꢃ  
Low Noise per 2nd Order Section, Q ≤ 5:  
n
n
LTC106ꢀ-200 50µV  
LTC106ꢀ-50 75µV  
, LTC106ꢀ 50µV  
RꢁS  
RꢁS  
, LTC106ꢀ-25 90µV  
Low Power SuppRlyCSurrent: 4.5mA, SinRgleS5V,  
LTC1068-50  
n
n
Operation with 5V Power Supply, Single 5V  
Supply or Single 3.3V Supply  
APPLICATIONS  
n
Lowpass or Highpass Filters:  
LTC1068-200, 0.5Hz to 25kHz; LTC1068, 1Hz to  
50kHz; LTC1068-50, 2Hz to 50kHz; LTC1068-25,  
4Hz to 200kHz  
The LTC1068 products are available in a 28-pin SSOP  
surface mount package. A customized version of an  
LTC1068 family product can be obtained in a 16-lead SO  
package with internal thin-film resistors. Please contact  
LTC Marketing for details.  
n
Bandpass or Bandreject (Notch) Filters:  
LTC1068-200, 0.5Hz to 15kHz; LTC1068, 1Hz to  
30kHz; LTC1068-50, 2Hz to 30kHz; LTC1068-25,  
4Hz to 140kHz  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
FilterCAD is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
TYPICAL APPLICATION  
Dual, ꢁatched, 4th Order Butterworth Lowpass Filters, Clock-Tunable Up  
to 200kHz f – 3dB = fCLK/25, 4th Order Filter Noise = 60µVRꢁS  
R12 14k  
R11 20k  
Gain vs Frequency  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
INV B  
HPB/NB  
BPB  
INV C  
HPC/NC  
BPC  
IN1  
R21 14k  
R31 20k  
R22 20k  
R32 10k  
10  
0
3
4
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
V
LPB  
LPC  
OUT1  
5
SB  
SC  
LTC1068-25  
6
–5V  
NC  
V
1µF  
7
AGND  
NC  
CLK  
8
+
5V  
f
= (25)(f – 3dB)  
CLK  
V
0.1µF  
9
NC  
NC  
10  
11  
12  
13  
14  
SA  
SD  
0.1  
1
10  
V
LPA  
LPD  
OUT2  
R33 20k  
R23 14k  
R34 10k  
R24 20k  
RELATIVE FREQUENCY [f /(f – 3dB)]  
IN  
BPA  
HPA/NA  
INVA  
BPD  
1068 TA02  
HPD/ND  
INVD  
R13 20k  
V
IN2  
R14 14k  
1068 TA01  
1068fc  
1
LTC1068 Series  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
+
Total Supply Voltage (V to V ) ................................12V  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC1068C ................................................ 0°C to 70°C  
LTC1068I............................................. –40°C to 85°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
+
Input Voltage at Any Pin......V – 0.3V ≤ V ≤ V + 0.3V  
IN  
Storage Temperature Range...................–65°C to 150°C  
PIN CONFIGURATION  
TOP VIEW  
1
2
28 INV C  
27 HPC/NC  
26 BPC  
INV B  
HPB/NB  
BPB  
TOP VIEW  
INV B  
HPB/NB  
BPB  
1
2
3
4
5
6
7
8
9
24 INV C  
23 HPC/NC  
22 BPC  
3
4
25 LPC  
LPB  
5
24 SC  
SB  
LPB  
21 LPC  
6
23  
V
NC  
SB  
20 SC  
7
22 NC  
AGND  
AGND  
19  
V
+
+
V
8
21 CLK  
20 NC  
18 CLK  
V
SA  
17  
16  
15  
14  
13  
SD  
9
NC  
SA  
LPA  
LPD  
10  
11  
12  
13  
14  
19 SD  
BPA 10  
HPA/NA 11  
INV A 12  
BPD  
18 LPD  
17 BPD  
16 HPD/ND  
15 INV D  
LPA  
HPD/ND  
INV D  
BPA  
HPA/NA  
INV A  
N PACKAGE  
24-LEAD PDIP  
T
= 110°C, θ = 65°C/W  
JA  
JMAX  
G PACKAGE  
28-LEAD PLASTIC SSOP  
T
= 110°C, θ = 95°C/W  
JA  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART ꢁARKING  
LTC1068  
PACKAGE DESCRIPTION  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
28-Lead Plastic SSOP  
24-Lead PDIP  
TEꢁPERATURE RANGE  
0°C to 70°C  
LTC1068CG#PBF  
LTC1068CG#TRPBF  
LTC1068IG#TRPBF  
LTC1068IG#PBF  
LTC1068  
–40°C to 85°C  
0°C to 70°C  
LTC1068-200CG#PBF  
LTC1068-200IG#PBF  
LTC1068-50CG#PBF  
LTC1068-50IG#PBF  
LTC1068-25CG#PBF  
LTC1068-25IG#PBF  
LTC1068CN#PBF  
LTC1068-200CG#TRPBF LTC1068  
LTC1068-200IG#TRPBF  
LTC1068-50CG#TRPBF  
LTC1068-50IG#TRPBF  
LTC1068-25CG#TRPBF  
LTC1068-25IG#TRPBF  
NA  
LTC1068  
LTC1068  
LTC1068  
LTC1068  
LTC1068  
LTC1068  
LTC1068  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
LTC1068IN#PBF  
NA  
24-Lead PDIP  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1068fc  
2
LTC1068 Series  
ELECTRICAL CHARACTERISTICS LTC106ꢀ (Internal Op Aꢃps). The l denotes the specifications which apply  
over the full operating teꢃperature range, otherwise specifications are at VS = 5V, TA = 25°V, unless otherwise noted.  
PARAꢁETER  
CONDITIONS  
ꢁIN  
TYP  
ꢁAX  
UNITS  
Operating Supply Voltage Range  
Voltage Swings  
3.14  
5.5  
V
l
l
l
V = 3.14V, R = 5k (Note 2)  
1.2  
2.6  
3.4  
1.6  
3.2  
4.1  
V
V
S
L
P-P  
P-P  
V
V = 4.75V, R = 5k (Note 3)  
S
L
V = 5V, R = 5k  
S
L
Output Short-Circuit Current (Source/Sink)  
V = 4.75V  
S
17/6  
20/15  
mA  
mA  
S
V = 5V  
DC Open-Loop Gain  
GBW Product  
R = 5k  
85  
dB  
MHz  
V/µs  
V
L
V = 5V  
S
6
10  
Slew Rate  
V = 5V  
S
Analog Ground Voltage (Note 4)  
V = 5V, Voltage at AGND  
S
2.5V 2ꢀ  
LTC106ꢀ (Coꢃplete Filter) VS = 5V, TA = 25°V, unless otherwise noted.  
PARAꢁETER  
CONDITIONS  
V = 4.75V, f  
ꢁIN  
TYP  
ꢁAX  
UNITS  
Clock-to-Center Frequency Ratio (Note 5)  
= 1MHz, Mode 1 (Note 3),  
CLK  
100 0.3 100 0.8  
100 0.9  
S
l
l
f = 10kHz, Q = 5, V = 0.5V ,  
RMS  
O
IN  
R1 = R3 = 49.9k, R2 = 10k  
V = 5V, f = 1MHz, Mode 1,  
100 0.3 100 0.8  
100 0.9  
S
CLK  
f = 10kHz, Q = 5, V = 1V ,  
O
IN  
RMS  
R1 = R3 = 49.9k, R2 = 10k  
l
l
Clock-to-Center Frequency Ratio,  
Side-to-Side Matching (Note 5)  
V = 4.75V, f = 1MHz, Q = 5 (Note 3)  
0.25  
0.25  
0.9  
0.9  
S
CLK  
V = 5V, f  
= 1MHz, Q = 5  
S
CLK  
l
l
Q Accuracy (Note 5)  
V = 4.75V, f  
= 1MHz, Q = 5 (Note 3)  
CLK  
1
1
3
3
S
V = 5V, f  
= 1MHz, Q = 5  
S
CLK  
f Temperature Coefficient  
1
5
ppm/°C  
ppm/°C  
mV  
O
Q Temperature Coefficient  
l
l
l
DC Offset Voltage (Note 5)  
(See Table 1)  
V = 5V, f  
= 1MHz, V  
0
15  
25  
40  
S
CLK  
OS1  
(DC Offset of Input Inverter)  
V = 5V, f = 1MHz, V  
OS2  
2
5
mV  
mV  
S
CLK  
(DC Offset of First Integrator)  
V = 5V, f = 1MHz, V  
S
CLK  
OS3  
(DC Offset of Second Integrator)  
Clock Feedthrough  
V = 5V, f = 1MHz  
0.1  
5.6  
mV  
RMS  
S
CLK  
Max Clock Frequency (Note 6)  
Power Supply Current  
V = 5V, Q ≤ 2.0, Mode 1  
S
MHz  
l
l
l
V = 3.14V, f  
= 1MHz (Note 2)  
= 1MHz (Note 3)  
3.5  
6.5  
9.5  
8
11  
15  
mA  
mA  
mA  
S
CLK  
CLK  
V = 4.75V, f  
S
V = 5V, f  
= 1MHz  
CLK  
S
1068fc  
3
LTC1068 Series  
ELECTRICAL CHARACTERISTICS LTC106ꢀ-200 (Internal Op Aꢃps). The l denotes the specifications which  
apply over the full operating teꢃperature range, otherwise specifications are at VS = 5V, TA = 25°V, unless otherwise noted.  
PARAꢁETER  
CONDITIONS  
ꢁIN  
TYP  
ꢁAX  
UNITS  
Operating Supply Voltage Range  
Voltage Swings  
3.14  
5.5  
V
l
l
l
V = 3.14V, R = 5k (Note 2)  
1.2  
2.6  
3.4  
1.6  
3.2  
4.1  
V
V
S
L
P-P  
P-P  
V
V = 4.75V, R = 5k (Note 3)  
S
L
V = 5V, R = 5k  
S
L
Output Short-Circuit Current (Source/Sink)  
V = 4.75V  
S
17/6  
20/15  
mA  
mA  
S
V = 5V  
DC Open-Loop Gain  
GBW Product  
R = 5k  
85  
dB  
MHz  
V/µs  
V
L
V = 5V  
S
6
10  
Slew Rate  
V = 5V  
S
Analog Ground Voltage (Note 4)  
V = 5V, Voltage at AGND  
S
2.5V 2ꢀ  
LTC106ꢀ-200 (Coꢃplete Filter) VS = 5V, TA = 25°V, unless otherwise noted.  
PARAꢁETER  
CONDITIONS  
ꢁIN  
TYP  
ꢁAX  
UNITS  
Clock-to-Center Frequency Ratio (Note 5)  
V = 4.75V, f  
O
R1 = R3 = 49.9k, R2 = 10k  
= 1MHz, Mode 1 (Note 3),  
CLK  
200 0.3  
200 0.8  
200 0.9  
S
l
l
f = 5kHz, Q = 5, V = 0.5V ,  
RMS  
IN  
V = 5V, f = 1MHz, Mode 1,  
200 0.3  
200 0.8  
200 0.9  
S
CLK  
f = 5Hz, Q = 5, V = 1V ,  
O
IN  
RMS  
R1 = R3 = 49.9k, R2 = 10k  
l
l
Clock-to-Center Frequency Ratio,  
Side-to-Side Matching (Note 5)  
V = 4.75V, f = 1MHz, Q = 5 (Note 3)  
0.25  
0.25  
0.9  
0.9  
S
CLK  
V = 5V, f  
= 1MHz, Q = 5  
S
CLK  
l
l
Q Accuracy (Note 5)  
V = 4.75V, f  
= 1MHz, Q = 5 (Note 3)  
CLK  
1
1
3
3
S
V = 5V, f  
= 1MHz, Q = 5  
S
CLK  
f Temperature Coefficient  
1
5
ppm/°C  
ppm/°C  
mV  
O
Q Temperature Coefficient  
l
l
l
DC Offset Voltage (Note 5)  
(See Table 1)  
V = 5V, f  
= 1MHz, V  
0
15  
25  
40  
S
CLK  
OS1  
(DC Offset of Input Inverter)  
V = 5V, f = 1MHz, V  
OS2  
2
5
mV  
mV  
S
CLK  
(DC Offset of First Integrator)  
V = 5V, f = 1MHz, V  
S
CLK  
OS3  
(DC Offset of Second Integrator)  
Clock Feedthrough  
V = 5V, f = 1MHz  
0.1  
5.6  
mV  
RMS  
S
CLK  
Max Clock Frequency (Note 6)  
Power Supply Current  
V = 5V, Q ≤ 2.0, Mode 1  
S
MHz  
l
l
l
V = 3.14V, f  
= 1MHz (Note 2)  
= 1MHz (Note 3)  
3.5  
6.5  
9.5  
8
11  
15  
mA  
mA  
mA  
S
CLK  
CLK  
V = 4.75V, f  
S
V = 5V, f  
= 1MHz  
CLK  
S
1068fc  
4
LTC1068 Series  
ELECTRICAL CHARACTERISTICS LTC106ꢀ-50 (Internal Op Aꢃps). The l denotes the specifications which  
apply over the full operating teꢃperature range, otherwise specifications are at VS = 5V, TA = 25°V, unless otherwise noted.  
PARAꢁETER  
CONDITIONS  
ꢁIN  
TYP  
ꢁAX  
UNITS  
Operating Supply Voltage Range  
Voltage Swings  
3.14  
5.5  
V
l
l
l
V = 3.14V, R = 5k (Note 2)  
1.2  
2.6  
3.4  
1.8  
3.6  
4.1  
V
V
S
L
P-P  
P-P  
V
V = 4.75V, R = 5k (Note 3)  
S
L
V = 5V, R = 5k  
S
L
Output Short-Circuit Current (Source/Sink)  
V = 3.14V  
S
17/6  
20/15  
mA  
mA  
S
V = 5V  
DC Open-Loop Gain  
GBW Product  
R = 5k  
85  
dB  
MHz  
V/µs  
V
L
V = 5V  
S
4
Slew Rate  
V = 5V  
S
7
Analog Ground Voltage (Note 4)  
V = 5V, Voltage at AGND  
S
2.175V 2ꢀ  
LTC106ꢀ-50 (Coꢃplete Filter) VS = 5V, TA = 25°V, unless otherwise noted.  
PARAꢁETER  
CONDITIONS  
V = 3.14V, f  
ꢁIN  
TYP  
ꢁAX  
UNITS  
Clock-to-Center Frequency Ratio (Note 5)  
= 250kHz, Mode 1 (Note 2),  
CLK  
50 0.3  
50 0.8  
50 0.9  
S
l
l
f = 5kHz, Q = 5, V = 0.34V ,  
RMS  
O
IN  
R1 = R3 = 49.9k, R2 = 10k  
V = 5V, f = 500kHz, Mode 1,  
50 0.3  
50 0.8  
50 0.9  
S
CLK  
f = 10kHz, Q = 5, V = 1V ,  
O
IN  
RMS  
R1 = R3 = 49.9k, R2 = 10k  
l
l
Clock-to-Center Frequency Ratio,  
Side-to-Side Matching (Note 5)  
V = 3.14V, f = 250kHz, Q = 5 (Note 2)  
0.25  
0.25  
0.9  
0.9  
S
CLK  
V = 5V, f  
= 500kHz, Q = 5  
S
CLK  
l
l
Q Accuracy (Note 5)  
V = 3.14V, f  
= 250kHz, Q = 5 (Note 2)  
CLK  
1
1
3
3
S
V = 5V, f  
= 500kHz, Q = 5  
S
CLK  
f Temperature Coefficient  
1
5
ppm/°C  
ppm/°C  
mV  
O
Q Temperature Coefficient  
l
l
l
DC Offset Voltage (Note 5)  
(See Table 1)  
V = 5V, f  
= 500kHz, V  
0
15  
25  
40  
S
CLK  
OS1  
(DC Offset of Input Inverter)  
V = 5V, f = 500kHz, V  
OS2  
–2  
–5  
mV  
mV  
S
CLK  
(DC Offset of First Integrator)  
V = 5V, f = 500kHz, V  
OS3  
S
CLK  
(DC Offset of Second Integrator)  
Clock Feedthrough  
V = 5V, f = 500kHz  
0.16  
3.4  
mV  
RMS  
S
CLK  
Max Clock Frequency (Note 6)  
Power Supply Current  
V = 5V, Q ≤ 1.6, Mode 1  
S
MHz  
l
l
l
V = 3.14V, f  
= 250kHz (Note 2)  
= 250kHz (Note 3)  
3.0  
4.3  
6.0  
5
8
11  
mA  
mA  
mA  
S
CLK  
CLK  
V = 4.75V, f  
S
V = 5V, f  
= 500kHz  
CLK  
S
1068fc  
5
LTC1068 Series  
ELECTRICAL CHARACTERISTICS LTC106ꢀ-25 (Internal Op Aꢃps). The l denotes the specifications which  
apply over the full operating teꢃperature range, otherwise specifications are at VS = 5V, TA = 25°V, unless otherwise noted.  
PARAꢁETER  
CONDITIONS  
ꢁIN  
TYP  
ꢁAX  
UNITS  
Operating Supply Voltage Range  
Voltage Swings  
3.14  
5.5  
V
l
l
l
V = 3.14V, R = 5k (Note 2)  
1.2  
2.6  
3.4  
1.6  
3.4  
4.1  
V
V
S
L
P-P  
P-P  
V
V = 4.75V, R = 5k (Note 3)  
S
L
V = 5V, R = 5k  
S
L
Output Short-Circuit Current (Source/Sink)  
V = 4.75V  
S
17/6  
20/15  
mA  
mA  
S
V = 5V  
DC Open-Loop Gain  
GBW Product  
R = 5k  
85  
dB  
MHz  
V/µs  
V
L
V = 5V  
S
6
10  
Slew Rate  
V = 5V  
S
Analog Ground Voltage (Note 4)  
V = 5V, Voltage at AGND  
S
2.5V 2ꢀ  
LTC106ꢀ-25 (Coꢃplete Filter) VS = 5V, TA = 25°V, unless otherwise noted.  
PARAꢁETER  
CONDITIONS  
V = 4.75V, f  
ꢁIN  
TYP  
ꢁAX  
UNITS  
Clock-to-Center Frequency Ratio (Note 5)  
= 500kHz, Mode 1 (Note 3),  
CLK  
25 0.3  
25 0.8  
25 0.9  
S
l
l
f = 20kHz, Q = 5, V = 0.5V ,  
RMS  
O
IN  
R1 = R3 = 49.9k, R2 = 10k  
V = 5V, f = 1MHz, Mode 1,  
25 0.3  
25 0.8  
25 0.9  
S
CLK  
f = 40kHz, Q = 5, V = 1V ,  
O
IN  
RMS  
R1 = R3 = 49.9k, R2 = 10k  
l
l
Clock-to-Center Frequency Ratio,  
Side-to-Side Matching (Note 5)  
V = 4.75V, f = 500kHz, Q = 5 (Note 3)  
0.25  
0.25  
0.9  
0.9  
S
CLK  
V = 5V, f  
= 1MHz, Q = 5  
S
CLK  
l
l
Q Accuracy (Note 5)  
V = 4.75V, f  
S
= 500kHz, Q = 5 (Note 3)  
CLK  
1
1
3
3
S
V = 5V, f  
= 1MHz, Q = 5  
CLK  
f Temperature Coefficient  
1
5
ppm/°C  
ppm/°C  
mV  
O
Q Temperature Coefficient  
l
l
l
DC Offset Voltage (Note 5)  
(See Table 1)  
V = 5V, f  
= 1MHz, V  
OS1  
0
15  
25  
40  
S
CLK  
(DC Offset of Input Inverter)  
V = 5V, f = 1MHz, V  
OS2  
–2  
–5  
mV  
mV  
S
CLK  
(DC Offset of First Integrator)  
V = 5V, f = 1MHz, V  
S
CLK  
OS3  
(DC Offset of Second Integrator)  
Clock Feedthrough  
V = 5V, f = 1MHz  
0.25  
5.6  
mV  
RMS  
S
CLK  
Max Clock Frequency (Note 6)  
Power Supply Current  
V = 5V, Q ≤ 1.6, Mode 1  
S
MHz  
l
l
l
V = 3.14V, f  
= 1MHz (Note 2)  
= 1MHz (Note 3)  
3.5  
6.5  
9.5  
8
11  
15  
mA  
mA  
mA  
S
CLK  
CLK  
V = 4.75V, f  
S
V = 5V, f  
= 1MHz  
CLK  
S
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Pin 7 (AGND) is the internal analog ground of the device. For  
single supply applications this pin should be bypassed with a 1µF  
capacitor. The biasing voltage of AGND is set with an internal resistive  
divider from Pin 8 to Pin 23 (see Block Diagram).  
Note 2: Production testing for single 3.14V supply is achieved by using  
Note 5: Side D is guaranteed by design.  
the equivalent dual supplies of 1.57V.  
Note 6: See Typical Performance Characteristics.  
Note 3: Production testing for single 4.75V supply is achieved by  
using the equivalent dual supplies of 2.375V.  
1068fc  
6
LTC1068 Series  
ELECTRICAL CHARACTERISTICS  
Table 1. Output DC Offsets One 2nd Order Section  
ꢁODE  
V
V
V
V
V
OSN  
OSBP  
OSLP  
1
1b  
2
[(1/Q) + 1 + ||HOLP||] – V /Q  
V
V
– V  
OSN OS2  
OS1  
OS1  
OS3  
OS3  
OS3  
OS3  
[(1/Q) + 1 + R2/R1] – V /Q  
V
~(V  
– V )(1 + R5/R6)  
OS3  
OSN OS2  
[V (1 + R2/R1 + R2/R3 + R2/R4) – V (R2/R3)X  
[R4/(R2 + R4)] + V [R2/(R2 + R4)]  
V
V
V
– V  
OSN OS2  
OS1  
OS3  
OS2  
3
V
V
[1 + R4/R1 + R4/R2 + R4/R3] – V (R4/R2) – V (R4/R3)  
OS1 OS2 OS3  
OS2  
OS3  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC106ꢀ  
LTC106ꢀ  
LTC106ꢀ-200  
ꢁaꢂiꢃuꢃ Q vs Center Frequency  
(ꢁodes 1, 1b, 2)  
ꢁaꢂiꢃuꢃ Q vs Center Frequency  
(ꢁodes 1, 1b, 2)  
ꢁaꢂiꢃuꢃ Q vs Center Frequency  
(ꢁodes 2, 3)  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
A: V = 3.3V, f  
S
= 1.2MHz  
= 3.2MHz  
= 6.1MHz  
A. V = 3.3V, f  
S
= 1.5MHz  
= 3.4MHz  
= 5.6MHz  
A. V = 3.3V, f  
S
= 1MHz  
CLK(MAX)  
CLK(MAX)  
CLK(MAX)  
B: V = 5V, f  
B. V = 5V, f  
B. V = 5V, f  
= 3MHz  
= 5MHz  
CLK(MAX)  
S
S
CLK(MAX)  
= 5V, f  
CLK(MAX)  
S
S
CLK(MAX)  
CLK(MAX)  
(FOR MODE 2 R4 ≥ 10R2)  
S
S
CLK(MAX)  
5V, f  
C: V  
C. V  
=
5V, f  
C. V  
=
(FOR MODE 2 R4 < 10R2)  
(FOR MODE 2, R4 ≥ 10R2)  
A
B
C
A
B
C
A
B
C
0
0
0
0
20  
30  
40  
50  
60  
70  
0
20  
30  
40  
50  
60  
0
8
12 16 20 24 28 32  
10  
10  
4
CENTER FREQUENCY, f (kHz)  
CENTER FREQUENCY, f (kHz)  
CENTER FREQUENCY, f (kHz)  
O
O
O
1068 G03  
1068 G01  
1068 G02  
LTC106ꢀ-200  
ꢁaꢂiꢃuꢃ Q vs Center Frequency  
(ꢁodes 2, 3)  
LTC106ꢀ-50  
ꢁaꢂiꢃuꢃ Q vs Center Frequency  
(ꢁodes 1, 1b, 2)  
LTC106ꢀ-50  
ꢁaꢂiꢃuꢃ Q vs Center Frequency  
(ꢁodes 2, 3)  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
A: V = 3.3V, f  
S
= 1.2MHz  
= 3.2MHz  
= 6.1MHz  
A: V = 3.3V, f  
S
= 1.1MHz  
= 2.1MHz  
= 3.6MHz  
A: V = 3.3V, f  
S
= 1.1MHz  
CLK(MAX)  
CLK(MAX)  
CLK(MAX)  
B: V = 5V, f  
B: V = 5V, f  
B: V = 5V, f  
= 2.1MHz  
= 3.6MHz  
CLK(MAX)  
S
S
CLK(MAX)  
= 5V, f  
CLK(MAX)  
S
S
CLK(MAX)  
CLK(MAX)  
S
S
CLK(MAX)  
5V, f  
C: V  
C: V  
=
5V, f  
C: V  
=
(FOR MODE 2, R4 < 10R2)  
(FOR MODE 2, R4 ≥ 10R2)  
(FOR MODE 2, R4 < 10R2)  
C
B
C
B
A
B
C
A
A
0
0
0
0
8
12 16 20 24 28 32  
4
16  
CENTER FREQUENCY, f (kHz)  
32  
16  
CENTER FREQUENCY, f (kHz)  
32  
0
8
12  
20 24 28  
0
8
12  
20 24 28  
4
4
CENTER FREQUENCY, f (kHz)  
O
O
O
1068 G04  
1068 G05  
1068 G06  
1068fc  
7
LTC1068 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC106ꢀ-25  
ꢁaꢂiꢃuꢃ Q vs Center Frequency  
(ꢁodes 1, 1b, 2)  
LTC106ꢀ-25  
ꢁaꢂiꢃuꢃ Q vs Center Frequency  
(ꢁodes 2, 3)  
LTC106ꢀ Center Frequency  
Variation vs Clock Frequency  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 5V  
A: V = 3.3V, f  
S
= 1.2MHz  
= 3.4MHz  
= 6.1MHz  
A: V = 3.3V, f  
S
= 1MHz  
= 3MHz  
= 5MHz  
S
CLK(MAX)  
CLK(MAX)  
Q = 5, REFERENCE  
B: V = 5V, f  
B: V = 5V, f  
S
S
CLK(MAX)  
S
S
CLK(MAX)  
CENTER FREQUENCY  
WITH f  
C: V  
= 5V, f  
CLK(MAX)  
C: V  
= 5V, f  
CLK(MAX)  
= 0.75MHz  
(FOR MODE 2, R4 ≥ 10R2)  
(FOR MODE 2, R4 < 10R2)  
CLK  
MODE 3  
MODE 1  
–0.2  
–0.4  
–0.6  
B
B
C
C
A
A
0
0
0
64  
96 128 160 192 224  
0
64  
96 128 160 192 224  
32  
32  
0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25  
CLOCK FREQUENCY (MHz)  
CENTER FREQUENCY, f (kHz)  
FREQUENCY, f (kHz)  
O
O
1068 G07  
1068 G08  
1068 G09  
LTC106ꢀ-200 Center Frequency  
Variation vs Clock Frequency  
LTC106ꢀ-50 Center Frequency  
Variation vs Clock Frequency  
LTC106ꢀ-25 Center Frequency  
Variation vs Clock Frequency  
0.20  
0.15  
0.4  
0.3  
0.2  
0.1  
0
1.8  
1.3  
0.8  
0.3  
V
= 5V  
S
MODE 1  
MODE 3  
Q = 5, REFERENCE  
CENTER FREQUENCY  
WITH f  
0.10  
= 0.5MHz  
CLK  
0.05  
MODE 3  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
MODE 1  
MODE 1  
V
= 5V  
V
= 5V  
S
S
Q = 5, REFERENCE  
Q = 5, REFERENCE  
MODE 3  
1.5  
–0.1  
–0.2  
CENTER FREQUENCY  
WITH f  
CENTER FREQUENCY  
WITH f  
= 0.5MHz  
= 0.75MHz  
CLK  
CLK  
0
0.5  
1.0  
1.25  
1.5  
1.75  
2.0  
0.5  
1.0  
2.0  
2.5  
3.0  
3.5  
0.75  
0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25  
CLOCK FREQUENCY (MHz)  
CLOCK FREQUENCY (MHz)  
CLOCK FREQUENCY (MHz)  
1068 G11  
1068 G12  
1068 G10  
LTC106ꢀ/LTC106ꢀ-200  
Noise vs Q  
LTC106ꢀ-50 Noise vs Q  
LTC106ꢀ-25 Noise vs Q  
300  
250  
200  
150  
100  
50  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
5V  
5V  
5V  
5V  
3.3V  
5V  
3.3V  
5V  
3.3V  
0
0
0
25 30  
0
5
10 15 20  
Q
35 40  
25 30  
25 30  
0
5
10 15 20  
Q
35 40  
0
5
10 15 20  
Q
35 40  
1068 G15  
1068 G13  
1068 G14  
1068fc  
8
LTC1068 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Noise Increase vs R2/R4 Ratio  
(ꢁode 3)  
Noise Increase vs R5/R6 Ratio  
(ꢁode 1b)  
2.0  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
0
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
0
0
1.0 1.5 2.0  
R5/R6 RATIO  
2.5 3.0 3.5  
0.5  
0.2  
0.6  
0.8 0.9  
0.3 0.4 0.5  
0.7  
1.0  
R2/R4 RATIO  
1068 G17  
1068 G16  
LTC106ꢀ/LTC106ꢀ-200/  
LTC106ꢀ-25 Power Supply  
Current vs Power Supply  
LTC106ꢀ-50 Power Supply  
Current vs Power Supply  
10.5  
9.5  
8.5  
7.5  
8
7
6
5
70°C  
25°C  
70°C  
25°C  
–20°C  
–20°C  
6.5  
5.5  
4.5  
4
3
2
7
9
10  
3
4
5
6
8
7
9
10  
3
4
5
6
8
TOTAL POWER SUPPLY (V)  
TOTAL POWER SUPPLY (V)  
1068 G18  
1068 G19  
1068fc  
9
LTC1068 Series  
PIN FUNCTIONS  
Power Supply Pins  
Clock Input Pin  
+
The V and V pins should each be bypassed with a  
0.1µF capacitor to an adequate analog ground. The filter’s  
power supplies should be isolated from other digital or  
high voltage analog supplies. A low noise linear supply  
is recommended. Using a switching power supply will  
lower the signal-to-noise ratio of the filter. Figures 1 and 2  
show typical connections for dual and single supply  
operation.  
Any TTL or CMOS clock source with a square-wave output  
and50dutycycle( 10ꢀ)isanadequateclocksourcefor  
the device. The power supply for the clock source should  
not be the filter’s power supply. The analog ground for the  
filter should be connected to clock’s ground at a single  
point only. Table 2 shows the clock’s low and high level  
threshold values for dual or single supply operation.  
Table 2. Clock Source High and Low Threshold Levels  
POWER SUPPLY  
HIGH LEVEL  
LOW LEVEL  
Analog Ground Pin  
Dual Supply = 5V  
Single Supply = 5V  
Single Supply = 3.3V  
≥ 1.53V  
≤ 0.53V  
Thelter’sperformancedependsonthequalityoftheanalog  
signal ground. For either dual or single supply operation,  
ananaloggroundplanesurroundingthepackageisrecom-  
mended. The analog ground plane should be connected  
to any digital ground at a single point. For single supply  
operation,AGNDshouldbebypassedtotheanalogground  
plane with at least a 0.47µF capacitor (Figure 2).  
≥ 1.53V  
≤ 0.53V  
≥ 1.20V  
≤ 0.53V  
Apulsedgeneratorcanbeusedasaclocksourceprovided  
the high level ON time is at least 25ꢀ of the pulse period.  
Sine waves are not recommended for clock input frequen-  
cies less than 100kHz, since excessively slow clock rise  
or fall times generate internal clock jitter (maximum clock  
rise or fall time ≤ 1µs). The clock signal should be routed  
from the right side of the IC package and perpendicular to  
it to avoid coupling to any input or output analog signal  
Two internal resistors bias the analog ground pin. For the  
LTC1068, LTC1068-200 and LTC1068-25, the voltage at  
the analog ground pin (AGND) for single supply is 0.5 × V  
and for the LTC1068-50 it is 0.435 × V .  
+
+
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
ANALOG  
GROUND  
PLANE  
ANALOG  
GROUND  
PLANE  
3
3
DEVICE  
LTC1068  
LTC1068-200 10k 10k  
LTC1068-25  
LTC1068-50 11.3k 8.6k  
R
R
B
A
4
4
V
5
5
LTC1068  
0.1µF  
6
6
V
7
+
7
AGND  
V
LTC1068  
R
A
R
B
0.1µF  
8
8
+
V
0.1µF  
9
9
0.47µF  
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
(1µF FOR  
STOPBAND  
FREQUENCIES  
≤1kHz)  
STAR  
SYSTEM  
GROUND  
STAR  
SYSTEM  
GROUND  
200Ω  
200Ω  
CLOCK  
SOURCE  
CLOCK  
SOURCE  
DIGITAL GROUND  
DIGITAL GROUND  
FOR MODE 3, THE S NODE  
SHOULD BE TIED TO PIN 7 (AGND)  
1068 F02  
1068 F01  
Figure 1. Dual Supply Ground Plane Connections  
Figure 2. Single Supply Ground Plane Connections  
1068fc  
10  
LTC1068 Series  
PIN FUNCTIONS  
path. A 200Ω resistor between clock source and Pin 11  
will slow down the rise and fall times of the clock to further  
reduce charge coupling (Figures 1 and 2).  
LT®1354  
1k  
+
Output Pins  
1068 F03  
Each 2nd order section of an LTC1068 device has three  
outputs that typically source 17mA and sink 6mA. Driv-  
ing coaxial cables or resistive loads less than 20k will  
degrade the total harmonic distortion performance of  
any filter design. When evaluating the distortion or noise  
performanceofaparticularlterdesignimplementedwith  
a LTC1068 device, the final output of the filter should be  
buffered with a wideband, noninverting high slew rate  
amplifier (Figure 3).  
Figure 3. Wideband Buffer  
In a printed circuit layout any signal trace, clock source  
trace or power supply trace should be at least 0.1 inches  
away from any inverting input pins  
Suꢃꢃing Input Pins  
Thesearevoltageinputpins. Ifused, theyshouldbedriven  
with a source impedance below 5k. When they are not  
used, they should be tied to the analog ground pin.  
Inverting Input Pins  
These pins are the inverting inputs of internal op amps  
and are susceptible to stray capacitive coupling from low  
impedance signal outputs and power supply lines.  
The summing pin connections determine the circuit to-  
pology (mode) of each 2nd order section. Please refer to  
Modes of Operation.  
BLOCK DIAGRAM  
HPA/NA  
(13)  
BPA  
(12)  
LPA  
(11)  
DEVICE  
LTC1068  
LTC1068-200 10k 10k  
LTC1068-25  
LTC1068-50 11.3k 8.6k  
R
R
B
A
INV A  
(14)  
+
+
+
+
+
+
Σ
AGND  
(7)  
+
*THE RATIO R /R VARIES 2ꢀ  
A
B
BPB  
(3)  
LPB  
(4)  
HPB/NB  
(2)  
SA  
(10)  
+
V
(8)  
INV B  
(1)  
+
+
+
+
+
+
Σ
R *  
A
CLK (21)  
+
HPC/NC  
(27)  
LPC  
(25)  
BPC  
(26)  
R *  
B
V
(23)  
AGND (7)  
SB  
(5)  
INV C  
(28)  
NC (6)  
NC (9)  
+
Σ
LPD  
(18)  
HPD/ND  
(16)  
BPD  
(17)  
NC (20)  
NC (22)  
SC  
(24)  
INV D  
(15)  
+
Σ
1068 BD  
PIN 28-LEAD SSOP PACKAGE  
SD  
(19)  
1068fc  
11  
LTC1068 Series  
MODES OF OPERATION  
Linear Technology’s universal switched-capacitor filters  
are designed for a fixed internal, nominal f /f ratio. The  
ꢁode 1  
CLK O  
In Mode 1, the ratio of the external clock frequency to  
the center frequency of each 2nd order section is inter-  
nally fixed at the part’s nominal ratio. Figure 4 illustrates  
Mode 1 providing 2nd order notch, lowpass and band-  
pass outputs. Mode 1 can be used to make high order  
Butterworth lowpass filters; it can also be used to make  
low Q notches and for cascading 2nd order bandpass  
functions tuned at the same center frequency. Mode 1 is  
faster than Mode 3.  
f
/f ratio is 100 for the LTC1068, 200 for the LTC1068-  
CLK O  
200, 50 for the LTC1068-50 and 25 for the LTC1068-25.  
Filterdesignsoftenrequirethef /f ratioofeachsection  
CLK O  
to be different from the nominal ratio and in most cases  
different from each other. Ratios other than the nominal  
valuearepossiblewithexternalresistors.Operatingmodes  
useexternalresistors,connectedindifferentarrangements  
to realize different f /f ratios. By choosing the proper  
CLK O  
mode,thef /f ratiocanbeincreasedordecreasedfrom  
CLK O  
PleaserefertotheOperatingLimitsparagraphunderApplica-  
tions Information for a guide to the use of capacitor C .  
the part’s nominal ratio.  
C
The choice of operating mode also effects the transfer  
function at the HP/N pins. The LP and BP pins always give  
thelowpassandbandpasstransferfunctionsrespectively,  
regardless of the mode utilized. The HP/N pins have a  
different transfer function depending on the mode used.  
Mode 1 yields a notch transfer function. Mode 3 yields a  
highpasstransferfunction.Mode2yieldsahighpassnotch  
transfer function (i.e., a highpass with a stopband notch).  
More complex transfer functions, such as lowpass notch,  
allpass or complex zeros, are achieved by summing two  
or more of the LP, BP or HP/N outputs. This is illustrated  
in sections Mode 2n and Mode 3a.  
C
C
R3  
R2  
N
S
LP  
BP  
R1  
V
IN  
+
Σ
+
f
AGND  
CLK  
DEVICE  
RATIO  
f
=
; f = f  
n O  
O
RATIO  
LTC1068  
100  
R2  
R1  
R3  
R1  
R3  
LTC1068-200 200  
Q =  
; H = –  
; H = –  
OBP  
ON  
R2  
= H  
LTC1068-50  
LTC1068-25  
50  
25  
H
OLP  
ON  
1068 F04  
Choosing the proper mode(s) for a particular application  
is not trivial and involves much more than just adjusting  
Figure 4. ꢁode 1, 2nd Order Filter Providing Notch,  
Bandpassing and Lowpass Outputs  
the f /f ratio. Listed here are four of the nearly twenty  
CLK O  
modes available. To make the design process simpler and  
quicker, Linear Technology has developed the FilterCAD  
for Widows design software. FilterCAD is an easy-to-use,  
powerful and interactive filter design program. The de-  
signercanenterafewlterspecificationsandtheprogram  
produces a full schematic. FilterCAD allows the designer  
to concentrate on the filter’s transfer function and not get  
bogged down in the details of the design. Alternatively,  
those who have experience with the Linear Technology  
family of parts can control all of the details themselves.  
For a complete listing of all the operating modes, consult  
the appendices of the FilterCAD manual or the Help files  
in FilterCAD. FilterCAD can be obtained free of charge on  
the Linear Technology web site (www.linear.com) or you  
can order the FilterCAD CD-ROM by contacting Linear  
Technology Marketing.  
ꢁode 1b  
Mode 1b is derived from Mode 1. In Mode 1b (Figure 5)  
two additional resistors R5 and R6 are added to lower the  
amount of voltage fed back from the lowpass output into  
the input of the SA (or SB) switched-capacitor summer.  
This allows the filter’s clock-to-center frequency ratio to  
be adjusted beyond the part’s nominal ratio. Mode 1b  
maintains the speed advantages of Mode 1 and should  
be considered an optimum mode for high Q designs with  
f
to f  
(or f  
) ratios greater than the part’s  
CLK  
CUTOFF  
CENTER  
nominal ratio.  
The parallel combination of R5 and R6 should be kept  
below 5k.  
PleaserefertotheOperatingLimitsparagraphunderApplica-  
tions Information for a guide to the use of capacitor C .  
C
1068fc  
12  
LTC1068 Series  
MODES OF OPERATION  
C
C
C
C
R4  
R3  
R2  
R6  
R5  
R3  
R2  
HP  
S
LP  
BP  
N
S
LP  
BP  
R1  
R1  
V
IN  
+
O
V
IN  
+
+
Σ
Σ
+
1/4 LTC1068  
DEVICE  
RATIO  
f
1
CLK  
R2  
R4  
R2  
R4  
R3  
LTC1068  
LTC1068-200 200  
100  
AGND  
f
=
AGND  
; Q = 1.005  
(
)
RATIO  
R2  
R3  
1 –  
(
)
(RATIO)(0.32)(R4)  
LTC1068-50  
LTC1068-25  
50  
25  
f
CLK  
R6  
f
=
; f = f  
n O  
O
RATIO  
(R6 + R5)  
R6  
R3  
1
R2  
R1  
R4  
R1  
1068 F05  
H
= –  
; H  
= –  
; H  
= –  
OHP  
OBP  
OLP  
R2  
R1  
R3  
= –  
R3  
R1  
R3  
Q =  
H
; H = –  
; H  
OBP  
ON  
1 –  
R1  
R2 (R6 + R5)  
(
)
(RATIO)(0.32)(R4)  
R2 R6 + R5  
(
= –  
DEVICE  
RATIO  
OLP  
)
R1  
R6  
LTC1068  
LTC1068-200 200  
LTC1068-50  
LTC1068-25  
100  
50  
25  
Figure 5. ꢁode 1b, 2nd Order Filter Providing Notch,  
Bandpass and Lowpass Outputs  
1068 F06  
Figure 6. ꢁode 3, 2nd Order Section Providing  
Highpass, Bandpass and Lowpass Outputs  
ꢁode 3  
In Mode 3, the ratio of the external clock frequency to  
the center frequency of each 2nd order section can be  
adjusted above or below the parts nominal ratio. Figure 6  
illustratesMode3,theclassicalstatevariableconfiguration,  
providinghighpass,bandpassandlowpass2ndorderlter  
functions. Mode 3 is slower than Mode 1. Mode 3 can be  
used to make high order all-pole bandpass, lowpass and  
highpass filters.  
C
C
R4  
R3  
R2  
HPN  
S
LP  
BP  
R1  
V
IN  
+
+
Σ
PleaserefertotheOperatingLimitsparagraphunderApplica-  
tions Information for a guide to the use of capacitor C .  
C
DEVICE  
RATIO  
AGND  
LTC1068  
LTC1068-200 200  
LTC1068-50  
LTC1068-25  
100  
ꢁode 2  
50  
25  
f
f
CLK  
RATIO  
CLK  
R2  
R4  
f
=
; f =  
n
1 +  
O
Mode 2 is a combination of Mode 1 and Mode 3, shown  
in Figure 7. With Mode 2, the clock-to-center frequency  
RATIO  
1068 F07  
R3  
R2  
R4  
1
R3  
Q = 1.005  
1 +  
(
)
R2  
ratio, f /f , is always less than the part’s nominal ratio.  
1–  
CLK O  
(
)
(RATIO)(0.32)(R4)  
The advantage of Mode 2 is that it provides less sensitivity  
to resistor tolerances than does Mode 3. Mode 2 has a  
highpassnotchoutputwherethenotchfrequencydepends  
solely on the clock frequency and is therefore less than  
R2  
R1  
1
R2  
H
OHPN  
= –  
(AC GAIN, f >> f ); H  
= –  
OHPN  
(DC GAIN)  
O
R1  
R2  
R4  
1 +  
(
)
1
R3  
R1  
1
R2  
R1  
H
OBP  
= –  
; H  
= –  
OLP  
R3  
R2  
R4  
1–  
1 +  
(
)
the center frequency, f .  
(
)
(RATIO)(0.32)(R4)  
O
PleaserefertotheOperatingLimitsparagraphunderApplica-  
tions Information for a guide to the use of capacitor C .  
Figure 7. ꢁode 2, 2nd Order Filter Providing Highpass  
Notch, Bandpass and Lowpass Outputs  
C
1068fc  
13  
LTC1068 Series  
APPLICATIONS INFORMATION  
Operating Liꢃits  
the operating signal-to-noise ratio. Most of its frequency  
contents lie within the filter passband and cannot be  
reduced with post filtering. For a notch filter the noise of  
the filter is centered at the notch frequency.  
The Maximum Q vs Center Frequency (f ) graphs, under  
O
Typical Performance Characteristics, define an upper  
limit of operating Q for each LTC1068 device 2nd order  
section. These graphs indicate the power supply, f and  
The total wideband noise (µV  
) is nearly independent  
RMS  
O
Q value conditions under which a filter implemented with  
an LTC1068 device will remain stable when operated at  
temperatures of 70°C or less. For a 2nd order section, a  
bandpass gain error of 3dB or less is arbitrarily defined  
as a condition for stability.  
of the value of the clock. The clock feedthrough specifica-  
tions are not part of the wideband noise.  
For a specific filter design, the total noise depends on the  
Q of each section and the cascade sequence. Please refer  
to the Noise vs Q graphs under the Typical Performance  
Characteristics.  
When the passband gain error begins to exceed 1dB, the  
use of capacitor C will reduce the gain error (capacitor C  
C
C
Aliasing  
is connected from the lowpass node to the inverting node  
ofa2ndordersection).PleaserefertoFigures4through7.  
Aliasingisaninherentphenomenonofswitched-capacitor  
filters and occurs when the frequency of the input signals  
that produce the strongest aliased components have a  
The value of C can be best determined experimentally,  
C
and as a guide it should be about 5pF for each 1dB of  
gain error and not to exceed 15pF. When operating an  
LTC1068 device near the limits defined by the Maximum Q  
vs Frequency graphs, passband gain variations of 2dB or  
more should be expected.  
frequency, f , such as (f  
– f ) that falls into the  
IN  
SAMPLING  
IN  
filter’s passband. For an LTC1068 device the sampling  
frequency is twice f . If the input signal spectrum is  
not band-limited, aliasing may occur.  
CLK  
Clock Feedthrough  
Deꢃonstration Circuit 104  
Clock feedthrough is defined as the RMS value of the  
clock frequency and its harmonics that are present at the  
filter’s output pins. The clock feedthrough is tested with  
thelter’sinputgroundedanddependsonPCboardlayout  
and on the value of the power supplies. With proper layout  
techniques, the typical values of clock feedthrough are  
listed under Electrical Characteristics.  
DC104 is a surface mount printed circuit board for the  
evaluation of Linear Technology’s LTC1068 product family  
in a 28-lead SSOP package. The LTC1068 product family  
consists of four monolithic clock-tunable filter building  
blocks.  
Demo Board 104 is available in four assembled versions:  
Assembly104-AfeaturesthelownoiseLTC1068CG(clock-  
to-centerfrequencyratio=100), assembly104-Bfeatures  
the low noise LTC1068-200CG (clock-to-center frequency  
ratio = 200), assembly 104-C features the high frequency  
LTC1068-25CG (clock-to-center frequency ratio = 25) and  
assembly 104-D features the low power LTC1068-50CG  
(clock-to-center frequency ratio = 50).  
Any parasitic switching transients during the rising and  
fallingedgesoftheincomingclockarenotpartoftheclock  
feedthrough specifications. Switchingtransientshavefre-  
quency contents much higher than the applied clock; their  
amplitude strongly depends on scope probing techniques  
as well as grounding and power supply bypassing. The  
clock feedthrough, can be greatly reduced by adding a  
simple RC lowpass network at the final filter output. This  
RC will completely eliminate any switching transients.  
All DC104 boards are assembled with input, output and  
power supply test terminals, a 28-lead SSOP filter device  
(LTC1068CG Series), a dual op amp in an SO-8 for input  
or output buffers and decoupling capacitors for the filter  
and op amps. The filter and dual op amps share the power  
Wideband Noise  
The wideband noise of the filter is the total RMS value of  
thedevice’snoisespectraldensityandisusedtodetermine  
1068fc  
14  
LTC1068 Series  
APPLICATIONS INFORMATION  
supply inputs to the board. Jumpers JPA to JPD on the  
board configure the filter’s second order circuit modes,  
jumper JP1 configures the filter for dual or single supply  
operation and jumpers JP2 (A-D) to JP3 (A-D) configure  
the op amp buffers as inverting or noninverting. Surface  
mount pads are available on the board for 1206 size sur-  
face mount resistors. The printed circuit layout of DC104  
is arranged so that most of the resistor connections for  
one 8th order filter or two 4th order filters are available  
on the board. A resistor makes a connection between two  
filter nodes on the board and for most filter designs, no  
wiring is required.  
DC104 Coꢃponent Side Silkscreen  
DC104 Coꢃponent Side  
DC104 Solder Side  
1068fc  
15  
LTC1068 Series  
APPLICATIONS INFORMATION  
1068fc  
16  
LTC1068 Series  
APPLICATIONS INFORMATION  
A Surface ꢁount Printed Circuit Layout  
in the following figures for an 8th order elliptic bandpass  
filter. The total board area of this 8th order filter is 1" by  
0.8". No attempt was made to design the smallest possible  
printed circuit layout.  
A very compact surface mount printed circuit layout can  
be designed with 0603 size surface mount resistors,  
capacitors and a 28-pin SSOP of the LTC1068 product  
family. An example of a printed circuit layout is shown  
70kHz Elliptic Bandpass Filtter, fCENTER = fCLK/25 (ꢁaꢂiꢃuꢃ fCENTER is ꢀ0kHz, VS = 5V)  
R
H1  
28k  
R
R
23.2k  
11.3k  
L2  
H2  
1
2
28  
27  
INV B  
INV C  
R22 4.99k  
R32 107k  
R21 4.99k  
HPB/NB  
HPC/NC  
R11 29.4k  
R31 24.9k  
R41 20.5k  
3
4
26  
25  
BPB  
LPB  
BPC  
LPC  
V
IN  
R52  
R51  
4.99k  
5
6
7
8
24  
23  
22  
21  
4.99k R62 56.2k  
U1  
LTC1068-25  
SB  
SC  
V
–5V  
NC  
R61 11.3k  
C2  
NC  
AGND  
0.1µF  
+
1.75MHz  
CLK  
5V  
V
C1  
0.1µF  
9
20  
19  
R64 10k  
NC  
SA  
NC  
SD  
10  
R54  
4.99k  
R43 43.2k  
R33 59k  
11  
12  
13  
14  
18  
LPA  
LPD  
BPD  
R44 17.4k  
R34 63.4k  
R24 7.5k  
17  
16  
15  
BPA  
R23 4.99k  
HPA/NA  
INV A  
HPD/ND  
INV D  
R
L3  
R
H3  
15.4k  
45.3K  
V
OUT  
1068 TA04  
Gain vs Frequency  
FilterCAD Custoꢃ Inputs for fC = 70kHz  
10  
0
2nd ORDER SECTION f (kHz)  
Q
f (kHz)  
TYPE  
HPN  
LPN  
LPN  
BP  
ꢁODE  
2b  
0
N
B
C
A
D
67.7624  
67.0851  
73.9324  
73.3547  
5.7236  
20.5500  
15.1339  
16.3491  
58.3011  
81.6810  
81.0295  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1bn  
2n  
2b  
20  
60  
FREQUENCY (kHz)  
80 90  
30 40 50  
70  
100  
1068 TA05  
1068fc  
17  
LTC1068 Series  
APPLICATIONS INFORMATION  
Surface ꢁount Coꢃponents  
(Board Area = 1" × 0.ꢀ")  
R
R11  
H1  
R21  
R31  
R22  
R32  
R51  
R61  
U1  
R52  
R41  
R62  
R64  
C2  
C1  
R43  
R33  
R44  
R34  
R54  
R23  
R24  
R
R
L3  
H2  
R
L2  
R
H3  
1068 TA06  
Coꢃponent Side  
Solder Side  
V
IN  
R
R11  
H1  
R51  
R61  
R21  
R31  
R41  
R22  
R52  
R32  
R44  
GND  
GND  
V
R62  
R64  
R43  
R33  
+
V
R54  
R34  
R24  
R23  
R
L3  
R
H2  
R
R
H3  
L2  
V
OUT  
1068 TA07  
1068 TA08  
1068fc  
18  
LTC1068 Series  
TYPICAL APPLICATIONS  
LTC106ꢀ-200 ꢀth Order Linear Phase Lowpass, fCUTOFF = fCLK/400  
for Ultralow Frequency Applications  
R
R
L2  
14.3k  
L1  
23.2k  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
INV B  
INV C  
HPC/NC  
BPC  
R21 12.4k  
R31 10k  
R22 15.4k  
R32 10k  
Gain and Group Delay  
vs Frequency  
R11  
14.3k  
HPB/NB  
BPB  
3
V
IN  
10  
0
1.0  
R41 15.4k  
R52 5.11k  
4
LPB  
LPC  
0.9  
R62 9.09k  
GAIN  
5
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0.8  
SB  
SC  
LTC1068-200  
6
0.7  
0.6  
–5V  
NC  
V
7
AGND  
NC  
CLK  
0.1µF  
0.5  
8
+
5V  
400kHz  
V
GROUP  
DELAY  
0.4  
0.1µF  
R64 9.09k  
R54 5.11k  
9
NC  
NC  
0.3  
0.2  
0.1  
0
10  
11  
12  
13  
14  
SA  
SD  
R43 12.4k  
LPA  
LPD  
V
OUT  
R33 12.4k  
R23 10k  
R34 10k  
BPA  
HPA/NA  
INV A  
BPD  
0.1  
1
10  
R24 15.4k  
HPD/ND  
INV D  
FREQUENCY (Hz)  
1068 TA10  
R
L3  
R
B3  
23.2k  
23.2k  
1068 TA09  
FilterCAD Custoꢃ Inputs for fC = 1Hz  
2nd ORDER SECTION f (kHz)  
Q
Q
TYPE  
LP  
ꢁODE  
3
0
N
B
C
A
D
1.7947  
1.6002  
1.7961  
1.6070  
0.7347  
0.5195  
1.1369  
0.5217  
LP  
1b  
1.0159  
LPBP  
LP  
3s  
1b  
1068fc  
19  
LTC1068 Series  
TYPICAL APPLICATIONS  
LTC106ꢀ-50 ꢀth Order Linear Phase Lowpass, fCUTOFF = fCLK/50  
for Single Supply Low Power Applications. ꢁaꢂiꢃuꢃ fCUTOFF is  
20kHz with a 3.3V Supply and 40kHz with a 5V Supply  
R
R
L2  
A1  
9.09k  
56.2k  
R
R
H2  
34k  
B1  
Gain and Group Delay  
vs Frequency  
13.3k  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
INV B  
INV C  
HPC/NC  
BPC  
10  
0
150  
140  
130  
120  
110  
100  
90  
R21 20.5k  
R31 10k  
R22 43.2k  
R32 43.2k  
R42 196k  
R11  
22.6k  
HPB/NB  
BPB  
GAIN  
3
V
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
IN  
R41 22.6k  
4
LPB  
LPC  
5
SB  
SC  
LTC1068-50  
GROUP  
DELAY  
6
NC  
V
7
AGND  
NC  
CLK  
8
+
80  
3.3V  
500kHz  
V
0.1µF  
9
70  
NC  
NC  
10  
11  
12  
13  
14  
60  
SA  
SD  
1
10  
100  
R43 48.7k  
R44 34.8k  
R34 14.3k  
R24 16.9k  
FREQUENCY (kHz)  
LPA  
LPD  
R33 12.7k  
R23 10.7k  
1068 TA12  
1µF  
BPA  
HPA/NA  
INV A  
BPD  
HPD/ND  
INV D  
R
L3  
R
B3  
24.9k  
26.7k  
V
OUT  
1068 TA11  
FilterCAD Custoꢃ Inputs for fC = 10kHz  
2nd ORDER SECTION f (kHz)  
Q
f (kHz)  
Q
N
TYPE  
AP  
ꢁODE  
4a3  
2n  
0
N
B
C
A
D
9.5241  
11.0472  
11.0441  
6.9687  
0.5248  
1.1258  
1.3392  
0.6082  
0.5248  
21.7724  
LPN  
LPBP  
LP  
1.5781  
2s  
3
1068fc  
20  
LTC1068 Series  
TYPICAL APPLICATIONS  
LTC106ꢀ-25 ꢀth Order Lowpass, fCUTOFF = fCLK/32,  
Attenuation –50dB at (1.25) (fCUTOFF) and –60dB at  
(1.5)(fCUTOFF). ꢁaꢂiꢃuꢃ fCUTOFF = 120kHz  
R
H1  
18.2k  
R
R
40.2k  
36.5k  
L2  
R
L1  
26.7k  
R21 10k  
R31 10k  
H2  
1
2
28  
27  
Gain vs Frequency  
INV B  
INV C  
R22 10k  
10  
0
HPB/NB  
HPC/NC  
R11 32.4k  
R32 32.4k  
3
4
26  
25  
BPB  
LPB  
BPC  
LPC  
V
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
R52  
R61  
2.21k  
R51  
4.99k  
5
6
7
8
24  
23  
22  
21  
4.99k R62 5.9k  
SB  
SC  
LTC1068-25  
V
–5V  
NC  
0.1µF  
NC  
AGND  
+
3.2MHz  
CLK  
5V  
V
0.1µF  
9
20  
19  
R64 3.16k  
NC  
SA  
NC  
SD  
R63 8.45k  
10  
R54  
4.99k  
R53  
4.99k  
11  
12  
13  
14  
18  
20  
100  
500  
LPA  
LPD  
BPD  
FREQUENCY (kHz)  
R33 118k  
R34 15k  
R24 10k  
17  
16  
15  
BPA  
1069 TA14  
R23 10k  
HPA/NA  
INV A  
HPD/ND  
INV D  
R
L3  
R
H3  
53.6k  
20.5K  
V
OUT  
1068 TA13  
FilterCAD Custoꢃ Inputs for fC = 100kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
TYPE  
LPN  
LPN  
LPN  
LP  
ꢁODE  
0
N
B
C
A
D
70.9153  
94.2154  
101.4936  
79.7030  
0.5540  
2.3848  
9.3564  
0.9340  
127.2678  
154.1187  
230.5192  
1bn  
1bn  
1bn  
1b  
1068fc  
21  
LTC1068 Series  
TYPICAL APPLICATIONS  
LTC106ꢀ ꢀth Order Linear Phase Bandpass, fCENTER = fCLK/12ꢀ,  
Passband –3dB at (0.ꢀꢀ)(fCENTER) and (1.12)(fCENTER). ꢁaꢂiꢃuꢃ  
fCENTER = 40kHz with 5V Supplies  
R
L1  
63.4k  
R
R
B2  
16.2k  
H1  
7.5k  
Gain vs Frequency  
1
2
24  
23  
10  
0
INV B  
INV C  
R21  
R22  
4.99k  
4.99k  
HPB/NB  
BPB  
HPC/NC  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
R11  
R31  
19.6k  
R32  
21.5k  
26.1k  
3
4
22  
21  
V
IN  
BPC  
LPC  
R41  
12.1k  
LPB  
R52  
4.99k  
R62  
7.5k  
LTC1068  
5
6
20  
19  
SB  
AGND  
SC  
–5V  
0.1µF  
V
7
+
5V  
V
0.1µF  
18  
17  
CLK  
SD  
1.28MHz  
R64 17.8k  
8
9
1
10  
100  
SA  
R43  
10.7k  
R54  
4.99k  
FREQUENCY (kHz)  
16  
15  
1068 TA16  
LPA  
LPD  
BPD  
V
OUT  
R33  
14.7k  
R34  
28.7k  
10  
BPA  
R23  
4.99k  
R24  
4.99k  
11  
12  
14  
13  
HPA/NA  
INV A  
HPD/ND  
INV D  
R
R
L3  
H3  
14.7k  
40.2k  
24-Lead Package  
1068 TA15  
FilterCAD Custoꢃ Inputs for fC = 10kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
TYPE  
HPN  
BP  
ꢁODE  
3a  
0
N
B
C
A
D
8.2199  
9.9188  
8.7411  
11.3122  
2.6702  
3.3388  
2.1125  
5.0830  
4.4025  
1b  
21.1672  
LPN  
BP  
3a  
1b  
1068fc  
22  
LTC1068 Series  
TYPICAL APPLICATIONS  
LTC106ꢀ ꢀth Order Linear Phase Bandpass, fCENTER = fCLK/100,  
Passband –3dB at (0.ꢀꢀ)(fCENTER) and (1.12)(fCENTER). ꢁaꢂiꢃuꢃ  
fCENTER = 50kHz with 5V Supplies  
R
R
B2  
14.3k  
L1  
24.9k  
R
H1  
51.1k  
Gain vs Frequency  
10  
0
1
2
24  
23  
INV B  
INV C  
R21  
10k  
R22  
10k  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
HPB/NB  
BPB  
HPC/NC  
BPC  
R31  
25.5k  
R32  
32.4k  
R11  
24.3k  
3
4
22  
21  
V
IN  
R42  
26.1k  
R41  
107k  
LPB  
LPC  
SC  
5
6
7
20  
19  
SB  
AGND  
V
–5V  
0.1µF  
+
5V  
V
LTC1068  
18  
17  
0.1µF  
R53  
R63  
2.32k  
f
1MHz  
CLK  
SD  
8
9
SA  
1
10  
100  
FREQUENCY (kHz)  
R44  
12.1k  
R43  
16.9k  
4.99k  
1068 TA18  
16  
15  
LPA  
BPA  
LPD  
BPD  
R33  
17.4k  
R34  
19.1k  
10  
R23  
7.32k  
R24  
10k  
11  
12  
14  
13  
HPA/NA  
INV A  
HPD/ND  
INV D  
R
B3  
V
OUT  
18.7k  
24-Lead Package  
1068 TA17  
FilterCAD Custoꢃ Inputs for fC = 10kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
TYPE  
LPN  
BP  
ꢁODE  
0
N
B
C
A
D
10.4569  
11.7607  
8.6632  
9.0909  
2.6999  
3.9841  
2.1384  
1.8356  
17.4706  
2n  
2
BP  
2b  
3
BP  
1068fc  
23  
LTC1068 Series  
TYPICAL APPLICATIONS  
LTC106ꢀ ꢀth Order Linear Phase Bandpass, fCENTER = fCLK/100,  
Passband –3dB at (0.7)(fCENTER) and (1.3)(fCENTER), Superior Sinewave  
Burst Response, ꢁaꢂiꢃuꢃ fCENTER = 60kHz with 5V Supplies  
R
R
L2  
10k  
L1  
348k  
R
R
H2  
200k  
H1  
11k  
Gain vs Frequency  
10  
0
1
2
24  
23  
INV B  
INV C  
R21  
R22  
14.7k  
18.2k  
HPB/NB  
BPB  
HPC/NC  
BPC  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
R31  
10k  
R32  
10k  
R11  
11k  
3
4
22  
21  
V
IN  
R42  
18.7k  
R41  
14.3k  
LPC  
SC  
LPB  
5
6
7
20  
19  
SB  
AGND  
V
–5V  
0.1µF  
+
5V  
V
LTC1068  
18  
17  
0.1µF  
f
1MHz  
CLK  
SD  
8
SA  
1
10  
100  
R43  
R44  
FREQUENCY (kHz)  
21.5k  
10k  
9
16  
15  
1068 TA20  
LPA  
BPA  
LPD  
BPD  
R33  
11.3k  
R34  
17.8k  
10  
R23  
21k  
R24  
15.4k  
11  
12  
14  
13  
HPA/NA  
INV A  
HPD/ND  
INV D  
R
H3  
V
OUT  
95.3k  
24-Lead Package  
R
L3  
12.4k  
1068 TA19  
FilterCAD Custoꢃ Inputs for fC = 10kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
Q
N
TYPE  
HPN  
LPN  
LPN  
BP  
ꢁODE  
3a  
0
N
B
C
A
D
10.1389  
9.8654  
9.8830  
12.4097  
0.7087  
0.5540  
0.5434  
1.5264  
1.7779  
44.7214  
27.7227  
3a  
3a  
3
1068fc  
24  
LTC1068 Series  
TYPICAL APPLICATIONS  
LTC106ꢀ-50 ꢀth Order Linear Phase Bandpass, fCENTER = fCLK/40,  
Passband –3dB at (0.ꢀ)(fCENTER) and (1.2)(fCENTER) for Single Supply  
Low Power Applications. ꢁaꢂiꢃuꢃ fCENTER = 25kHz with a Single 5V  
Supply  
R
H1  
18.2k  
R
17.8k  
84.5k  
L2  
R
H2  
Gain vs Frequency  
1
2
28  
27  
INV B  
INV C  
R22 11.3k  
R21 10k  
10  
0
HPB/NB  
HPC/NC  
R11 36.5k  
R31 30.1k  
R41 10.7k  
R32 29.4k  
R42 10k  
3
4
26  
25  
BPB  
LPB  
BPC  
LPC  
V
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
R51  
4.99k  
R61  
1.74k  
5
6
7
8
24  
23  
SB  
SC  
LTC1068-50  
V
NC  
22  
21  
NC  
AGND  
+
CLK  
400kHz  
5V  
V
1µF  
0.1µF  
9
20  
19  
NC  
SA  
NC  
SD  
10  
–80  
R44 22.1k  
R43 12.1k  
R33 26.7k  
R23 10k  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (kHz)  
11  
12  
13  
14  
18  
LPA  
LPD  
BPD  
R34 28k  
R24 10k  
17  
16  
15  
1068 TA22  
BPA  
HPA/NA  
INV A  
HPD/ND  
INV D  
R
L3  
R
H3  
47.5k  
15.8K  
V
OUT  
1068 TA21  
FilterCAD Custoꢃ Inputs for fC = 10kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
TYPE  
HPN  
LPN  
LPN  
BP  
ꢁODE  
2b  
0
N
B
C
A
D
8.7384  
11.6756  
10.8117  
9.6415  
4.0091  
4.6752  
4.2066  
3.6831  
4.0678  
19.1786  
16.0127  
2n  
2n  
2
1068fc  
25  
LTC1068 Series  
TYPICAL APPLICATIONS  
LTC106ꢀ-25 ꢀth Order Order Bandpass, fCENTER = fCLK/32,  
Passband –3dB at (0.965)(fCENTER) and (1.35)(fCENTER).  
ꢁaꢂiꢃuꢃ fCENTER = ꢀ0kHz with 5V Supplies  
R
H1  
118k  
R
B2  
47.5k  
1
2
28  
27  
INV B  
INV C  
Gain vs Frequency  
R22 4.99k  
R32 130k  
R21 4.99k  
R31 97.6k  
HPB/NB  
HPC/NC  
10  
0
R11 121k  
3
4
26  
25  
BPB  
LPB  
BPC  
LPC  
V
IN  
R52  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
R61  
8.87k  
R51  
4.99k  
5
6
7
8
24  
23  
22  
21  
4.99k R62 9.53k  
SB  
SC  
LTC1068-25  
–5V  
V
NC  
0.1µF  
NC  
AGND  
+
CLK  
320kHz  
5V  
V
0.1µF  
9
20  
19  
R64 6.98k  
NC  
SA  
NC  
SD  
R63 6.49k  
10  
R54  
R53  
4.99k  
4.99k  
11  
12  
13  
14  
18  
LPA  
LPD  
BPD  
7.5  
8
8.5  
9
9.5 10 10.5 11 11.5 12 12.5  
R33 124k  
R34 102k  
R24 4.99k  
17  
16  
15  
FREQUENCY (kHz)  
BPA  
1068 TA24  
R23 4.99k  
HPA/NA  
INV A  
HPD/ND  
INV D  
R
78.7K  
L3  
V
OUT  
1068 TA23  
FilterCAD Custoꢃ Inputs for fC = 10kHz  
2nd ORDER SECTION  
f (kHz)  
Q
TYPE  
ꢁODE  
1b  
0
B
C
A
D
10.2398  
10.3699  
9.6241  
9.7744  
15.6469  
21.1060  
18.6841  
15.6092  
BP  
BP  
LP  
LP  
1b  
1b  
1b  
1068fc  
26  
LTC1068 Series  
TYPICAL APPLICATIONS  
LTC106ꢀ-200 ꢀth Order Highpass, fCENTER = fCLK/200,  
Attenuation –60dB at (0.6)(fCENTER).  
ꢁaꢂiꢃuꢃ fCUTOFF = 20kHz with 5V Supplies  
R
H1  
11.8k  
R
249k  
L2  
R
L1  
66.5k  
R
H2  
20.5k  
1
2
28  
27  
Gain vs Frequency  
INV B  
INV C  
R22 21.5k  
R21 10k  
R31 16.5k  
R41 11.3k  
10  
0
HPB/NB  
HPB/NC  
BPC  
R11 18.2k  
R32 10.2k  
R42 18.7k  
3
4
26  
25  
BPB  
LPB  
V
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
LPC  
5
6
7
8
24  
23  
SB  
SC  
LTC1068-200  
V
–5V  
NC  
0.1µF  
22  
21  
NC  
AGND  
+
CLK  
200kHz  
5V  
V
0.1µF  
9
20  
19  
R63 2.55k  
NC  
SA  
NC  
SD  
10  
R53  
4.99k  
R44 21k  
R34 14.3k  
R24 20.5k  
R43 20.5k  
11  
12  
13  
14  
18  
0.2  
1
10  
LPA  
LPD  
BPD  
FREQUENCY (kHz)  
R33 36.5k  
R23 10k  
17  
16  
15  
1068 TA26  
BPA  
HPA/NA  
INV A  
HPD  
INV D  
R
H3  
10k  
V
OUT  
C23 [1/(2π • R23 • C23) = (160)(f  
)]  
CUTOFF  
1068 TA25  
FilterCAD Custoꢃ Inputs for fC = 1kHz  
2nd ORDER SECTION  
f (kHz)  
Q
f (kHz)  
TYPE  
HPN  
HPN  
HPN  
HP  
ꢁODE  
0
N
B
C
A
D
0.9407  
1.0723  
0.9088  
0.9880  
1.5964  
0.5156  
3.4293  
0.7001  
0.4212  
0.2869  
0.5815  
0.0000  
3a  
3a  
2b  
3
1068fc  
27  
LTC1068 Series  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.coꢃ/designtools/packaging/ for the ꢃost recent package drawings.  
G Package  
28-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
9.90 – 10.50*  
(.390 – .413)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
1.25 0.12  
5.3 – 5.7  
7.8 – 8.2  
7.40 – 8.20  
(.291 – .323)  
0.42 0.03  
RECOMMENDED SOLDER PAD LAYOUT  
0.65 BSC  
5
7
8
1
2
3
4
6
9
10 11 12 13 14  
2.0  
(.079)  
MAX  
5.00 – 5.60**  
(.197 – .221)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.25  
0.55 – 0.95  
(.0035 – .010)  
(.022 – .037)  
0.05  
0.22 – 0.38  
(.009 – .015)  
TYP  
(.002)  
NOTE:  
MIN  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
G28 SSOP 0204  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
N Package  
24-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-03-1510 Rev Iꢂ  
1.230ꢀ  
(ꢁ2.512ꢂ  
MAX  
24  
2ꢁ  
22  
21  
20  
19  
13  
17  
16  
15  
10  
14  
11  
1ꢁ  
12  
.255 .015ꢀ  
(6.477 0.ꢁ31ꢂ  
4
5
6
7
3
9
1
2
.ꢁ00 – .ꢁ25  
(7.620 – 3.255ꢂ  
.045 – .065  
(1.14ꢁ – 1.651ꢂ  
.1ꢁ0 .005  
(ꢁ.ꢁ02 0.127ꢂ  
.020  
(0.503ꢂ  
MIN  
.065  
(1.651ꢂ  
TYP  
.003 – .015  
(0.20ꢁ – 0.ꢁ31ꢂ  
+.0ꢁ5  
N24 REV I 0711  
.120  
(ꢁ.043ꢂ  
MIN  
.013 .00ꢁ  
(0.457 0.076ꢂ  
.100  
(2.54ꢂ  
BSC  
.ꢁ25  
–.015  
+0.339  
3.255  
(
)
–0.ꢁ31  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
ꢀTHESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mmꢂ  
1068fc  
28  
LTC1068 Series  
REVISION HISTORY (Revision history begins at Rev C)  
REV  
DATE  
DESCRIPTION  
PAGE NUꢁBER  
C
10/12 Correction to Electrical Characteristics table to identify characteristics of LTC1068-50  
5
1068fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
29  
LTC1068 Series  
TYPICAL APPLICATION  
LTC106ꢀ-200 ꢀth Order Notch, fNOTCH = fCLK/256, f – 3dB at (0.9) (fNOTCH) and (1.05)(fNOTCH),  
Attenuation at fNOTCH Greater Than 70dB for fNOTCH in the Frequency Range 200Hz to 5kHz  
C22 470pF  
R
H1  
5.11k  
C21  
R
5.11k  
H2  
470pF  
1
2
28  
27  
INV B  
INV C  
R22 6.34k  
R32 84.3k  
R21 5.11k  
HPB/NB  
HPB/NC  
R11 51.1k  
R31 51.1k  
R41 100k  
3
4
26  
25  
BPB  
LPB  
BPC  
LPC  
V
IN  
R
66.5k  
R52  
L2  
R51  
5.11k  
R61  
8.06k  
5
6
7
8
24  
23  
22  
21  
5.11k R62 5.76k  
SB  
SC  
LTC1068-200  
NC  
V
–5V  
CLK  
0.1µF  
NC  
AGND  
+
CLK  
f
= (256)(f  
)
5V  
V
NOTCH  
0.1µF  
9
20  
19  
R64 7.87k  
NC  
SA  
R63  
NC  
SD  
8.06k  
10  
R54  
R53  
5.11k  
R43  
178k  
5.11k  
11  
12  
13  
14  
18  
LPA  
LPD  
BPD  
R34 75k  
17  
16  
15  
BPA  
R
G
R33 124k  
R24 7.32k  
15k  
HPA/NA  
INV A  
HPD  
R23 10k  
INV D  
R
5.11k  
475k  
H4  
+
C23 470pF  
R
5.11k  
H3  
R
L4  
LT1354  
V
OUT  
1068 TA27  
Gain vs Frequency  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0.8  
0.9  
1.0  
1.1  
IN NOTCH  
1.2  
)
RELATIVE FREQUENCY (f /f  
1068 TA28  
RELATED PARTS  
PART NUꢁBER  
LTC1064  
DESCRIPTION  
COꢁꢁENTS  
50:1 and 100:1 Clock-to-f Ratios, f to 100kHz, V = Up to 7.5V  
Universal Filter, Quad 2nd Order  
O
O
S
LTC1067/LTC1067-50  
LTC1164  
Low Power, Dual 2nd Order  
Rail-to-Rail, V = 3V to 5V  
S
Low Power Universal Filter, Quad 2nd Order  
High Speed Universal Filter, Quad 2nd Order  
50:1 and 100:1 Clock-to-f Ratios, f to 20kHz, V = Up to 7.5V  
O O S  
LTC1264  
20:1 Clock-to-f Ratio, f to 200kHz, V = Up to 7.5V  
O O S  
1068fc  
LT 1012 REV C • PRINTED IN USA  
30 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 1996  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1069-1

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear

LTC1069-1C

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear

LTC1069-1CN8

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear

LTC1069-1CN8#PBF

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1069-1CS8

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear

LTC1069-1CS8#PBF

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1069-1CS8#TR

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1069-1CS8#TRPBF

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1069-1I

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear

LTC1069-1IN8

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear

LTC1069-1IN8#PBF

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: PDIP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1069-1IS8

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear