LTC1069-1CS8 [Linear]

Low Power, 8th Order Progressive Elliptic, Lowpass Filter; 低功耗, 8阶渐进椭圆,低通滤波器
LTC1069-1CS8
型号: LTC1069-1CS8
厂家: Linear    Linear
描述:

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
低功耗, 8阶渐进椭圆,低通滤波器

有源滤波器 过滤器 光电二极管 LTE
文件: 总8页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1069-1  
Low Power, 8th Order  
Progressive Elliptic,  
Lowpass Filter  
EATURE  
S
F
8th Order Elliptic Filter in SO-8 Package  
Operates from Single 3.3V to ±5V Power Supplies  
20dB at 1.2fCUTOFF  
The cutoff frequency (fCUTOFF) of the LTC1069-1 is equal  
to the clock frequency divided by 100. The gain at fCUTOFF  
is 0.7dB and the typical passband ripple is ±0.15dB  
up to 0.9fCUTOFF. The stopband attenuation of the  
LTC1069-1 features a progressive elliptic response  
reaching 20dB attenuation at 1.2fCUTOFF, 52dB attenua-  
52dB at 1.4fCUTOFF  
70dB at 2fCUTOFF  
Wide Dynamic Range  
110µV  
Wideband Noise  
tion at 1.4fCUTOFF and 70dB attenuation at 2fCUTOFF  
.
RMS  
3.8mA Supply Current with ±5V Supplies  
2.5mA Supply Current with Single 5V Supply  
2mA Supply Current with Single 3.3V Supply  
With ±5V supplies, the LTC1069-1 cutoff frequency can  
be clock-tuned up to 12kHz; with a single 5V supply, the  
maximum cutoff frequency is 8kHz.  
O U  
The low power feature of the LTC1069-1 does not penal-  
izethedevice’sdynamicrange.With±5Vsuppliesandan  
input range of 0.3VRMS to 2.5VRMS, the signal-to-(noise  
+ THD) ratio is 70dB. The wideband noise of the  
LTC1069-1 is 110µVRMS. Other filter responses with  
lower power or higher speed can be obtained. Please  
contact LTC marketing for details.  
PPLICATI  
A
S
Telecommunication Filters  
Antialiasing Filters  
U
DESCRIPTIO  
The LTC®1069-1 is a monolithic 8th order lowpass filter  
featuringclock-tunablecutofffrequencyand2.5mApower  
supply current with a single 5V supply. An additional  
feature of the LTC1069-1 is operation with a single 3.3V  
supply.  
The LTC1069-1 is available in 8-pin PDIP and 8-pin SO  
packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI  
Frequency Response  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
Single 3.3V Supply 3kHz Elliptic Lowpass Filter  
1
2
3
4
8
7
6
5
+
AGND  
V
V
OUT  
OUT  
0.47µF  
3.3V  
0.1µF  
+
V
V
LTC1069-1  
NC  
NC  
f
CLK  
V
V
CLK  
IN  
IN  
300kHz  
1069-1 TA01  
–80  
1.5  
3
6
7.5  
4.5  
FREQUENCY (kHz)  
1069-1 TA02  
1
LTC1069-1  
W
U
W W W  
U
/O  
PACKAGE RDER I FOR ATIO  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V) ............................. 12V  
Maximum Voltage at  
ORDER PART  
NUMBER  
TOP VIEW  
Any Pin ............................ (V– 0.3V) V (V+ + 0.3V)  
Operating Temperature Range  
AGND  
1
2
3
4
8
7
6
5
V
OUT  
+
LTC1069-1CN8  
LTC1069-1CS8  
LTC1069-1IN8  
LTC1069-1IS8  
V
V
NC  
NC  
LTC1069-1C ........................................... 0°C to 70°C  
LTC1069-1I ....................................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
CLK  
V
IN  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
S8 PART NUMBER  
TJMAX = 110°C, θJA = 100°C/W (N8)  
TJMAX = 110°C, θJA = 150°C/W (S8)  
10691  
10691I  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
fCUTOFF is the filter’s cutoff frequency and is equal to fCLK/100. The fCLK signal level is TTL or CMOS (clock rise or fall time 1µs),  
VS = 3.3V to ±5V, RL = 10k, TA = 25°C, unless otherwise noted. All AC gains are measured relative to the passband gain.  
PARAMETER  
Passband Gain (f 0.25f  
CONDITIONS  
V = ±5V,  
MIN  
TYP  
MAX  
UNITS  
)
f = 500kHz  
CLK  
0.30  
0.35  
0.2  
0.70  
0.75  
dB  
dB  
IN  
CUTOFF  
S
f
= 1.25kHz,  
V
= 1V  
TEST  
IN  
RMS  
V = 3.3V,  
f
V
= 200kHz  
0.30  
0.35  
0.2  
0.03  
0.03  
0.04  
0.70  
0.75  
dB  
dB  
S
CLK  
f
= 0.5kHz,  
= 0.5V  
TEST  
IN  
RMS  
Gain at 0.50f  
Gain at 0.75f  
Gain at 0.90f  
Gain at 0.95f  
V = ±5V,  
f
V
= 500kHz  
0.10  
0.11  
0.10  
0.11  
dB  
dB  
CUTOFF  
CUTOFF  
CUTOFF  
CUTOFF  
S
CLK  
f
= 2.5kHz,  
= 1V  
TEST  
IN  
RMS  
V = 3.3V,  
f
V
= 200kHz  
0.10  
0.11  
0.10  
0.11  
dB  
dB  
S
CLK  
f
= 1kHz,  
= 0.5V  
TEST  
IN  
RMS  
V = ±5V,  
f
V
= 500kHz  
0.20  
0.25  
0.20  
0.25  
dB  
dB  
S
CLK  
f
= 3.75kHz,  
= 1V  
TEST  
IN  
RMS  
V = 3.3V,  
f
V
= 200kHz  
0.20  
0.25  
0.04  
0.20  
0.25  
dB  
dB  
S
CLK  
f
= 1.5kHz,  
= 0.5V  
TEST  
IN  
RMS  
V = ±5V,  
f
V
= 500kHz  
= 1VRMS  
0.20  
0.25  
0.01  
0.01  
0.05  
0.04  
0.70  
0.61  
27  
0.20  
0.25  
dB  
dB  
S
CLK  
f
= 4.5kHz,  
TEST  
IN  
V = 3.3V,  
f
V
= 200kHz  
0.20  
0.25  
0.20  
0.25  
dB  
dB  
S
CLK  
f
= 1.8kHz,  
= 0.5V  
TEST  
IN  
RMS  
V = ±5V,  
f
V
= 500kHz  
0.30  
0.35  
0.30  
0.35  
dB  
dB  
S
CLK  
f
= 4.75kHz,  
= 1V  
TEST  
IN  
RMS  
V = 3.3V,  
f
V
= 200kHz  
0.30  
0.35  
0.30  
0.35  
dB  
dB  
S
CLK  
f
= 1.9kHz,  
= 0.5V  
TEST  
IN  
RMS  
Gain at f  
V = ±5V,  
f
V
= 500kHz  
1.25  
1.35  
0.25  
0.15  
dB  
dB  
CUTOFF  
S
CLK  
f
= 5.0kHz,  
= 1V  
TEST  
IN  
RMS  
V = 3.3V,  
f
V
= 200kHz  
1.25  
1.35  
0.25  
0.15  
dB  
dB  
S
CLK  
f
= 2.0kHz,  
= 0.5V  
TEST  
IN  
RMS  
Gain at 1.25f  
V = ±5V,  
f
V
= 500kHz  
30  
31  
25  
24  
dB  
dB  
CUTOFF  
S
CLK  
f
= 6.25kHz,  
= 1V  
TEST  
IN  
RMS  
V = 3.3V,  
f
= 200kHz  
30  
31  
27  
25  
24  
dB  
dB  
S
CLK  
f
= 2.5kHz,  
V = 0.5V  
IN RMS  
TEST  
2
LTC1069-1  
ELECTRICAL CHARACTERISTICS  
fCUTOFF is the filter’s cutoff frequency and is equal to fCLK/100. The fCLK signal level is TTL or CMOS (clock rise or fall time 1µs),  
VS = 3.3V to ±5V, RL = 10k, TA = 25°C, unless otherwise noted. All AC gains are measured relative to the passband gain.  
PARAMETER  
Gain at 1.50f  
CONDITIONS  
V = ±5V,  
MIN  
TYP  
MAX  
UNITS  
f = 500kHz  
CLK  
58  
59  
53  
50  
49  
dB  
dB  
CUTOFF  
S
f
= 7.5kHz,  
V
IN  
= 1V  
TEST  
RMS  
V = 3.3V,  
f
V
= 200kHz  
58  
59  
53  
50  
49  
dB  
dB  
S
CLK  
f
= 3kHz,  
= 0.5V  
TEST  
IN  
RMS  
Output DC Offset (Input at AGND)  
Output Voltage Swing  
V = ±5V,  
f
f
f
= 500kHz  
= 400kHz  
= 200kHz  
30  
20  
15  
150  
mV  
mV  
mV  
S
CLK  
CLK  
CLK  
V = 4.75V,  
S
V = 3.3V,  
S
100  
V = ±5V  
3.25  
1.50  
0.70  
±4.0  
±1.7  
±0.9  
3.25  
1.25  
0.60  
V
V
V
S
V = 4.75V  
S
V = 3.3  
S
V
Power Supply Current  
V = ±5V  
f
f
f
= 500kHz  
= 400kHz  
= 200kHz  
3.8  
2.5  
2.0  
5.5  
4.5  
3.5  
mA  
mA  
mA  
S
CLK  
CLK  
CLK  
V = 4.75V  
S
V = 3.3  
S
V
Maximum Clock Frequency  
V = ±5V  
1.2  
0.8  
0.5  
MHz  
MHz  
MHz  
S
V = 4.75V  
S
V = 3.3V  
S
Input Frequency Range  
Input Resistance  
0
f
/2  
MHz  
kΩ  
V
CLK  
30  
43  
70  
Operating Power Supply Voltage  
±1.57  
±5.5  
The  
denotes specificatons which apply over the full operating  
temperature range.  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Transition Band Gain vs  
Passband Gain vs Frequency  
Frequency  
Stopband Gain vs Frequency  
1.0  
0.8  
10  
0
–70  
–72  
–74  
–76  
–78  
–80  
–82  
–84  
–86  
–88  
–90  
V
f
= ±5V  
CLK  
= 5kHz  
V
f
C
V
= ±5V  
S
S
V
= ±5V  
S
= 500kHz  
= 500kHz  
CLK  
f
f
= 500kHz  
CLK  
C
f
f
= 5kHz  
C
= 5kHz  
0.6  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
= 2V  
= 2V  
IN  
RMS  
IN  
RMS  
V
= 2V  
IN  
RMS  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
5
6
7
8
9
10  
11  
11 12 13 14 15 16 17 18 19 20 21  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-1 G02  
1069-1 G03  
1069-1 G01  
3
LTC1069-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
U W  
Passband Gain vs Clock  
Frequency, VS = Single 3.3V  
Passband Gain vs Clock  
Frequency, VS = Single 5V  
Passband Gain vs Clock  
Frequency, VS = ±5V  
2.0  
1.5  
2.0  
1.5  
2.0  
1.5  
V
V
= SINGLE 3.3V  
= 0.5V  
V
V
= ±5V  
S
IN  
V
V
= SINGLE 5V  
= 1.2V  
S
IN  
S
IN  
= 2V  
RMS  
RMS  
RMS  
1.0  
1.0  
f
= 1.5MHz  
= 15kHz  
1.0  
f
= 750kHz  
f
= 1MHz  
CLK  
C
f
= 750kHz  
= 7.5kHz  
CLK  
C
CLK  
CLK  
C
f
f
= 7.5kHz  
f = 10kHz  
C
f
0.5  
0.5  
0.5  
0
0
0
f
C
= 1MHz  
f
= 500kHz  
CLK  
CLK  
C
f
= 10kHz  
f
= 5kHz  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
f
= 500kHz  
C
CLK  
f
= 500kHz  
C
CLK  
f
= 5kHz  
f
= 5kHz  
1.5  
2.5 3.5 4.5 5.5  
FREQUENCY (kHz)  
7.5  
3
5
7
9
11  
15  
0.5  
6.5  
1.5 2.5 3.5 4.5 5.5  
7.5 8.5 9.5 10.5  
1
13  
0.5  
6.5  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-1 G04  
1069-1 G06  
1069-1 G05  
Phase and Group Delay vs  
Frequency  
Transient Response  
Gain vs Supply Voltage  
10  
0
0
–90  
f
V
= 500kHz  
V
f
C
= SINGLE 5V  
= 500kHz  
CLK  
IN  
S
CLK  
= 5kHz  
= 0.5V  
RMS  
f
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
PHASE  
–180  
–270  
–360  
–450  
–540  
–630  
–720  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
GROUP DELAY  
V
= 3.3V  
S
0.2ms/DIV  
V
= 5V  
S
V
S = ±5V  
V
7
= ±5V  
f
CLK = 1MHz  
S
fIN = 500Hz  
1
2
3
4
5
7
1
3
5
9
11 13 15 17 19 21  
0
6
4VP-P SQUARE WAVE  
1069-1 G09  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-1 G07  
1069-1 G08  
Dynamic Range  
THD + Noise vs VIN (VRMS  
)
THD + Noise vs Frequency  
THD + Noise vs Frequency  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–60  
–62  
–64  
–66  
–68  
–70  
–72  
–74  
–76  
–78  
–80  
f
= 500kHz  
f
f
= 500kHz  
f
= 500kHz  
CLK  
CLK  
IN  
CLK  
V = 300mV  
IN  
= 1kHz  
RMS  
V
=
V =  
S
S
5V  
±5V  
V
IN  
= 3.3V  
S
V
= 3.3V  
V
S
= ±5V  
S
V
= 0.5V  
RMS  
V
= 3.3V  
S
V
= 5V  
S
V
= 5V  
RMS  
S
V
= 1V  
IN  
V
IN  
= ±5V  
S
V
= 2V  
RMS  
1.0  
0.65 1.22  
INPUT VOLTAGE (V  
2.0  
2.67  
1
2
3
4
5
0.1  
0.3  
5.0  
1
2
3
4
5
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
)
RMS  
1069-1 G12  
1069-1 G10  
1069-1 G11  
4
LTC1069-1  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage Swing vs  
Temperature  
Supply Current vs Clock  
Supply Current vs Supply Voltage  
Frequency  
5
4
3
2
1
0
5
4
f
= 10Hz  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
CLK  
V
= ±5V  
S
3
V
= ±2.5V  
S
V
= ±5V  
S
2
25°C  
1
V
= ±1.57V  
= ±1.57V  
S
0
85°C  
–40°C  
V
S
V
= 5V  
S
–1  
–2  
–3  
–4  
–5  
V
= ±2.5V  
S
V
= 3.3V  
S
V
= ±5V  
S
–40 –20  
0
20  
40  
60  
80  
0.5  
0.6 0.7 0.8 0.9 1.0 1.2  
0.1  
0.4  
0
1
3
4
5
6
0.2 0.3  
2
TOTAL SUPPLY VOLTAGE (±V)  
CLOCK FREQUENCY (MHz)  
AMBIENT TEMPERATURE (°C)  
1069-1 G15  
1069-1 G14  
1069-1 G13  
U
U
U
PIN FUNCTIONS  
V+, V(Pins 2, 7): Power Supply Pins. The V+ (Pin 2) and  
the V(Pin 7) should be bypassed with a 0.1µF capacitor  
to an adequate analog ground. The filter’s power supplies  
should be isolated from other digital or high voltage  
analog supplies. A low noise linear supply is recom-  
mended. Using switching power supplies will lower the  
signal-to-noise ratio of the filter. Unlike previous mono-  
lithic filters, the power supplies can be applied at any  
order, that is, the positive supply can be applied before the  
negative supply and vice versa. Figure 2 shows the con-  
nection for dual supply operation.  
AGND (Pin 1): Analog Ground. The quality of the analog  
signal ground can affect the filter performance. For either  
single or dual supply operation, an analog ground plane  
surrounding the package is recommended. The analog  
ground plane should be connected to any digital ground at  
a single point. For dual supply operation Pin 1 should be  
connected to the analog ground plane.  
For single supply operation Pin 1 should be bypassed to the  
analog ground plane with a 0.47µF or larger capacitor. An  
internal resistive divider biases Pin 1 to 1/2 the total power  
supply. Pin 1 should be buffered if used to bias other ICs.  
Figure1showstheconnectionsforsinglesupplyoperation.  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
AGND  
V
V
OUT  
AGND  
V
V
OUT  
OUT  
OUT  
0.47µF  
+
+
+
+
V
V
V
V
V
V
V
LTC1069-1  
LTC1069-1  
0.1µF  
0.1µF  
0.1µF  
NC  
NC  
NC  
NC  
V
V
CLK  
V
IN  
V
CLK  
IN  
IN  
IN  
ANALOG GROUND PLANE  
ANALOG GROUND PLANE  
STAR  
SYSTEM  
GROUND  
DIGITAL  
GROUND  
PLANE  
STAR  
SYSTEM  
GROUND  
DIGITAL  
GROUND  
PLANE  
1k  
1k  
CLOCK  
SOURCE  
CLOCK  
SOURCE  
1069-1 F01  
1069-1 F02  
Figure 2. Connections for Dual Supply Operation  
Figure 1. Connections for Single Supply Operation  
5
LTC1069-1  
U
U
U
PIN FUNCTIONS  
NC (Pins 3, 6): No Connection. Pins 3 and 6 are not  
connected to any internal circuity; they should be prefer-  
ably tied to ground.  
fall is 1µs. The clocksignal should be routed from the right  
side of the IC package to avoid coupling into any input or  
output analog signal path. A 1k resistor between the clock  
source and the clock input pin (5) will slow down the rise  
and fall times of the clock to further reduce charge cou-  
pling, Figure 1.  
VIN (Pin 4): Filter Input Pin. The filter input pin is internally  
connected to the inverting input of an op amp through a  
43k resistor.  
Table 1. Clock Source High and Low Thresholds  
CLK (Pin 5): Clock Input Pin. Any TTL or CMOS clock  
source with a square wave output and 50% duty cycle  
(±10%) is an adequate clock source for the device. The  
power supply for the clock source should not necessarily  
be the filter’s power supply. The analog ground of the filter  
should be connected to clock’s ground at a single point  
only. Table 1 shows the clock’s low and high level thresh-  
old value for a dual or a single supply operation. A pulse  
generator can be used as a clock source provided the high  
level ON time is greater than 0.42µs (VS = ±5V). Sine  
waves less than 100kHz are not recommended for clock  
signal because excessive slow clock rise or fall times  
generate internal clock jitter. The maximum clock rise or  
POWER SUPPLY  
HIGH LEVEL  
1.5V  
LOW LEVEL  
0.5V  
Dual Supply = ±5V  
Single Supply = 10V  
Single Supply = 5V  
Single Supply = 3.3V  
6.5V  
1.5V  
1.2V  
5.5V  
0.5V  
0.5V  
VOUT (Pin 8): Filter Output Pin. Pin 8 is the output of the  
filter and it can source or sink 1mA. Driving coaxial cables  
or resistive loads less than 20k will degrade the total  
harmonic distortion of the filter. When evaluating the  
device’s dynamic range, a buffer is required to isolate the  
filter’s output from coax cables and instruments.  
U
W U U  
APPLICATIONS INFORMATION  
Temperature Behavior  
especially at ±5V supply, has a passband behavior which  
is nearly temperature independent.  
The power supply current of the LTC1069-1 has a positive  
temperature coefficient. The GBW product of its internal  
op amps is nearly constant and the speed of the device  
doesnotdegradeathightemperatures. Figures3a, 3band  
3c show the behavior of the maximum passband of the  
device for various supplies and temperatures. The filter,  
Clock Feedthrough  
The clock feedthrough is defined as the RMS value of the  
clock frequency and its harmonics that are present at the  
filter’s output pin (8). The clock feedthrough is tested with  
2.0  
2.0  
1.5  
2.0  
1.5  
V
CLK  
V
= ±5V  
S
V
f
IN  
= 3.3V  
V
f
= 5V  
S
S
1.5  
1.0  
f
= 1.5MHz  
= 750kHz  
= 1MHz  
CLK  
= 0.5V  
RMS  
CLK  
= 1.2V  
RMS  
= 2V  
RMS  
IN  
V
V
IN  
T
= 25°C  
A
1.0  
T = 85°C  
A
1.0  
T
= 25°C  
A
T
= 85°C  
0.5  
T
= 85°C  
A
A
0.5  
0.5  
T
= –40°C  
A
0
T
= 25°C  
A
0
0
T
= –40°C  
A
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
T
= –40°C  
A
3
5
7
9
11  
15  
1
13  
1.5  
2.5 3.5 4.5 5.5  
FREQUENCY (kHz)  
7.5  
0.5  
6.5  
1.5 2.5 3.5 4.5 5.5  
7.5 8.5 9.5 10.5  
6.5  
0.5  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-1 F03c  
1069-1 F03a  
1069-1 F03b  
Figure 3a  
Figure 3b  
Figure 3c  
6
LTC1069-1  
U
W U U  
APPLICATIONS INFORMATION  
the input pin (4) shorted to the AGND pin and depends on  
PC board layout and on the value of the power supplies.  
With proper layout techniques the values of the clock  
feedthrough are shown on Table 2.  
supplyvoltage(seeTable3). Theclockfeedthroughspeci-  
fications are not part of the wideband noise.  
Table 3. Wideband Noise  
V
WIDEBAND NOISE  
S
3.3V  
5V  
±5V  
100µV  
108µV  
112µV  
Table 2. Clock Feedthrough  
RMS  
RMS  
RMS  
V
CLOCK FEEDTHROUGH  
S
3.3V  
5V  
10µV  
40µV  
RMS  
RMS  
Aliasing  
±5V  
160µV  
RMS  
Aliasing is an inherent phenomenon of sampled data  
systems and it occurs for input frequencies approaching  
the sampling frequency. The internal sampling frequency  
of the LTC1069-1 is 100 times its cutoff frequency. For  
instance, if a 98kHz, 100mVRMS signal is applied at the  
input of an LTC1069-1 operating with a 100kHz clock, a  
2kHz, 28µVRMS alias signal will appear at the filter output.  
Table 4 shows details.  
Any parasitic switching transients during the rise and fall  
edges of the incoming clock are not part of the clock  
feedthroughspecifications.Switchingtransientshavefre-  
quency contents much higher than the applied clock; their  
amplitude strongly depends on scope probing techniques  
as well as grounding and power supply bypassing. The  
clock feedthrough can be reduced, if bothersome, by  
addingasingleRClowpassfilterattheoutputpin(8)ofthe  
LTC1069-1.  
Table 4. Aliasing (fCLK = 100kHz)  
INPUT FREQUENCY  
(V = 1V  
OUTPUT LEVEL  
(Relative to Input)  
(dB)  
OUTPUT FREQUENCY  
(Aliased Frequency)  
(kHz)  
)
RMS  
IN  
Wideband Noise  
(kHz)  
/f = 100:1, f = 1kHz  
CUTOFF  
f
The wideband noise of the filter is the total RMS value of  
the device’s noise spectral density and determines the  
operating signal-to-noise ratio. Most of the wideband  
noise frequency contents lie within the filter passband.  
The wideband noise cannot be reduced by adding post  
filtering. Thetotalwidebandnoiseisnearlyindependentof  
the clock frequency and depends slightly on the power  
CLK  
C
96 (or 104)  
97 (or 103)  
98 (or 102)  
985. (or 101.5)  
99 (or 101)  
99.5 (or 100.5)  
90.0  
86.0  
71.0  
56.0  
1.1  
4.0  
3.0  
2.0  
1.5  
1.0  
0.5  
0.21  
U
TYPICAL APPLICATIONS  
Single 3.3V Supply Operation with Output Buffer  
Single 5V Operation with Power Shutdown  
3.3V  
5V  
SHUTDOWN  
ON  
CMOS LOGIC  
0.1µF  
1
2
3
4
8
7
6
5
AGND  
V
V
OUT  
OUT  
1
2
3
4
8
AGND  
V
OUT  
+
+
0.47µF  
0.47µF  
0.1µF  
V
V
7
6
5
1/2 LT1366  
+
V
OUT  
V
V
LTC1069-1  
NC  
0.1µF  
LTC1069-1  
NC  
NC  
NC  
f
CLK  
750kHz  
5V  
V
IN  
V
CLK  
IN  
f
CLK  
500kHz  
3.3V  
0V  
1069-1 TA05  
0V  
V
V
CLK  
IN  
IN  
1069-1 TA04  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC1069-1  
U
TYPICAL APPLICATIONS  
Dual Supply Operation  
–45  
–50  
–55  
–60  
f
IN  
= 1kHz  
1
8
7
6
5
AGND  
V
V
OUT  
OUT  
2
3
4
+
5V  
0.1µF  
V
V
5V  
–65  
–70  
–75  
LTC1069-1  
NC  
0.1µF  
NC  
f
CLK  
500kHz  
5V  
0V  
V
V
CLK  
IN  
IN  
f
= 5kHz  
C
–80  
–85  
0.1  
1
3
INPUT VOLTAGE (V  
)
RMS  
1069-1 TA03  
U
Dimensions in inches (millimeters) unless otherswise noted.  
PACKAGE DESCRIPTION  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.005  
(0.127)  
MIN  
0.015  
(0.380)  
MIN  
(3.175)  
MIN  
+0.025  
–0.015  
2
4
3
0.325  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0695  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**  
DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0695  
1
2
3
4
RELATED PARTS  
PART NUMBER  
LTC1068  
DESCRIPTON  
COMMENTS  
User-Configurable, SSOP Package  
50:1 f /f Ratio, 8-Pin SO Package  
Very Low Noise, High Accuracy, Quad Universal Filter Building Block  
Single Supply, Very Low Power, Elliptic LPF  
Low Power 8th Order Butterworth LPF  
Low Power 8th Order Elliptic LPF  
Low Power 8th Order Linear Phase LPF  
LTC1069-6  
LTC1164-5  
LTC1164-6  
LTC1164-7  
CLK  
C
100:1 and 50:1 f /f Ratio  
CLK  
C
100:1 and 50:1 f /f Ratio  
CLK C  
100:1 and 50:1 f /f Ratio  
CLK  
C
LT/GP 1196 7K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
8
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1996  

相关型号:

LTC1069-1CS8#PBF

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1069-1CS8#TR

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1069-1CS8#TRPBF

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1069-1I

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear

LTC1069-1IN8

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear

LTC1069-1IN8#PBF

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: PDIP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1069-1IS8

Low Power, 8th Order Progressive Elliptic, Lowpass Filter
Linear

LTC1069-1IS8#PBF

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1069-1IS8#TR

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1069-1IS8#TRPBF

LTC1069-1 - Low Power, 8th Order Progressive Elliptic, Lowpass Filter; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1069-6

Single Supply, Very Low Power, Elliptic Lowpass Filter
Linear

LTC1069-6C

Single Supply, Very Low Power, Elliptic Lowpass Filter
Linear