LTC1069-6 [Linear]

Single Supply, Very Low Power, Elliptic Lowpass Filter; 单电源供电,超低功耗,椭圆低通滤波器
LTC1069-6
型号: LTC1069-6
厂家: Linear    Linear
描述:

Single Supply, Very Low Power, Elliptic Lowpass Filter
单电源供电,超低功耗,椭圆低通滤波器

文件: 总8页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1069-6  
Single Supply, Very Low  
Power, Elliptic Lowpass Filter  
U
FEATURES  
DESCRIPTION  
The LTC®1069-6 is a monolithic low power, 8th order low-  
pass filter optimized for single 3V or single 5V supply  
operation. The LTC1069-6 typically consumes 1mA under  
single 3V supply operation and 1.2mA under 5V operation.  
8th Order Elliptic Filter in SO-8 Package  
Single 3V Operation: Supply Current: 1mA (Typ)  
fCUTOFF: 14kHz (Max)  
S/N Ratio: 72dB  
Single 5V Operation: Supply Current: 1.2mA (Typ)  
The cutoff frequency of the LTC1069-6 is clock tunable and it  
is equal to the clock frequency divided by 50. The input signal  
is sampled twice per clock cycle to lower the risk of aliasing.  
fCUTOFF: 20kHz (Max)  
S/N Ratio: 79dB  
±0.1dB Passband Ripple Up to 0.9fCUTOFF (Typ)  
The typical passband ripple is ±0.1dB up to 0.9fCUTOFF  
.
42dB Attenuation at 1.3fCUTOFF  
The gain at fCUTOFF is 0.7dB. The transition band of the  
LTC1069-6featuresprogressiveattenuationreaching42dB  
at 1.3fCUTOFF and 70dB at 2.1fCUTOFF. The maximum  
stopband attenuation is 72dB.  
66dB Attenuation at 2.0fCUTOFF  
70dB Attenuation at 2.1fCUTOFF  
Wide Dynamic Range, 75dB or More (S/N + THD),  
Under Single 5V Operation  
Wideband Noise: 120µVRMS  
Clock-to-fCUTOFF Ratio: 50:1  
The LTC1069-6 can be clock tuned for cutoff frequencies  
up to 20kHz (single 5V supply) and for cutoff frequencies  
up to 14kHz (single 3V supply).  
Internal Sample Rate: 100:1  
U
The low power feature of the LTC1069-6 does not penalize  
the device’s dynamic range. With single 5V supply and an  
input range of 0.4VRMS to 1.4VRMS, the Signal-to-(Noise  
+ THD) ratio is 70dB. The wideband noise of the  
APPLICATIONS  
Handheld Instruments  
Telecommunication Filters  
Antialiasing Filters  
Smoothing Filters  
LTC1069-6 is 125µVRMS  
.
Other filter responses with higher speed can be obtained.  
Please contact LTC Marketing for details.  
Audio  
Multimedia  
The LTC1069-6 is available in an 8-pin SO package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Frequency Response  
10  
V
= 500mV  
RMS  
IN  
Single 3V Supply 10kHz Elliptic Lowpass Filter  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
AGND  
V
OUT  
3V  
+
0.47µF  
V
V
0.1µF  
LTC1069-6  
NC  
NC  
f
= 500kHz  
V
CLK  
CLK  
IN  
1069-6 TA01  
–80  
5
10  
20  
FREQUENCY (kHz)  
25  
15  
1069-6 TA02  
1
LTC1069-6  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
Total Supply Voltage (V+ to V) .............................. 12V  
Operating Temperature Range  
ORDER PART  
TOP VIEW  
NUMBER  
AGND  
1
2
3
4
8
7
6
5
V
V
LTC1069-6C ............................................ 0°C to 70°C  
LTC1069-6I ........................................ 40°C to 85°C  
Storage Temperature ............................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
OUT  
+
LTC1069-6CS8  
LTC1069-6IS8  
V
NC  
NC  
V
CLK  
IN  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
10696  
10696I  
TJMAX = 125°C, θJA = 110°C/ W  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
fCUTOFF is the filter’s cutoff frequency and is equal to fCLK/50. The fCLK signal level is TTL or CMOS (clock rise or fall time 1µs)  
RL = 10k, VS = 5V, TA = 25°C, unless otherwise specified. All AC gains are measured relative to the passband gain.  
PARAMETER  
Passband Gain (f 0.2f  
CONDITIONS  
V = 5V, f  
MIN  
TYP  
MAX  
UNITS  
)
= 200kHz  
CLK  
0.25  
0.30  
0.1  
0.1  
0.45  
0.50  
dB  
dB  
IN  
CUTOFF  
S
f
= 0.25kHz, V = 1V  
TEST  
IN  
RMS  
V = 3V, f  
S
= 200kHz  
CLK  
0.25  
0.30  
0.1  
0.1  
0.45  
0.50  
dB  
dB  
f
= 0.25kHz, V = 0.5V  
TEST  
IN RMS  
Gain at 0.50f  
Gain at 0.75f  
Gain at 0.90f  
Gain at 0.95f  
V = 5V, f = 200kHz  
CLK  
0.10 0.07  
0.15 0.07  
0.25  
0.30  
dB  
dB  
CUTOFF  
CUTOFF  
CUTOFF  
CUTOFF  
S
f
= 2.0kHz, V = 1V  
TEST  
IN RMS  
V = 3V, f  
S
= 200kHz  
CLK  
0.15 0.07  
0.20 0.07  
0.25  
0.30  
dB  
dB  
f
= 2.0kHz, V = 0.5V  
TEST  
IN RMS  
V = 5V, f  
S
= 200kHz  
CLK  
0.25  
0.30  
0
0
0.25  
0.30  
dB  
dB  
f
= 3.0kHz, V = 1V  
TEST  
IN RMS  
V = 3V, f  
S
= 200kHz  
CLK  
0.25  
0.30  
0
0
0.25  
0.30  
dB  
dB  
f
= 3.0kHz, V = 0.5V  
TEST  
IN  
RMS  
RMS  
RMS  
RMS  
RMS  
V = 5V, f  
S
= 200kHz  
CLK  
0.25  
0.25  
0.1  
0.1  
0.45  
0.45  
dB  
dB  
f
= 3.6kHz, V = 1V  
TEST  
IN RMS  
V = 3V, f  
S
= 200kHz  
CLK  
0.25  
0.30  
0.1  
0.1  
0.45  
0.50  
dB  
dB  
f
= 3.6kHz, V = 0.5V  
TEST  
IN  
V = 5V, f  
S
= 200kHz  
CLK  
0.35 0.05  
0.45 0.05  
0.25  
0.25  
dB  
dB  
f
= 3.8kHz, V = 1V  
TEST  
IN RMS  
V = 3V, f  
S
= 200kHz  
CLK  
0.45 0.05  
0.55 0.05  
0.25  
0.35  
dB  
dB  
f
= 3.8kHz, V = 0.5V  
TEST  
IN  
Gain at f  
V = 5V, f = 200kHz  
CLK  
1.50 0.07 0.20  
1.65 0.07 0.25  
dB  
dB  
CUTOFF  
S
f
= 4.0kHz, V = 1V  
TEST  
IN RMS  
V = 3V, f  
S
= 200kHz  
CLK  
1.5 0.07  
1.7 0.07  
0
0
dB  
dB  
f
= 4.0kHz, V = 0.5V  
TEST  
IN  
Gain at 1.30f  
V = 5V, f = 200kHz  
CLK  
42  
42  
40  
39  
dB  
dB  
CUTOFF  
S
f
= 5.2kHz, V = 1V  
TEST  
IN RMS  
V = 3V, f  
S
= 200kHz  
CLK  
41  
41  
38  
– 37  
dB  
dB  
f
= 5.2kHz, V = 0.5V  
TEST  
IN  
2
LTC1069-6  
ELECTRICAL CHARACTERISTICS  
fCUTOFF is the filter’s cutoff frequency and is equal to fCLK/50. The fCLK signal level is TTL or CMOS (clock rise or fall time 1µs)  
RL = 10k, VS = 5V, TA = 25°C, unless otherwise specified. All AC gains are measured relative to the passband gain.  
PARAMETER  
CONDITIONS  
V = 5V, f  
MIN  
TYP  
MAX  
UNITS  
Gain at 2.00f  
= 200kHz  
CLK  
–66  
–66  
–61  
–60  
dB  
dB  
CUTOFF  
S
f
= 8.0kHz, V = 1V  
TEST  
IN  
RMS  
V = 3V, f  
S
= 200kHz  
CLK  
–66  
–66  
–60  
–59  
dB  
dB  
f
= 8.0kHz, V = 0.5V  
TEST  
IN RMS  
Gain at 0.95f  
V = 5V, f  
V = 3V, f  
S
= 400kHz, f  
= 400kHz, f  
= 7.6kHz, V = 1V  
RMS  
0.5  
0.5  
0.15  
0
0.5  
0.5  
dB  
dB  
CUTOFF  
S
CLK  
CLK  
TEST  
TEST  
IN  
= 7.6kHz, V = 0.5V  
IN RMS  
Output DC Offset (Note 1)  
V = 5V, f  
V = 3V, f  
S
= 100kHz  
= 100kHz  
50  
30  
175  
135  
mV  
mV  
S
CLK  
CLK  
Output DC Offset Tempco  
V = 5V, V = 3V  
30  
µV/°C  
S
S
Output Voltage Swing (Note 2)  
V = 5V, f  
= 100kHz  
= 100kHz  
= 100kHz  
= 100kHz  
3.4  
3.2  
4.2  
4.2  
V
V
S
CLK  
P-P  
P-P  
V = 3V, f  
S
1.6  
1.5  
2.0  
2.0  
V
V
CLK  
CLK  
CLK  
P-P  
P-P  
Power Supply Current  
V = 5V, f  
S
1.2  
1.60  
1.65  
mA  
mA  
V = 3V, f  
S
1.0  
1.40  
1.55  
mA  
mA  
Maximum Clock Frequency  
V = 5V  
V = 3V  
S
1.0  
0.7  
MHz  
MHz  
S
Input Frequency Range  
Input Resistance  
0
35  
3
<(f  
– 2f )  
CLK C  
50  
80  
10  
kΩ  
Operating Supply Voltage (Note 3)  
V
+
The  
denotes specifications which apply over the full operating  
Note 2: The input voltage can swing to either rail (V or ground); the  
+
temperature range.  
output typically swings 50mV from ground and 0.8V from V .  
Note 1: The input offset voltage is measured with respect to AGND (Pin 1).  
The input (Pin 4) is also shorted to the AGND pin. The analog ground pin  
Note 3: The LTC1069-6 is optimized for 3V and 5V operation. Although the  
device can operate with a single 10V supply or ±5V, the total harmonic  
distortion will be degraded. For single 10V or ±5V supply operation we  
recommend to use the LTC1069-1.  
potential is internally set to (0.437)(V  
).  
SUPPLY  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Passband Gain vs Frequency  
Transition Band Gain vs Frequency  
Stopband Gain vs Frequency  
2
60  
62  
64  
66  
68  
–70  
–72  
–74  
–76  
–78  
80  
10  
0
V
f
= SINGLE 3V  
= 500kHz  
V
f
= SINGLE 3V  
= 500kHz  
V
f
= SINGLE 3V  
= 500kHz  
S
CLK  
S
CLK  
S
CLK  
f
= 10kHz  
f
= 10kHz  
f
= 10kHz  
CUTOFF  
CUTOFF  
CUTOFF  
–10  
–20  
–30  
40  
50  
60  
–70  
80  
90  
V
= 0.5V  
RMS  
V
= 0.5V  
RMS  
V
= 0.5V  
IN  
IN  
1
IN  
RMS  
0
–1  
–2  
1
3
5
7
9
11  
10  
12  
14  
16  
18  
20  
20  
60  
FREQUENCY (kHz)  
80  
40  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-6 G01  
1069-6 G02  
1069-6 G03  
3
LTC1069-6  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Amplitude Response  
vs Supply Voltage  
Passband Gain vs Clock Frequency  
Passband Gain vs Clock Frequency  
2
1
2
1
10  
0
f
= 500kHz  
= 0.5V  
RMS  
V
V
= SINGLE 3V  
V
V
= SINGLE 5V  
CLK  
IN  
S
S
V
= 0.5V  
= 1V  
IN  
RMS  
IN  
RMS  
f
= 750kHz  
CLK  
–10  
–20  
30  
40  
–50  
60  
70  
80  
90  
f
= 15kHz  
CUTOFF  
0
0
f
= 500kHz  
CLK  
SINGLE 5V  
SINGLE 3V  
–1  
–2  
–1  
–2  
f
f
f
CLK  
CLK  
CLK  
f
= 10kHz  
CUTOFF  
500kHz  
750kHz  
1MHz  
f
f
f
CUTOFF  
10kHz  
CUTOFF  
15kHz  
CUTOFF  
20kHz  
1
3
5
7
9
11 13 15 17 19 21  
1
3
5
7
9
11 13 15 17 19 21  
1
10  
FREQUENCY (kHz)  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-6 G06  
1069-6 G04  
1069-6 G05  
Phase vs Frequency  
Group Delay vs Frequency  
Transient Response  
90  
0
4.00E-04  
3.50E-04  
3.00E-04  
2.50E-04  
2.00E-04  
1.50E-04  
1.00E-04  
5.00E-05  
0.00E+00  
V
f
= SINGLE 5V  
= 500kHz  
V
f
= SINGLE 5V  
S
CLK  
S
= 500kHz  
CLK  
f
= 10kHz  
90  
f
= 10kHz  
CUTOFF  
CUTOFF  
–180  
270  
360  
450  
540  
630  
–720  
810  
900  
1069-6 G09  
VS = SINGLE 5V 0.1ms/DIV  
fCLK = 1MHz  
f
IN = 1kHz  
2VP-P SQUAREWAVE  
0
4
6
8
10  
12  
14  
0
2
4
8
10  
12  
2
6
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-6 G07  
1069-6 G08  
Dynamic Range THD + Noise  
vs Input/Output Voltage  
Dynamic Range THD + Noise  
vs Input Voltage  
THD + Noise vs Frequency  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
40  
45  
f
f
f
= 170kHz  
= 3.4kHz  
= 1kHz  
f
f
= 500kHz  
f
f
= 500kHz  
CLK  
CUTOFF  
IN  
CLK  
CUTOFF  
CLK  
IN  
= 10kHz  
= 1kHz  
50  
55  
60  
65  
70  
75  
80  
85  
90  
V
= 2.945V  
P-P  
IN  
V
S
= SINGLE 3V  
V
= SINGLE 3V  
S
V
= 0.5V  
IN  
RMS  
V
=
S
SINGLE 5V  
V
S
V
= SINGLE 5V  
= 1V  
IN  
RMS  
0.1  
0.5 0.76 1 1.43  
INPUT VOLTAGE (V  
5
1
5
10  
0.1  
1
INPUT/OUTPUT VOLTAGE (V  
3
)
RMS  
FREQUENCY (kHz)  
)
P-P  
1069-6 G10  
1069-6 G14  
1069-6 G11  
4
LTC1069-6  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage Swing  
vs Temperature  
Supply Current vs Supply Voltage  
5
R
L
= 10k  
4.5  
V
= SINGLE 5V  
= SINGLE 3V  
S
S
4
3
2
1
0
4.0  
2.5  
V
2.0  
85°C  
25°C  
80  
60  
40  
20  
0
V
= SINGLE 3V  
40°C  
S
V
= SINGLE 5V  
S
0
8
12 14  
2
4
6
10  
16  
40 –20  
0
20  
40  
60  
80  
TOTAL SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
1069-6 G12  
1069-6 G13  
U
U
U
PIN FUNCTIONS  
AGND (Pin 1): Analog Ground. The quality of the analog  
signal ground can affect the filter performance. For either  
single or dual supply operation, an analog ground plane  
surrounding the package is recommended. The analog  
ground plane should be connected to any digital ground at  
asinglepoint. For single supplyoperation, Pin 1shouldbe  
bypassedtotheanaloggroundplanewitha0.47µFcapaci-  
tor or larger. An internal resistive divider biases Pin 1 to  
0.4366 times the total power supply of the device (Figure  
1). That is, with a single 5V supply, the potential at Pin 1  
is 2.183V ±1%. As the LTC1069-6 is optimized for single  
supply operation, the internal biasing of Pin 1 allows  
optimum output swing. The AGND pin should be buffered  
if used to bias other ICs. Figure 2 shows the connections  
for single supply operation.  
V+, V(Pins 2, 7): Power Supply Pins. The V+ (Pin 2) and  
the V(Pin 7, if used) should be bypassed with a 0.1µF  
capacitorto an adequate analog ground. Thefilter’s power  
supplies should be isolated from other digital or high  
voltage analog supplies. A low noise linear supply is  
recommended. Switching power supplies will lower the  
signal-to-noise ratio of the filter. Unlike previous mono-  
lithic filters, the power supplies can be applied in any  
order, that is, the positive supply can be applied before the  
negative supply and vice versa. Figure 3 shows the con-  
nection for dual supply operation.  
1
2
8
7
AGND  
V
V
OUT  
OUT  
0.47µF  
+
+
V
V
V
0.1µF  
LTC1069-6  
3
4
6
5
NC  
NC  
1
2
8
7
V
OUT  
AGND  
V
+
V
V
IN  
V
IN  
CLK  
11.325k 8.775k  
NC NC  
ANALOG GROUND PLANE  
3
4
6
5
LTC1069-6  
STAR  
DIGITAL  
GROUND  
PLANE  
1k  
SYSTEM  
GROUND  
V
CLK  
IN  
CLOCK  
SOURCE  
1069-6 F01  
Figure 1. Internal Biasing of the Analog Ground (Pin 1)  
1069-6 F02  
Figure 2. Connections for Single Supply Operation  
5
LTC1069-6  
U
U
U
PIN FUNCTIONS  
only. Table 1 shows the clock’s low and high level thresh-  
old value for a dual or single supply operation. A pulse  
generator can be used as a clock source provided the high  
level ON time is greater than 0.42µs (VS = ±5V). Sine  
waves less than 100kHz are not recommended for clock  
frequencies because, excessive slow clock rise or fall  
times generate internal clock jitter. The maximum clock  
rise or fall time is 1µs. The clock signal should be routed  
from the right side of the IC package to avoid coupling into  
any input or output analog signal path. A 1k resistor  
between the clock source and the Clock Input (Pin 5) will  
slow down the rise and fall times of the clock to further  
reduce charge coupling (Figure 1).  
1
8
7
AGND  
V
V
OUT  
OUT  
2
+
+
V
V
V
V
0.1µF  
0.1µF  
LTC1069-6  
3
4
6
5
NC  
NC  
V
V
IN  
CLK  
IN  
ANALOG GROUND PLANE  
STAR  
DIGITAL  
GROUND  
1k  
SYSTEM  
GROUND  
PLANE  
CLOCK  
SOURCE  
1069-6 F03  
Figure 3. Connections for Dual Supply Operation  
Table 1. Clock Source High and Low Thresholds  
NC (Pins 3, 6): No Connection. Pins 3 and 6 are not  
connected to any internal circuitry; they should be tied to  
ground.  
POWER SUPPLY  
HIGH LEVEL  
1.5V  
LOW LEVEL  
0.5V  
Dual Supply = ±5V  
Single Supply = 10V  
Single Supply = 5V  
Single Supply = 3.3V  
6.5V  
5.5V  
VIN (Pin4):FilterInputPin. TheFilterInputpinisinternally  
connected to the inverting input of an op amp through a  
50k resistor.  
1.5V  
0.5V  
1.2V  
0.5V  
CLK (Pin 5): Clock Input Pin. Any TTL or CMOS clock  
source with a square wave output and 50% duty cycle  
(±10%) is an adequate clock source for the device. The  
power supply for the clock source should not necessarily  
be the filter’s power supply. The analog ground of the filter  
shouldbeconnectedtotheclock’sgroundatasinglepoint  
VOUT (Pin 8): Filter Output Pin. Pin 8 is the output of the  
filter, and it can source 8mA or sink 1mA. The total  
harmonic distortion of the filter will degrade when driving  
coaxial cables or loads less than 20k without an output  
buffer.  
U
W U U  
APPLICATIONS INFORMATION  
2
Temperature Behavior  
V
V
= SINGLE 3V  
S
= 0.5V  
IN  
RMS  
The power supply current of the LTC1069-6 has a positive  
temperature coefficient. The GBW product of its internal  
op amps is nearly constant and the speed of the device  
doesnotdegradeathightemperatures. Figures4a, 4band  
4c show the behavior of the passband of the device for  
various supplies and temperatures. The filter has a pass-  
band behavior which is temperature independent.  
1
0
85°C  
40°C  
f
f
= 500kHz  
CLK  
CUTOFF  
–1  
–2  
= 10kHz  
1
3
5
7
9
11 13 15 17 19 21  
FREQUENCY (kHz)  
1069-6 F04a  
Figure 4a  
6
LTC1069-6  
U
W U U  
APPLICATIONS INFORMATION  
2
quency contents much higher than the applied clock; their  
amplitude strongly depends on scope probing techniques  
as well as grounding and power supply bypassing. The  
clock feedthrough can be reduced by adding a single RC  
lowpass filter at the Output (Pin 8).  
V
V
= SINGLE 5V  
S
= 1V  
IN  
RMS  
1
0
85°C  
40°C  
Wideband Noise  
f
= 750kHz  
CLK  
–1  
–2  
f
= 15kHz  
CUTOFF  
The wideband noise of the filter is the total RMS value of  
the device’s noise spectral density and determines the  
operating signal-to-noise ratio. The frequency contents of  
the wideband noise lie within the filter’s passband. The  
wideband noise cannot be reduced by adding post filter-  
ing. The total wideband noise is nearly independent of the  
clock frequency and depends slightly on the power supply  
voltage (see Table 3). The clock feedthrough specifica-  
tions are not part of the wideband noise.  
1
3
5
7
9
11 13 15 17 19 21  
FREQUENCY (kHz)  
1069-6 F04a  
Figure 4b  
2
1
V
V
= ±5V  
= 1.5V  
S
IN  
RMS  
Table 3. Wideband Noise  
85°C  
V
S
WIDEBAND NOISE  
0
40°C  
3.3V  
5V  
118µV  
123µV  
127µV  
RMS  
RMS  
RMS  
f
= 1MHz  
= 20kHz  
CLK  
CUTOFF  
–1  
–2  
f
±5V  
1
4
7
10 13 16 19 22 25 28 31  
FREQUENCY (kHz)  
1069-6 F04c  
Aliasing  
Aliasing is an inherent phenomenon of sampled data  
systemsandoccursforinputfrequenciesapproachingthe  
sampling frequency. The internal sampling frequency of  
the LTC1069-6 is 100 times its cutoff frequency. For  
instance, if a 98.5kHz, 100mVRMS signal is applied at the  
input of an LTC1069-6 operating with a 50kHz clock, a  
1.5kHz, 484µVRMS alias signal will appear at the filter  
output. Table 4 shows details.  
Figure 4c  
Clock Feedthrough  
The clock feedthrough is defined as the RMS value of the  
clock frequency and its harmonics that are present at the  
filter’sOutput(Pin8). Theclockfeedthroughistestedwith  
the Input (Pin 4) shorted to AGND (Pin 1) and depends on  
PC board layout and on the value of the power supplies.  
With proper layout techniques the values of the clock  
feedthrough are shown in Table 2.  
Table 4. Aliasing (fCLK = 50kHz)  
INPUT FREQUENCY  
OUTPUT LEVEL  
(Relative to Input)  
(dB)  
OUTPUT FREQUENCY  
(Aliased Frequency)  
(kHz)  
(V = 1V  
)
IN  
RMS  
(kHz)  
Table 2. Clock Feedthrough  
f
/f = 50:1, f  
= 1kHz  
CLK  
C
CUTOFF  
V
S
CLOCK FEEDTHROUGH  
96 (or 104)  
97 (or 103)  
–78.3  
–70.4  
80.6  
46.3  
2.8  
4.0  
3.0  
2.0  
1.5  
1.0  
0.5  
3.3V  
5V  
100µV  
170µV  
350µV  
RMS  
RMS  
RMS  
98 (or 102)  
10V  
98.5 (or 101.5)  
99 (or 101)  
Any parasitic switching transients during the rising and  
fallingedgesoftheincomingclockarenotpartoftheclock  
feedthroughspecifications. Switchingtransientshavefre-  
99.5 (or 100.5)  
1.38  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC1069-6  
U
TYPICAL APPLICATIONS  
Single 3V Supply Operation with Output Buffer  
Single 5V Operation with Power Shutdown  
3.3V  
5V  
ON  
SHUTDOWN  
0.1µF  
1
2
3
4
8
7
6
5
AGND  
V
V
OUT  
OUT  
5
6
1
2
3
4
8
7
6
5
8
AGND  
V
OUT  
+
+
0.47µF  
7
V
V
0.47µF  
0.1µF  
1/2 LT1366  
V
OUT  
+
V
V
LTC1069-6  
NC  
0.1µF  
LTC1069-6  
NC  
NC  
4
NC  
f
CLK  
750kHz  
5V  
V
IN  
V
CLK  
IN  
f
CLK  
500kHz  
3.3V  
0V  
0V  
V
V
CLK  
IN  
IN  
1069-6 TA04  
1069-6 TA03  
Single 3V Supply Voice Band Lowpass Filter with Rail-to-Rail Input and Output  
3V  
0.1µF  
8
5
6
1
2
3
4
8
7
6
5
AGND  
V
OUT  
+
3V  
7
1µF  
1/2 LT1366  
+
V
V
LTC1069-6  
NC  
0.1µF  
NC  
10k  
170kHz  
V
CLK  
IN  
1069-6 TA05  
40.2k  
2
3
1
1/2 LT1366  
10k  
+
4
270pF 40.2k  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
RELATED PARTS  
PART NUMBER  
LTC1068  
DESCRIPTON  
COMMENTS  
User-Configurable, SSOP Package  
Very Low Noise, High Accuracy, Quad Universal Filter Building Block  
Low Power, Progressive Elliptic LPF  
Low Power 8th Order Butterworth LPF  
LTC1069-1  
LTC1164-5  
LTC1164-6  
LTC1164-7  
f
f
f
f
/f Ratio 100:1, 8-Pin SO Package  
C
CLK  
CLK  
CLK  
CLK  
/f Ratio 100:1 and 50:1  
C
Low Power 8th Order Elliptic LPF  
/f Ratio 100:1 and 50:1  
C
Low Power 8th Order Linear Phase LPF  
/f Ratio 100:1 and 50:1  
C
LT/GP 1196 7K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1996  

相关型号:

LTC1069-6C

Single Supply, Very Low Power, Elliptic Lowpass Filter
Linear

LTC1069-6CS8

Single Supply, Very Low Power, Elliptic Lowpass Filter
Linear

LTC1069-6CS8#TR

LTC1069-6 - Single Supply, Very Low Power, Elliptic Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1069-6CS8#TRPBF

LTC1069-6 - Single Supply, Very Low Power, Elliptic Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1069-6I

Single Supply, Very Low Power, Elliptic Lowpass Filter
Linear

LTC1069-6IS8

Single Supply, Very Low Power, Elliptic Lowpass Filter
Linear

LTC1069-6IS8#PBF

暂无描述
Linear

LTC1069-6IS8#TR

暂无描述
Linear

LTC1069-7

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7C

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7CS8

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7CS8#PBF

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear