LTC1077 [Linear]

Temperature Sensor with Alert Outputs Voltage Output Proportional to Temperature; 温度传感器与警报输出电压输出与温度成正比
LTC1077
型号: LTC1077
厂家: Linear    Linear
描述:

Temperature Sensor with Alert Outputs Voltage Output Proportional to Temperature
温度传感器与警报输出电压输出与温度成正比

传感器 温度传感器
文件: 总16页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2996  
Temperature Sensor with  
Alert Outputs  
FeaTures  
DescripTion  
The LTC®2996 is a high accuracy temperature sensor  
with adjustable overtemperature and undertemperature  
thresholds and open drain alert outputs. It converts the  
temperature of an external diode sensor or its own die  
temperature to an analog output voltage while rejecting  
errors due to noise and series resistance. The measured  
temperature is compared against upper and lower limits  
set with resistive dividers. If a threshold is exceeded, the  
device communicates an alert by pulling low the corre-  
spondent open drain logic output.  
n
Converts Remote or Internal Diode Temperature to  
Analog Voltage  
n
Adjustable Overtemperature and Undertemperature  
Thresholds  
n
Voltage Output Proportional to Temperature  
n
1°C Remote Temperature Accuracy  
n
2°C Internal Temperature Accuracy  
n
Built-In Series Resistance Cancellation  
n
Open Drain Alert Outputs  
n
2.25V to 5.5V Supply Voltage  
n
1.8V Reference Voltage Output  
The LTC2996 gives 1°C accurate temperature results  
using commonly available NPN or PNP transistors or  
temperature diodes built into modern digital devices. A  
1.8V reference output simplifies threshold programming  
and can be used as an ADC reference input.  
n
200μA Quiescent Current  
n
10-Lead 3mm × 3mm DFN Package  
applicaTions  
The LTC2996 provides an accurate, low power solution  
for temperature monitoring in a compact 3mm × 3mm  
DFN package.  
n
Temperature Monitoring and Measurement  
n
System Thermal Control  
n
Network Servers  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Desktop and Notebook Computers  
n
Environmental Monitoring  
Typical applicaTion  
Remote Temperature Monitor with Overtemperature  
and Undertemperature Thresholds  
VPTAT vs Remote  
Diode Temperature  
2.25V TO 5.5V  
0.1µF  
1.8  
V
1.8V  
43k  
OT T > 70°C  
UT T < –20°C  
CC  
V
OT  
REF  
1.6  
TEMPERATURE  
CONTROL  
SYSTEM  
1.4  
LTC2996  
VTH  
VTL  
UT  
36k  
4mV/K  
470pF  
V
PTAT  
1.2  
+
102k  
D
MMBT3904  
1.0  
D
GND  
2996 TA01a  
0.8  
75 100  
125 150  
–50 –25  
0
25 50  
REMOTE DIODE TEMPERATURE (°C)  
2996 TA01b  
2996f  
1
LTC2996  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
V
.............................................................. –0.3V to 6V  
CC  
D , D , V  
+
, V ............................. –0.3V to V + 0.3V  
PTAT REF  
CC  
OT, UT, VTH, VTL ......................................... –0.3V to 6V  
Operating Ambient Temperature Range  
TOP VIEW  
VTH  
VTL  
1
2
3
4
5
10 OT  
LTC2996C ................................................ 0°C to 70°C  
LTC2996I .............................................–40°C to 85°C  
LTC2996H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
9
8
7
6
UT  
+
11  
D
V
REF  
D
GND  
V
V
CC  
PTAT  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 150°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD PCB GROUND CONNECTION OPTIONAL  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2996CDD#PBF  
LTC2996IDD#PBF  
LTC2996HDD#PBF  
TAPE AND REEL  
PART MARKING*  
LFQX  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC2996CDD#TRPBF  
LTC2996IDD#TRPBF  
LTC2996HDD#TRPBF  
0°C to 70°C  
10-Lead (3mm × 3mm) Plastic QFN  
10-Lead (3mm × 3mm) Plastic QFN  
10-Lead (3mm × 3mm) Plastic QFN  
LFQX  
–40°C to 85°C  
–40°C to 125°C  
LFQX  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VCC = 3.3V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
2.25  
1.7  
TYP  
MAX  
5.5  
UNITS  
l
l
l
V
Supply Voltage  
V
V
CC  
UVLO  
Supply Undervoltage Lockout Threshold  
Average Supply Current  
V
Falling  
1.9  
2.1  
CC  
I
CC  
200  
300  
µA  
Temperature Measurement  
Reference Voltage  
V
LTC2996  
1.797  
1.795  
1.790  
1.8  
1.8  
1.8  
1.803  
1.805  
1.808  
V
V
V
REF  
l
l
LTC2996C  
LTC2996I, LTC2996H  
l
l
V
Load Regulation  
I
=
200μA, V = 3.3V  
1.5  
mV  
mV  
µA  
REF  
LOAD  
CC  
Diode Select Threshold  
(Note 3)  
V
– 600  
V
CC  
– 300  
V
– 100  
CC  
CC  
Remote Diode Sense Current  
–8  
–192  
2996f  
2
LTC2996  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VCC = 3.3V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
3.5  
4
MAX  
UNITS  
ms  
T
Temperature Update Interval  
5
CONV  
K
V
PTAT  
V
PTAT  
Slope  
mV/K  
mV  
Ideality Factor η = 1.004  
T
Load Regulation  
I
=
200μA  
1.5  
LOAD  
T
T
Internal Temperature Accuracy  
Remote Temperature Error, η = 1.004  
Temperature Noise  
0.5  
0.5  
0.5  
1
2
3
°C  
°C  
°C  
INT  
l
l
LTC2996C, LTC2996I  
LTC2996H  
0°C to 85°C (Notes 4, 5)  
–40°C to 0°C (Notes 4, 5)  
85°C to 125°C (Notes 4, 5)  
0.25  
0.25  
0.25  
1
1.5  
1.5  
°C  
°C  
°C  
RMT  
0.15  
0.01  
°C  
RMS  
°C  
RMS  
/√Hz  
°C/V  
°C  
l
l
T
T
Temperature Error vs Supply  
0.5  
1
VCC  
RS  
Series Resistance Cancellation Error  
R
= 100Ω  
0.25  
SERIES  
Temperature Monitoring  
l
l
l
T
VTH, VTL Offset  
–3  
2
–1  
5
1
°C  
°C  
nA  
OFF  
∆T  
OT, UT Temperature Hysteresis  
VTH, VTL, Input Current  
10  
20  
HYST  
I
IN  
Digital Outputs  
l
l
V
V
High Level Output Voltage, OT, UT  
Low Level Output Voltage, OT, UT  
I = –0.5μA  
I = 3mA  
V
CC  
– 1.2  
V
V
OH  
OL  
0.4  
+
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: If voltage on pin D exceeds the diode select threshold the  
LTC2996 uses the internal diode sensor.  
Note 4: Remote diode temperature, not LTC2996 temperature.  
Note 5: Guaranteed by design and test correlation.  
Note 2: All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
2996f  
3
LTC2996  
TA = 25°C, VCC = 3.3V unless otherwise noted.  
Typical perForMance characTerisTics  
Remote Temperature Error  
vs Ambient Temperature  
Internal Temperature Error  
vs Ambient Temperature  
Temperature Error with LTC2996 at  
Same Temperature as Remote Diode  
3
2
3
2
3
2
T
= 35°C  
T
= T  
REMOTE  
REMOTE  
INTERNAL  
1
1
1
0
0
0
–1  
–2  
–3  
–1  
–2  
–3  
–1  
–2  
–3  
–50 –25  
0
25  
T
50  
(°C)  
75 100 125  
–50 –25  
0
25  
T
50  
(°C)  
75 100 125  
–50 –25  
0
25  
50  
(°C)  
75 100 125  
T
A
A
A
2996 G02  
2996 G03  
2996 G01  
Temperature Error vs Supply  
Voltage  
Remote Temperature Error  
Remote Temperature Error  
vs Series Resistance  
vs CDECOUPLE (Between D+ and D)  
6
4
0.4  
0.3  
6
4
0.2  
0.1  
2
0
2
0.0  
0
–0.1  
–0.2  
–0.3  
–0.4  
–2  
–4  
–6  
–2  
–4  
–6  
6
1
2
3
4
5
0
200  
400  
600  
800 1000 1200  
0
2
4
6
8
10  
V
(V)  
SERIES RESISTANCE (Ω)  
DECOUPLE CAPACITOR (nF)  
CC  
2996 G04  
2996 G05  
2996 G06  
UVLO vs Temperature  
VCC Rising, Falling  
Buffered Reference Voltage  
vs Temperature  
VPTAT Noise vs Averaging Time  
1.810  
1.805  
1.800  
1.795  
1.790  
0.20  
0.15  
0.10  
0.05  
0
2.2  
2.1  
2.0  
1.9  
1.8  
V
CC  
RISING  
CC  
V
FALLING  
80 100 140 160  
–60 –40 –20  
0
20 40 60  
(°C)  
10  
AVERAGING TIME (ms)  
100  
1000  
100 125 150  
0.01  
0.1  
1
–50 –25  
0
25 50 75  
(°C)  
T
T
A
A
2996 G09  
2996 G07  
2996 G08  
2996f  
4
LTC2996  
Typical perForMance characTerisTics TA = 25°C, VCC = 3.3V unless otherwise noted.  
Load Regulation of VREF  
Voltage vs Current  
Single Wire Remote Temperature  
Error vs Ground Noise  
Load Regulation of VPTAT  
Voltage vs Current  
10  
1
1.820  
1.810  
1.800  
1.790  
1.780  
1.22  
1.21  
1.20  
1.19  
1.18  
V
= 2.5V  
= 3.5V  
= 4.5V  
= 5.5V  
V
= 2.5V  
= 3.5V  
= 4.5V  
= 5.5V  
CC  
CC  
VAC = 50mV  
P-P  
V
V
CC  
CC  
V
V
CC  
CC  
V
V
CC  
CC  
0.1  
0.01  
1.17  
1.16  
100  
1000  
–4  
–2  
0
2
4
0.1  
1
10  
FREQUENCY (kHz)  
2
4
–4  
–2  
0
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
2996 G10  
2996 G12  
2996 G11  
Remote Temperature Error vs  
Leakage Current at D+ with  
Remote Diode at 25°C, TRMT  
UT, OT, vs Output Sink Current  
Supply Current vs Temperature  
1
0.8  
0.6  
0.4  
0.2  
0
220  
210  
200  
190  
180  
6
4
2
0
–2  
–4  
–6  
40  
0
10  
20  
30  
75 100  
–100  
100  
200  
–50 –25  
0
25 50  
(°C)  
125 150  
–200  
0
I (mA)  
T
I
(nA)  
A
LEAKAGE  
2996 G17  
2996 G14  
2996 G16  
2996f  
5
LTC2996  
pin FuncTions  
+
+
D : Diode Sense Current Source. D sources the remote  
OT:OvertemperatureLogicOutput.Opendrainlogicoutput  
thatpullstoGNDwhenV isabovethethresholdvoltage  
+
diode sensing current. Connect D to the anode of the re-  
PTAT  
motesensordevice.Itisrecommendedtoconnecta470pF  
on pin VTH. When V  
falls below the threshold voltage  
PTAT  
+
bypass capacitor between D and D . Larger capacitors  
on pin VTH, an additional hysteresis of 20mV is required  
may cause settling time errors (see Typical Performance  
to release OT high. OT has a weak 400kΩ pull-up to V  
CC  
+
Characteristics).IfD istiedtoV ,theLTC2996measures  
and may be pulled above V using an external pull-up.  
CC  
CC  
+
the internal sensor temperature. Tie D to V if unused.  
Leave OT open if unused.  
CC  
D : Diode Sense Current Sink. Connect D to the cathode  
V
:ProportionaltoAbsoluteTemperatureVoltageOut-  
PTAT  
of the remote sensor device. Tie D to GND for single  
wire remote temperature measurement (see Applications  
Information) or internal temperature sensing.  
put. The voltage on this pin is proportional to the sensor’s  
absolute temperature. V can drive up to 200μA of  
PTAT  
loadcurrentandupto1000pFofcapacitiveload.Forlarger  
load capacitances insert 1kΩ between V and the load  
to ensure stability. V  
voltage goes below the under voltage lockout threshold.  
PTAT  
Exposed Pad: Exposed pad may be left open or soldered  
to GND for better thermal coupling.  
is pulled low when the supply  
PTAT  
GND: Device Ground  
V
: Voltage Reference Output. V provides a 1.8V  
REF  
REF  
UT: Undertemperature Logic Output. Open drain logic  
reference voltage. V  
can drive up to 200μA of load  
REF  
outputthatpullstoGNDwhenV  
voltage on pin VTL. When V  
isbelowthethreshold  
rises above the threshold  
current and up to 1000pF of capacitive load. For larger  
PTAT  
PTAT  
load capacitances, insert 1kΩ between V and the load  
REF  
voltage on pin VTL, an additional hysteresis of 20mV is  
to ensure stability. Leave V  
open if unused.  
REF  
required to release UT high. UT has a weak 400kΩ pull-  
VTL: Temperature Threshold Low. When V  
is below  
PTAT  
up to V and may be pulled above V using an external  
CC  
CC  
the voltage on VTL, UT is pulled low. Tie VTL to GND if  
pull-up. Leave UT open if unused.  
unused.  
VTH: Temperature Threshold High. When V  
is above  
PTAT  
the voltage on VTH, OT is pulled low. Tie VTH to V if  
CC  
unused.  
2996f  
6
LTC2996  
block DiagraM  
6
V
CC  
+
1.2V  
V
REF  
1.8V  
200k  
8
V
CC  
400k  
400k  
OT  
VTH  
CT2  
10  
1
+
OT/UT  
PULSE  
GENERATOR  
UVLO  
V
CC  
400k  
UT  
CT1  
9
VTL  
+
2
T TO V  
CONVERTER  
V
PTAT  
5
1
+
D
D
GND  
4
3
7
2996 BD  
2996f  
7
LTC2996  
operaTion  
Overview  
diode (with the same value I ) at two different currents  
S
(I and I ) yields an expression independent of I :  
D1  
D2  
S
The LTC2996 provides a buffered voltage proportional to  
the absolute temperature of either an internal or a remote  
q
η k  
V
– V  
D2  
D1  
T =  
diode(V  
)andcomparesthisvoltagetothresholdsthat  
PTAT  
I
D2  
can be set by external resistor dividers from the on-board  
ln  
I
D1  
reference (V ).  
REF  
Remote temperature measurements usually use a diode  
connected transistor as a temperature sensor, allowing  
the remote sensor to be a discrete NPN (ex. MMBT3904)  
or an embedded device in a microprocessor or FPGA.  
Series Resistance Cancellation  
Resistanceinserieswiththeremotediodecausesapositive  
temperature error by increasing the measured voltage at  
each test current. The composite voltage equals:  
Diode Temperature Sensor  
I
kT  
= η ln  
q
   
D
Temperature measurements are conducted by measuring  
the voltage of either an internal or an external diode with  
multiple test currents. The relationship between diode  
voltage V and diode current I can be solved for absolute  
V + V  
+ R I  
S D  
   
D
ERROR  
   
I
S
The LTC2996 removes this error term from the sensor  
signal by subtracting a cancellation voltage V . A  
D
D
Temperature in degrees Kelvin T:  
CANCEL  
resistance extraction circuit uses one additional current  
measurement to determine the series resistance in the  
measurementpath.Oncethecorrectvalueoftheresistoris  
q
η k  
V
D
T =  
I
   
D
ln  
   
   
I
determined,V  
equalsV  
.Nowthetemperature  
CANCEL  
ERROR  
S
to voltage converter input signal is free from errors due  
to series resistance.  
where I is a process dependent factor on the order of  
S
–13  
10 A, η is the diode ideality factor, k is the Boltzmann  
LTC2996cancelsseriesresistancesuptoseveralhundred  
ohms (see Typical Performance Characteristics curves).  
Higher series resistances cause the cancelation voltage  
to saturate.  
constantandqistheelectroncharge.Thisequationshows  
arelationshipbetweentemperatureandvoltagedependent  
on the process depended variable I . Measuring the same  
S
2996f  
8
LTC2996  
applicaTions inForMaTion  
Temperature Measurements  
Table 2. Recommended Transistors for Use as Temperature  
Sensors  
Before each conversion, a voltage comparator connected  
MANUFACTURER  
PART NUMBER  
PACKAGE  
+
to D automatically sets the LTC2996 into external or  
Fairchild  
Semiconductor  
MMBT3904  
SOT-23  
+
internal mode. Tying D to V enables internal mode,  
CC  
+
whereV  
representsthedietemperature.ForV more  
PTAT  
D
Central  
Semiconductor  
CMBT3904  
SOT-23  
than 300mV below V (typical), the LTC2996 assumes  
CC  
that an external sensor is connected.  
Diodes Inc.  
On Semiconductor  
NXP  
MMBT3904  
MMBT3904LT1  
MMBT3904  
MMBT3904  
UMT3904  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC-70  
The LTC2996 continuously measures the sensor diode at  
differenttestcurrentsandgeneratesavoltageproportional  
Infineon  
to the absolute temperature of the sensor at the V  
pin.  
PTAT  
Rohm  
The voltage at V  
is updated every 3.5ms.  
PTAT  
Discrete two terminal diodes are not recommended as  
remote sensing devices as their ideality factor is typically  
much higher than 1.004. Also, MOS transistors are not  
suitable as they don’t exhibit the required current to tem-  
peraturerelationship. Furthermore,golddopedtransistors  
(low beta), high frequency and high voltage transistors  
should be avoided as remote sensing devices.  
The gain of V  
is calibrated to 4mV/K for the measure-  
PTAT  
ment of the internal diode as well as for remote diodes  
with an ideality factor of 1.004.  
V
PTAT  
4mV/K  
TKELVIN  
=
(η = 1.004)  
If an external sensor with an ideality factor different from  
Connecting an External Sensor  
1.004 is used, the gain of V  
will be scaled by the ratio  
PTAT  
of the actual ideality factor (η ) to 1.004. In these cases  
ACT  
The anode of the external sensor must be connected to  
the temperature of the external sensor can be calculated  
+
pin D . The cathode should be connected to D for best  
external noise immunity.  
from V  
by:  
PTAT  
V
1.004  
η
ACT  
The change in sensor voltage per °C is hundreds of  
microvolts, so electrical noise must be kept to a mini-  
mum. Bypass D and D with a 470pF capacitor close to  
the LTC2996 to suppress external noise. Recommended  
shielding and PCB trace considerations for best noise  
immunity are illustrated in Figure 1.  
PTAT  
TKELVIN  
=
4mV/K  
+
Temperature in degrees Celsius can be deduced from  
degrees Kelvin by:  
T
= T  
– 273.15  
KELVIN  
CELSIUS  
GND SHIELD TRACE  
Choosing an External Sensor  
LTC2996  
+
The LTC2996 is factory calibrated for an ideality factor of  
1.004, which is typical of the popular MMBT3904 NPN  
transistor. Semiconductor purity and wafer level process-  
ing intrinsically limit device-to-device variation, making  
these devices interchangeable between manufacturers  
withatemperatureerroroftypicallylessthan0.5°C.Some  
recommended sources are listed in Table 2:  
D
D
470pF  
GND  
2996 F01  
NPN SENSOR  
Figure 1. Recommended PCB Layout  
+
Leakage currents at D affect the precision of the remote  
temperature measurements. 100nA leakage current leads  
to an additional error of 2°C (see Typical Performance  
Characteristics).  
2996f  
9
LTC2996  
applicaTions inForMaTion  
Note that bypass capacitors greater than 1nF will cause  
settling time errors of the different measurement cur-  
rents and therefore introduce an error in the temperature  
measurement (see Typical Performance Characteristics).  
The LTC2996 can withstand up to 4kV of electrostatic  
discharge (ESD, human body model). ESD beyond this  
voltage can damage or degrade the device including  
lowering the remote sensor measurement accuracy due  
+
to increased leakage currents on D or D .  
The LTC2996 compensates series resistance in the  
measurement path and thereby allows accurate remote  
temperature measurements even with several meters of  
distance between the sensor and the device. The cable  
lengthbetweenthesensorandtheLTC2996isonlylimited  
To protect the sensing inputs against larger ESD strikes,  
external protection can be added using TVS diodes to  
ground (Figure 3). Care must be taken to choose diodes  
with low capacitance and low leakage currents in order  
nottodegradetheexternalsensormeasurementaccuracy  
(see Typical Performance Characteristics curves).  
+
by the mutual capacitance introduced between D and  
D which degrades measurement accuracy (see Typical  
Performance Characteristics).  
LTC2996  
10Ω  
10Ω  
+
For example, a CAT6 cable with 50pF/m should be kept  
shorter than ~20m to keep the capacitance less than 1nF.  
D
D
MMBT3904  
220pF  
GND  
To save wiring, the cathode of the remote sensor can  
2996 F03  
PESD5Z6.0  
also be connected to remote GND and D to local GND  
as shown below.  
Figure 3. Increasing ESD Robustness with TVS Diodes  
LTC2996  
+
D
470pF  
2N3904  
D
GND  
To make the connection of the cable to the IC polarity  
insensitive during installation, two sensor transistors  
with opposite polarity at the end of a two wire cable can  
be used as shown on Figure 4.  
2996 F02  
Figure 2. Single Wire Remote Temperature Sensing  
LTC2996  
+
The temperature measurement of LTC2996 relies only  
on differences between the diode voltage at multiple test  
circuits.ThereforeDCoffsetssmallerthan300mVbetween  
remote and local GND do not impact the precision of the  
temperature measurement. The cathode of the sensor  
can accommodate modest ground shifts across a system  
which is beneficial in applications where a good thermal  
connectivity of the sensor to a device whose temperature  
is to be monitored (shunt resistor, coil, etc.) is required.  
Care must be taken if the potential difference between  
D
MMBT3904  
470pF  
D
GND  
2995 F04  
Figure 4. Polarity Insensitive Remote Diode Sensor  
Again, care must be taken that the leakage current of the  
second transistor does not degrade the measurement  
accuracy.  
the cathode and D does not only contain DC but also AC  
components. Noise around odd multiples of 6kHz ( 20%)  
is amplified by the measurement algorithm and converted  
toaDCoffsetinthetemperaturemeasurement(seeTypical  
Performance Characteristics).  
2996f  
10  
LTC2996  
applicaTions inForMaTion  
Output Noise Filtering  
When V  
falls below 1.093V, UT is pulled low. Once the  
PTAT  
temperature rises again and V  
reaches 1.093V plus  
PTAT  
The V  
output typically exhibits 0.6mV RMS (0.25°C  
PTAT  
a hysteresis of 20mV, UT is released high again. Accord-  
ingly, OT is pulled low if temperature increases to 90°C as  
RMS) noise. For applications which require lower noise,  
digital or analog averaging can be applied to the output.  
Choose the averaging time according to:  
V
reaches 1.453V and is released high if V  
drops  
PTAT  
PTAT  
again below 1.433V.  
2
[
]
°
0.01 C Hz  
Temperature Thresholds  
tAVG  
=
T
NOISE  
The threshold voltages at VTL and VTH can be set with  
the 1.8V reference voltage (V ) and a resistive divider  
REF  
as shown in Figure 5.  
where t  
is the averaging time and T  
the desired  
NOISE  
AVG  
temperature noise in °C RMS. For example, if the desired  
noise performance is 0.01°C RMS, set the averaging time  
to one second. See Typical Performance Characteristics.  
η
mV  
K
V
= 1.8V  
V
ACT  
REF  
PTAT  
SLOPE =  
• 4  
1.004  
1.8V  
VT2  
R
TC  
Temperature Monitoring  
R
TB  
VT1  
The LTC2996 continuously compares the voltage at V  
PTAT  
to the voltages at the pins VTH and VTL to detect either an  
overtemperature(OT)orundertemperature(UT)condition.  
The VTH comparator output drives the open-drain logic  
output pin OT and the VTL comparator output drives the  
O.8V  
R
TA  
T
2996 F05  
O
200K  
T
T
450K  
1
2
open-drain logic output pin UT. The voltage at V  
must  
PTAT  
Figure 5. Temperature Thresholds  
exceedathresholdforfiveconsecutivetemperatureupdate  
intervals (3.5ms each) before the respective output pin is  
pulled low. Once the V  
voltage crosses the threshold  
PTAT  
The following design procedure can be used to size the  
resistive divider.  
withanadditional20mVofhysteresis,therespectiveoutput  
pin is released after a single update interval.  
1. Calculate Threshold Voltages:  
Temperature Monitor Design Example  
mV η  
ACT  
VTL = T14  
The LTC2996 can be configured to give an alert if the  
K
1.004  
temperature of the internal sensor falls below 0°C or rises  
+
above 90°C. Tie the D pin to V to select the internal  
CC  
mV η  
ACT  
VTH = T2 4  
sensor. The voltages at VTL and VTH are set to:  
K
1.004  
mV  
K
VTL =(0K + 273.15K) 4  
VTH =(90K + 273.15K) 4  
= 1.093V  
= 1.453V  
mV  
K
2996f  
11  
LTC2996  
applicaTions inForMaTion  
where η denotes the actual ideality factor if an external  
IntheTemperatureMonitorexamplediscussedearlierwith  
thresholds at VTL = 0°C and VTH = 90°C and a desired  
ACT  
sensor is used and T1 and T2 are the desired threshold  
temperatures in degrees Kelvin.  
reference current of 10μA, the required values for R ,  
TA  
R
TB  
and R can be calculated as :  
TC  
2. Choose R to obtain the desired VTL threshold for  
TA  
a desired current through the resistive divider  
1.093V  
10µA  
R
=
=
=
= 109.3K  
(I ):  
REF  
TA  
TB  
TC  
VTL  
R
=
TA  
1.453V – 1.093V  
10µA  
I
REF  
R
R
= 36K  
3. Choose R to obtain the desired VTH threshold:  
TB  
VTHVTL  
1.8V – 1.453V  
R
=
= 34.7K  
TB  
I
10µA  
REF  
4. Finally R is determined by:  
TC  
1.8V – VTH  
R
=
TC  
I
REF  
3.3V  
+
D
V
LTC2996  
CC  
V
CC  
V
CC  
400k  
OT  
+
1.2V  
1.8V  
V
REF  
200k  
400k  
R
TC  
V
CC  
VTH  
VTL  
+
400k  
OT/UT  
PULSE  
GENERATOR  
UT  
UVLO  
R
R
TB  
+
V
PTAT  
T/V  
TA  
D
GND  
2996 F06  
Figure 6. Monitoring Internal Temperature  
2996f  
12  
LTC2996  
applicaTions inForMaTion  
Remote Temperature Monitor with Overtemperature and Undertemperature Thresholds  
2.25V TO 5.5V  
0.1µF  
V
1.8V  
43k  
OT T > 70°C  
CC  
V
OT  
REF  
TEMPERATURE  
CONTROL  
SYSTEM  
LTC2996  
UT T < –20°C  
VTH  
VTL  
UT  
36k  
4mV/K  
V
PTAT  
+
102k  
D
470pF  
MMBT3904  
D
GND  
2996 TA02  
ASIC/FPGA/Processor Temperature Monitor  
2.25V TO 5.5V  
0.1µF  
V
1.8V  
20.5k  
OT T > 125°C  
UT T < 30°C  
CC  
V
OT  
INT1  
INT2  
REF  
LTC2996  
VTH  
VTL  
UT  
CPU/  
FPGA/  
ASIC  
38.3k  
121k  
V
PTAT  
+
D
470pF  
INTERNAL  
DIODE  
D
GND  
2996 TA03  
Analog Heater Controller  
5V  
0.1µF  
V
1.8V  
30.9k  
CC  
10Ω  
HEATER  
V
V
REF  
PTAT  
MMBT3904  
B6015L12F  
R
LTC2996  
HIGH IF T < 0°C  
1.09V  
1.49V  
IRF3708  
VTH  
VTL  
OT  
40.2k  
110k  
+
D
470pF  
D
HIGH IF T < 100°C  
2N7000  
UT  
GND  
2996 TA04  
2996f  
13  
LTC2996  
Typical applicaTions  
Battery Stack Temperature Supervisor  
2.25V TO 5.5V  
0.1µF  
V
CC  
+
D
BATTERY  
10k  
SUPERVISOR  
LTC2996  
V
OT  
REF  
T
ALERT  
INT  
43.2k  
28k  
VTH  
VTL  
UT  
V
PTAT  
D
110k  
GND  
LOW IF TEMPERATURE  
OF ANY CELL  
T
> 70°C  
< 0°C  
CELL  
OR  
T
CELL  
0.1µF  
V
CC  
+
D
LTC2996  
V
OT  
REF  
43.2k  
28k  
VTH  
VTL  
UT  
V
PTAT  
D
110k  
GND  
2996 TA05  
2996f  
14  
LTC2996  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
0.70 ±0.05  
3.55 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 ±0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DD) DFN REV C 0310  
5
1
0.25 ±0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2996f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
tionthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC2996  
Typical applicaTion  
Celsius Thermometer and 20°C to 25°C Thermostat  
5V  
220V AC  
5LPCV24110  
0.1µF  
5V  
0.1µF  
V
CC  
OT  
UT  
HEATER  
150k  
1.8k  
+
D
LTC2996  
VOLTMETER  
100k  
1k  
1.8V  
MMBT3904  
470pF  
10mV/°C  
0V AT 0°C  
215mV  
CORRESPONDS TO  
21.5°C  
D
LTC1077  
62k  
+
4mV/K  
V
PTAT  
2996 TA06  
143k  
1µF  
GND  
VTL VTH  
63.4k  
V
REF  
118k  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
2
LTC2990  
LTC2991  
LTC2995  
Quad I C Voltage, Current and Temperature Monitor  
Measures Voltage, Current, Internal Temperature and/or Two Remote Diode  
2
Temperatures, 0.5°C (Typ) Accuracy, 0.06°C Resolution, I C Interface  
2
Octal I C Voltage, Current and Temperature Monitor  
Measures Voltage, Current, Internal Temperature and/or Four Remote Diode  
2
Temperatures, 0.7°C (Typ), 0.06°C Resolution, I C Interface, PWM Output  
Temperature Sensor and Voltage Monitor with Alert  
Outputs  
Monitors Temperature and Two Voltages, Adjustable Thresholds, Open Drain  
Alert Outputs, Temperature to Voltage Output with Integrated 1.8V Reference,  
1°C (Max) Accuracy  
LTC2997  
LTC1077  
Remote/Internal Temperature Sensor  
Converts Remote Sensor or Int. Diode Temperature to Analog Voltage,  
Integrated 1.8V Reference, 1°C (Max) Accuracy  
Micropower, Single Supply, Precision Op Amp  
60µA Supply Current, 40µV Offset, Low Noise  
2996f  
LT 0712 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1090

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090AC

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090ACJ

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090ACN

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090ACN#PBF

LTC1090 - Single Chip 10-Bit Data Acquisition System; Package: PDIP; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1090AM

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090AMJ

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090C

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090CJ

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090CN

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090CS

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090CSW

Single Chip 10-Bit Data Acquisition System
Linear