LTC1155IN8 [Linear]

Dual High Side Micropower MOSFET Driver; 双高端微MOSFET驱动器
LTC1155IN8
型号: LTC1155IN8
厂家: Linear    Linear
描述:

Dual High Side Micropower MOSFET Driver
双高端微MOSFET驱动器

驱动器
文件: 总16页 (文件大小:344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1155  
Dual High Side  
Micropower MOSFET Driver  
U
DESCRIPTIO  
EATURE  
S
F
The LTC®1155 dual high side gate driver allows using low  
cost N-channel FETs for high side switching applications.  
An internal charge pump boosts the gate above the posi-  
tive rail, fully enhancing an N-channel MOSFET with no  
external components. Micropower operation, with 8µA  
standbycurrentand85µAoperatingcurrent, allowsusein  
virtually all systems with maximum efficiency.  
Fully Enhances N-Channel Power MOSFETs  
8µA Standby Current  
85µA ON Current  
Short-Circuit Protection  
Wide Power Supply Range: 4.5V to 18V  
Controlled Switching ON and OFF Times  
No External Charge Pump Components  
Replaces P-Channel High Side MOSFETs  
Compatible with Standard Logic Families  
Available in 8-Pin SO Package  
Included on-chip is overcurrent sensing to provide auto-  
matic shutdown in case of short circuits. A time delay can  
be added in series with the current sense to prevent false  
triggering on high in-rush loads such as capacitors and  
incandescent lamps.  
O U  
PPLICATI  
S
A
The LTC1155 operates off of a 4.5V to 18V supply input  
and safely drives the gates of virtually all FETs. The  
LTC1155 is well suited for low voltage (battery-powered)  
applications, particularly where micropower “sleep” op-  
eration is required.  
Laptop Power Bus Switching  
SCSI Termination Power Switching  
Cellular Phone Power Management  
P-Channel Switch Replacement  
Relay and Solenoid Drivers  
Low Frequency Half H-Bridge  
Motor Speed and Torque Control  
The LTC1155 is available in both 8-pin PDIP and 8-pin SO  
packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI  
Laptop Computer Power Bus Switch with Short Circuit Protection  
V
= 4.5V TO 5.5V  
S
Switch Voltage Drop  
+
C
C
DLY  
R
R
SEN  
DLY  
SEN  
0.02Ω  
10µF  
0.1µF  
0.1µF  
0.02Ω  
0.25  
0.20  
0.15  
0.10  
R
R
100k  
DLY  
100k  
DLY  
DS1  
G1  
V
DS2  
S
*IRLR034  
*IRLR034  
G2  
LTC1155  
GND  
5A  
MAX  
5A  
MAX  
TTL, CMOS INPUT  
IN1  
IN2  
TTL, CMOS INPUT  
POWER BUS  
0.05  
0.00  
µP  
SYSTEM  
DISK  
DRIVE  
PRINTER,  
ETC.  
DISPLAY  
0
1
2
3
OUTPUT CURRENT (A)  
GND  
1155 TA02  
1155 TA01  
*SURFACE MOUNT  
1
LTC1155  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Supply Voltage ........................................................ 22V  
Input Voltage ...................... (VS +0.3V) to (GND – 0.3V)  
Gate Voltage .........................(VS +24V) to (GND – 0.3V)  
Current (Any Pin).................................................. 50mA  
Storage Temperature Range ................. – 65°C to 150°C  
Operating Temperature Range  
LTC1155C................................................ 0°C to 70°C  
LTC1155I........................................... 40°C to 85°C  
LTC1155M........................................ – 55°C to 125°C  
Lead Temperature Range (Soldering, 10 sec.)...... 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
ORDER PART  
TOP VIEW  
TOP VIEW  
NUMBER  
NUMBER  
DS1  
G1  
1
2
3
4
8
7
6
5
DS2  
G2  
DS1  
G1  
1
2
3
4
8
7
6
5
DS2  
G2  
LTC1155CN8  
LTC1155CJ8  
LTC1155IN8  
LTC1155MJ8  
LTC1155CS8  
LTC1155IS8  
GND  
IN1  
V
S
GND  
IN1  
V
S
IN2  
IN2  
S8 PART MARKING  
J8 PACKAGE  
N8 PACKAGE  
S8 PACKAGE  
8-LEAD PLASTIC SO  
8-LEAD CERDIP 8-LEAD PDIP  
1155  
1155I  
TJMAX = 150°C, θJA = 100°C/W (J8)  
TJMAX = 100°C, θJA = 130°C/W (N8)  
TJMAX = 100°C, θJA = 150°C/W  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS = 4.5V to 18V, unless otherwise noted.  
LTC1155M  
TYP  
LTC1155C/LTC1155I  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
18  
MIN  
TYP  
MAX  
UNITS  
V
V
S
Supply Voltage  
4.5  
4.5  
18  
I
Quiescent Current OFF  
Quiescent Current ON  
Quiescent Current ON  
Input High Voltage  
Input Low Voltage  
Input Current  
V
= 0V, V = 5V (Note 2)  
8
20  
8
20  
µA  
µA  
µA  
V
Q
IN  
S
V = 5V, V = 5V (Note 3)  
S
85  
120  
400  
85  
120  
400  
IN  
V = 12V, V = 5V (Note 3)  
S
180  
180  
IN  
V
V
2.0  
2.0  
INH  
0.8  
0.8  
V
INL  
I
0V < V < V  
S
±1.0  
±1.0  
µA  
pF  
IN  
IN  
C
V
Input Capacitance  
Drain Sense Threshold Voltage  
5
5
IN  
80  
75  
100  
100  
120  
125  
80  
75  
100  
100  
120  
125  
mV  
mV  
SEN  
I
Drain Sense Input Current  
Gate Voltage Above Supply  
0V < V  
< V  
S
±0.1  
±0.1  
µA  
SEN  
SEN  
V
-V  
V = 5V  
6.0  
7.5  
15  
6.8  
8.5  
18  
9.0  
15  
25  
6.0  
7.5  
15  
6.8  
8.5  
18  
9.0  
15  
25  
V
V
V
GATE  
S
S
V = 6V  
S
V = 12V  
S
t
Turn ON Time  
V = 5V, C  
Time for V  
Time for V  
= 1000pF  
GATE  
ON  
S
> V + 2V  
50  
200  
250  
1100  
750  
2000  
50  
200  
250  
1100  
750  
2000  
µs  
µs  
GATE  
GATE  
S
> V + 5V  
S
V = 12V, C  
Time for V  
Time for V  
= 1000pF  
S
GATE  
GATE  
GATE  
> V + 5V  
50  
120  
180  
450  
500  
1200  
50  
120  
180  
450  
500  
1200  
µs  
µs  
S
> V + 10V  
S
2
LTC1155  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VS = 4.5V to 18V, unless otherwise noted.  
LTC1155M  
TYP  
LTC1155C/LTC1155I  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 5V, C = 1000pF  
GATE  
MIN  
10  
10  
5
MAX  
60  
MIN  
10  
10  
5
TYP  
MAX  
UNITS  
µs  
t
Turn OFF Time  
OFF  
SC  
S
Time for V  
< 1V  
36  
26  
16  
16  
36  
60  
GATE  
V = 12V, C  
Time for V  
= 1000pF  
< 1V  
S
GATE  
GATE  
60  
26  
60  
µs  
t
Short-Circuit Turn OFF Time  
V = 5V, C  
Time for V  
= 1000pF  
GATE  
S
< 1V  
30  
16  
30  
µs  
GATE  
V = 12V, C  
Time for V  
= 1000pF  
< 1V  
S
GATE  
GATE  
5
30  
5
16  
30  
µs  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: Quiescent current OFF is for both channels in OFF condition.  
Note 3: Quiescent current ON is per driver and is measured independently.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Standby Supply Current  
Supply Current/Side (ON)  
High Side Gate Voltage  
1000  
900  
800  
700  
600  
24  
22  
20  
18  
16  
50  
45  
40  
35  
30  
V
T
= V = 0V  
IN2  
V
T
OR V = 2V  
IN2  
IN1  
IN1  
= 25°C  
= 25°C  
J
J
500  
400  
300  
200  
100  
0
14  
12  
10  
8
25  
20  
15  
10  
5
6
4
0
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
1155 G02  
1155 TPC03  
1155 G01  
Input Threshold Voltage  
Drain Sense Threshold Voltage  
Low Side Gate Voltage  
2.4  
2.2  
2.0  
1.8  
1.6  
150  
140  
130  
120  
110  
30  
27  
24  
21  
18  
V
V
ON  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
100  
90  
80  
70  
60  
50  
15  
12  
9
OFF  
6
3
0
0
5
10  
15  
20  
0
5
10  
15  
20  
0
2
4
6
8
10  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
1155 G04  
1155 G05  
1155 G06  
3
LTC1155  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Turn ON Time  
Turn OFF Time  
Short-Circuit Turn OFF Delay Time  
1000  
900  
800  
700  
600  
50  
45  
40  
35  
30  
50  
45  
40  
35  
30  
C
= 1000pF  
C
= 100pF  
GATE  
C
= 1000pF  
GATE  
GATE  
TIME FOR V  
< 1V  
TIME FOR V  
< 1V  
GATE  
GATE  
500  
400  
300  
200  
100  
0
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
= V –1V  
S
SEN  
NO EXTERNAL DELAY  
V
= 5V  
GS  
V
GS  
= 2V  
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
1155 G07  
1155 G08  
1155 G09  
Standby Supply Current  
Supply Current Per Side (ON)  
Input ON Threshold  
50  
45  
2.4  
2.2  
1000  
900  
40  
35  
2.0  
1.8  
800  
700  
30  
25  
20  
15  
10  
5
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
600  
500  
400  
300  
200  
100  
0
V
V
= 5V  
S
S
V
S
= 18V  
= 18V  
V
= 12V  
S
V
= 5V  
S
V
S
= 5V  
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1155 G10  
1155 G12  
1155 G11  
U
U
U
PIN FUNCTIONS  
Input Pin  
few hundred k). Care should be taken to minimize any  
loading of this pin by parasitic resistance to ground or  
supply.  
The LTC1155 logic input is a high impedance CMOS gate  
and should be grounded when not in use. These input pins  
have ESD protection diodes to ground and supply and,  
therefore, should not be forced beyond the power supply  
rails.  
Supply Pin  
The supply pin of the LTC1155 serves two vital purposes.  
The first is obvious: it powers the input, gate drive,  
regulation and protection circuitry. The second purpose is  
less obvious: it provides a Kelvin connection to the top of  
the two drain sense resistors for the internal 100mV  
reference. The supply pin should be connected directly to  
the power supply source as close as possible to the top of  
the two sense resistors.  
Gate Drive Pin  
The gate drive pin is either driven to ground when the  
switch is turned OFF or driven above the supply rail when  
the switch is turned ON. This pin is a relatively high  
impedance when driven above the rail (the equivalent of a  
4
LTC1155  
U
U
U
PIN FUNCTIONS  
The supply pin of the LTC1155 should not be forced below  
ground as this may result in permanent damage to the  
device. A 300resistor should be inserted in series with  
the ground pin if negative supply voltages are anticipated.  
This pin is also a high impedance CMOS gate with ESD  
protectionand, therefore, shouldnotbeforcedbeyondthe  
power supply rails. To defeat the over current protection,  
short the drain sense to supply.  
Some loads, such as large supply capacitors, lamps or  
motors require high inrush currents. An RC time delay  
must be added between the sense resistor and the drain  
sense pin to ensure that the drain sense circuitry does not  
false trigger during start-up. This time constant can be set  
fromafewmicrosecondstomanyseconds.However,very  
longdelaysmayputtheMOSFETinriskofbeingdestroyed  
by a short-circuit condition (see Applications Information  
section).  
Drain Sense Pin  
As noted previously, the drain sense pin is compared  
against the supply pin voltage. If the voltage at this pin is  
morethan100mVbelowthesupplypin, theinputlatchwill  
be reset and the MOSFET gate will be quickly discharged.  
Cycle the input to reset the short-circuit latch and turn the  
MOSFET back on.  
W
BLOCK DIAGRA  
V
S
DRAIN  
SENSE  
ANALOG SECTION  
100mV  
REFERENCE  
10µs  
DELAY  
COMP  
LOW STANDBY  
CURRENT  
REGULATOR  
GATE CHARGE  
AND DISCHARGE  
CONTROL LOGIC  
ANALOG  
DIGITAL  
GATE  
R
S
TTL-TO-CMOS  
CONVERTER  
VOLTAGE  
REGULATORS  
INPUT  
LATCH  
IN  
ONE  
SHOT  
OSCILLATOR  
AND CHARGE  
PUMP  
FAST/SLOW  
GATE CHARGE  
LOGIC  
GND  
1155 BD  
U
OPERATIO  
The LTC1155 contains two independent power MOSFET  
gate drivers and protection circuits (refer to the Block  
Diagram for details). Each half of the LTC1155 consists of  
the following functional blocks:  
to CMOS converter output enables the rest of the circuitry.  
In this way the power consumption is kept to a minimum  
in the standby mode.  
Internal Voltage Regulation  
TTL and CMOS Compatible Inputs  
The output of the TTL to CMOS converter drives two  
regulated supplies which power the low voltage CMOS  
logicandanalogblocks.Theregulatoroutputsareisolated  
from each other so that the noise generated by the charge  
pump logic is not coupled into the 100mV reference or the  
analog comparator.  
Each driver input has been designed to accommodate a  
wide range of logic families. The input threshold is set at  
1.3V with approximately 100mV of hysteresis.  
A voltage regulator with low standby current provides  
continuous bias for the TTL to CMOS converters. The TTL  
5
LTC1155  
U
OPERATIO  
Gate Charge Pump  
lead. If the drop across this resistor exceeds the internal  
100mV threshold, the input latch is reset and the gate is  
quickly discharged by a large N-channel transistor.  
Gate drive for the power MOSFET is produced by an  
adaptive charge pump circuit that generates a gate voltage  
substantially higher than the power supply voltage. The  
charge pump capacitors are included on-chip and, there-  
fore, no external components are required to generate the  
gate drive.  
Controlled Gate Rise and Fall Times  
When the input is switched ON and OFF, the gate is  
charged by the internal charge pump and discharged in a  
controlled manner. The charge and discharge rates have  
been set to minimize RFI and EMI emissions in normal  
operation. If a short circuit or current overload condition  
is encountered, the gate is discharged very quickly (typi-  
cally a few microseconds) by a large N-channel transistor.  
Drain Current Sense  
The LTC1155 is configured to sense the drain current of  
the power MOSFET in high side applications. An internal  
100mV reference is compared to the drop across a sense  
resistor (typically 0.002to 0.1) in series with the drain  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
V
= 5.0V  
S
Protecting the MOSFET  
R
C
SEN  
DLY  
TheMOSFETisprotectedagainstdestructionbyremoving  
drive from the gate as soon as an overcurrent condition is  
detected. Resistive and inductive loads can be protected  
with no external time delay. Large capacitive or lamp  
loads, however, require that the overcurrent shutdown  
functionbedelayed long enoughtostarttheload butshort  
enough to ensure the safety of the MOSFET.  
0.03Ω  
0.22µF  
R
270k  
DLY  
V
S
DS1  
G1  
IN1  
LTC1155  
GND  
IRLZ34  
LOAD  
Example Calculations  
GND  
ConsiderthecircuitofFigure1. ApowerMOSFETisdriven  
by one side of an LTC1155 to switch a high inrush current  
load. The drain sense resistor is selected to limit the  
maximum DC current to 3.3A.  
1155 F01  
Figure 1. Adding an RC Delay  
drops 0.1V at 2A and, therefore, dissipates 200mW in  
normal operation (no heat sinking required).  
RSEN = VSEN TRIP  
/I  
= 0.1/3.3A  
Iftheoutputisshortedtoground, thecurrentthroughthe  
FET rises rapidly and is limited by the RDS(ON) of the FET,  
the drain sense resistor and the series resistance be-  
tween the power supply and the FET. Series resistance in  
the power supply can be substantial and attributed to  
many sources including harness wiring, PCB traces,  
supply capacitor ESR, transformer resistance or battery  
resistance.  
= 0.03Ω  
A time delay is introduced between RSEN and the drain  
sense pin of the LTC1155 which provides sufficient delay  
to start a high inrush load such as large supply capacitors.  
In this example circuit, we have selected the IRLZ34  
because of its low RDS(ON )(0.05with VGS = 5V). The FET  
6
LTC1155  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
For this example, we assume a worst-case scenario; i.e.,  
that the power supply to the power MOSFET is “hard” and  
provides a constant 5V regardless of the current. In this  
case, the current is limited by the RDS(ON) of the MOSFET  
and the drain sense resistance. Therefore:  
Graphical Approach to Selecting RDLY and CDLY  
Figure 2 is a graph of normalized overcurrent shutdown  
time versus normalized MOSFET current. This graph can  
be used instead of the above equation to calculate the RC  
time constant. The Y axis of the graph is normalized to one  
RC time constant. The X axis is normalized to the set  
current. (The set current is defined as the current required  
to develop 100mV across the drain sense resistor).  
IPEAK = VSUPPLY/0.08Ω  
= 62.5A  
The drop across the drain sense resistor under these  
conditions is much larger than 100mV and is equal to the  
drain current times the sense resistance:  
10  
VDROP = (IPEAK)(RSEN  
= 1.88V  
)
1
By consulting the power MOSFET data sheet SOA graph,  
we note that the IRLZ34 is capable of delivering 62.5A at  
a drain-to-source voltage of 3.12V for approximately  
10ms.  
0.1  
0.01  
1
2
5
10  
20  
50 100  
AnRCtimeconstantcannowbecalculatedwhichsatisfies  
this requirement:  
MOSFET CURRENT (1 = SET CURRENT)  
1155 F02  
Figure 2. Shutdown Time vs MOSFET Current  
–t  
RC =  
Note that the shutdown time is shorter for increasing  
levels of MOSFET current. This ensures that the total  
energy dissipated by the MOSFET is always within the  
bounds established by the MOSFET manufacturer for safe  
operation.  
VSEN  
In 1−  
RSEN IMAX  
– 0.01  
RC =  
0.10  
In 1−  
In the example presented above, we established that the  
power MOSFET should not be allowed to pass 62.5A for  
more than 10ms. 62.5Aisroughly 18 times the set current  
of 3.3A. By drawing a line up from 18 and reflecting it off  
the curve, we establish that the RC time constant should  
be set at 10ms divided by 0.054, or 180ms. Both methods  
result in the same conclusion.  
0.030 62.5  
= – 0.01/0.054  
= 182ms  
This time constant should be viewed as a maximum safe  
delay time and should be reduced if the competing  
requirement of starting a high inrush current load is less  
stringent; i.e., if the inrush time period is calculated at  
20ms, the RC time constant should be set at roughly two  
or three times this time period and not at the maximum of  
182ms. A 60ms time constant would be produced with a  
270k resistor and a 0.22µF capacitor (as shown in  
Figure 1).  
Using a Speed Up Diode  
A way to further reduce the amount of time that the power  
MOSFET is in a short-circuit condition is to “bypass”the  
delayresistorwithasmallsignaldiodeasshowninFigure  
3. The diode will engage when the drop across the drain  
sense resistor exceeds 0.7V, providing a direct path to the  
7
LTC1155  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
V
= 5.0V  
S
IftheMOSFETisturnedONandthepowersupply(battery)  
removed, the inductor current is delivered by the supply  
capacitor. The supply capacitor must be large enough to  
deliver the energy demanded by the discharging inductor.  
If the storage capacitor is too small, the supply lead of the  
LTC1155 may be pulled below ground, permanently  
destroying the device.  
C
R
DLY  
SEN  
0.22µF  
0.025Ω  
R
270k  
DLY  
V
S
DS1  
G1  
D1  
1N4148  
IN1  
LTC1155  
GND  
IRLZ34  
Consider the case of a load inductance of 1mH which is  
supporting 3A when the 6V power supply connection is  
interrupted. A supply capacitor of at least 250µF is  
required to prevent the supply lead of the LTC1155 from  
being pulled below ground (along with any other circuitry  
tied to the supply).  
LOAD  
GND  
1155 F03  
Figure 3. Using a Speed-Up Diode  
Any wire between the power MOSFET source and the load  
will add a small amount of parasitic inductance in series  
with the load (approximately 0.4µH/foot). Bypass the  
power supply lead of the LTC1155 with a minimum of  
10µF to ensure that this parasitic load inductance is  
discharged safely, even if the load is otherwise resistive.  
sense pin and dramatically reducing the amount of time  
the MOSFET is in an overload condition. The drain sense  
resistor value is selected to limit the maximum DC current  
to 4A. Above 28A, the delay time drops to 10µs.  
Switched Supply Applications  
Large inductive loads, such as solenoids, relays and  
motorsstoreenergywhichmustbedirectedbacktoeither  
the power supply or to ground when the supply voltage is  
interrupted (see Figure 4). In normal operation, when the  
switch is turned OFF, the energy stored in the inductor is  
harmlessly absorbed by the MOSFET; i.e., the current  
flows out of the supply through the MOSFET until the  
inductor current falls to zero.  
Large Inductive Loads  
Large inductive loads (>0.1mH) may require diodes con-  
nected directly across the inductor to safely divert the  
stored energy to ground. Many inductive loads have these  
diodes included. Ifnot, adiode ofthe propercurrentrating  
should be connected across the load to safely divert the  
stored energy.  
Reverse-Battery Protection  
+
+
R
The LTC1155 can be protected against reverse-battery  
conditions by connecting a resistor in series with the  
ground lead as shown in Figure 5. The resistor limits the  
supplycurrenttolessthan50mAwith12Vapplied. Since  
the LTC1155 draws very little current while in normal  
operation, the drop across the ground resistor is minimal.  
SEN  
C
C
S
DLY  
0.025Ω  
R
DLY  
V
S
DS1  
IN1  
LTC1155  
GND  
IRLZ34  
G1  
The TTL or CMOS driving logic is protected against  
reverse-battery conditions by the 100k input current lim-  
iting resistor. The addition of 100k resistance in series  
with the input pin will not affect the turn ON and turn OFF  
times which are dominated by the controlled gate charge  
and discharge periods.  
L
LOAD  
GND  
1155 F04  
Figure 4. Switched Supply  
8
LTC1155  
O U  
W
U
PPLICATI  
A
S
I FOR ATIO  
V
= 4.5V TO 18V  
S
18.6V and pulls the drain sense pin 0.6V below the supply  
pin voltage.  
R
C
SEN  
DLY  
The supply voltage is limited to 18.6V and the gate drive is  
immediately removed from the MOSFET to ensure that it  
cannot conduct during the overvoltage period. The gate of  
the MOSFET will be latched OFF until the supply transient  
is removed and the input turned OFF and ON again.  
R
DLY  
V
S
DS1  
G1  
+
10µF  
25V  
IN1  
LTC1155  
GND  
100k  
V
= 4.5V TO 18V  
S
5V  
510Ω  
300Ω  
1/4W  
LOAD  
GND  
1155 F05  
10k  
1N4148  
V
S
DS1  
Figure 5. Reverse Battery Protection  
IN1  
LTC1155  
GND  
Overvoltage Protection  
G1  
The MOSFET and load can be protected against overvolt-  
age conditions by using the circuit of Figure 6. The drain  
sense function is used to detect an overvoltage condition  
and quickly discharge the power MOSFET gate. The 18V  
zener diode conducts when the supply voltage exceeds  
18V  
LOAD  
GND  
1155 F06  
Figure 6. Overvoltage Shutdown and Protection  
U
O
TYPICAL APPLICATI S  
Dual 2A Autoreset Electronic Fuse  
5V  
+
0.1µF  
0.1µF  
0.03Ω  
0.03Ω  
10µF  
30k  
30k  
DS1  
G1  
V
DS2  
G2  
S
1/2 SI9956DY  
1/2 SI9956DY  
1N4148  
LTC1155  
GND  
100k  
100k  
8
LMC555  
1
4
f
= 1Hz  
750k  
O
3
IN1  
IN2  
1N4148  
OUT 1  
2
6
OUT 2  
1.0µF  
ALL COMPONENTS SHOWN ARE SURFACE MOUNT  
1155 TA03  
9
LTC1155  
U
O
TYPICAL APPLICATI S  
High Side Driver with VDS Sense Short-Circuit Shutdown  
4.5V TO 6V  
X-NOR Fault Detection  
4.5V TO 6V  
+
+
10µF  
10µF  
30k  
0.1Ω  
V
V
S
S
DS1  
G1  
DS1  
G1  
5V  
*
1/2  
LTC1155  
1/2  
LTC1155  
IN1  
IN1  
10k  
IRLZ24  
IRLD024  
GND  
GND  
100k  
0.01µF  
270k  
FAULT  
LOAD  
74C266  
LOAD  
1155 TA05  
*ANY 74C OR 74HC LOGIC GATE.  
MOSFET SHUTS DOWN IF V > 1V  
DS  
1155 TA04  
Truth Table  
IN  
OUT  
CONDITION  
Switch OFF  
Short Circuit  
Open Load  
Switch ON  
FLT  
1
0
0
0
1
1
1
0
0
0
1
1
Low Side Driver with Drain End Current Sensing  
Low Side Driver with Source End Current Sensing  
5V  
V
LOAD  
5V  
+
+
10µF  
51Ω  
10µF  
0.05Ω  
5%  
V
S
LOAD  
DS1  
G1  
V
S
DS1  
G1  
1/2  
LTC1155  
IN1  
1/2  
LTC1155  
LOAD  
IN1  
SMP25N05  
GND  
SMP25N05  
GND  
7
3
2
+
6
®
1155 TA06  
LT 1077*  
0.02Ω  
5%  
4
51Ω  
1155 TA07  
*DO NOT SUBSTITUTE. MUST BE A PRECISION, SINGLE  
SUPPLY, MICROPOWER OP AMP (I < 60µA)  
Q
10  
LTC1155  
U
O
TYPICAL APPLICATI S  
Automotive High Side Driver with Reverse-Battery  
and High Voltage Transient Protection  
5V/3A Extremely Low Voltage Drop Regulator with 10µA Standby  
Current and Short-Circuit Protection  
5.2V TO 6V  
9V TO 16V  
+
+
10µF  
C
**  
DLY  
R
10µF  
0.1µF  
0.02Ω  
0.02Ω  
5%  
**  
300k  
DLY  
V
V
S
S
5V  
DS1  
G1  
DS1  
G1  
100k*  
1/2  
LTC1155  
1/2  
LTC1155  
18V  
IN1  
IN1  
ON/OFF  
FAULT  
1N4746A  
100k  
IRLR024  
MTP50N05E  
GND  
GND  
18V  
200pF  
1N4746A  
M
10k  
8
0.1µF  
300Ω  
1/4W  
1
VALVE,  
ETC.  
3
4
5V/3A  
LT1431  
7
+
1155 TA08  
*PROTECTS TTL/CMOS GATES DURING HIGH VOLTAGE  
TRANSIENT OR REVERSE BATTERY  
470µF*  
6
5
**NOT REQUIRED FOR INDUCTIVE OR RESISTIVE LOADS  
*CAPACITOR ESR SHOULD BE LESS THAN 0.5Ω  
1155 TA09  
Using the Second Channel for Fault Detection  
Bootstrapped Gate Drive for (100Hz < FO < 10kHz)  
4.5V TO 5.5V  
9V TO 18V  
+
10µF  
0.1µF*  
100k  
0.01µF  
1N4148  
0.01Ω  
0.05Ω  
5V  
30k*  
30k  
FLT  
µP OR  
CONTROL  
LOGIC  
DS1  
G2  
V
DS2  
V
S
S
DS1  
1N4148  
1N4148  
µP OR  
CMOS/TTL  
LOGIC  
1/2  
100k  
LTC1155  
GND  
IN1  
LTC1155  
SMD25N05-45L  
IN2  
IN1  
2N2222  
G1  
0.1µF  
ON/OFF  
G1  
GND  
IRFZ44  
LOAD  
18V  
V
= 2V – 0.6V  
S
GATE  
2N3906  
1155 TA10  
LOAD  
NOTE:  
DRAIN SENSE 2 IS USED TO DETECT A FAULT IN CHANNEL 1.  
GATE 2 PULLS DOWN ON DRAIN SENSE 1 TO DISCHARGE  
THE MOSFET AND REPORT THE FAULT TO THE µP  
RISE AND FALL TIMES ARE βETA TIMES FASTER  
1155 TA11  
*NOT REQUIRED FOR RESISTIVE OR INDUCTIVE LOADS  
11  
LTC1155  
TYPICAL APPLICATI S  
U
O
Logic Controlled Boost Mode Switching Regulator with Short-Circuit Protection and 8µA Standby Current  
4.75V TO 5.25V  
+
100µF  
0.33µF  
100k  
0.02Ω  
V
S
DS1  
G1  
1/2  
LTC1155  
FROM µP, ETC.  
IN1  
MTM25N05L  
GND  
5V SWITCHED  
12V/1A  
FAULT  
1N5820  
50µH*  
1N4148  
5
4
10.7k  
1%  
1
+
+
LT1170  
2
2200µF  
68µF  
1k  
1µF  
3
1.24k  
1%  
*COILTRONICS CTX-7-52  
1155 TA12  
High Efficiency 60Hz Full-Wave Synchronous Rectifier  
**  
IRFZ44*  
D
9V/3A  
DC  
18V  
S
1N4148  
1N4746A  
100k  
10k  
2
1N4148  
DS1  
IN1  
V
DS2  
G1  
S
12.6VCT  
10Ω  
+
7
LT1006  
4
110V AC  
+
6
4700µF  
16V  
LTC1155  
GND  
1N4148  
3
IN2  
G2  
1N4148  
10µF  
+
0.03Ω  
100k  
10k  
18V  
1N4746A  
1N4001  
S
D
IRFZ44*  
**  
MOSFETs ARE SYNCHRONOUSLY ENHANCED WHEN RECTIFIER CURRENT EXCEEDS 300mA  
*NO HEATSINK REQUIRED. CASES (DRAINS) CAN BE TIED TOGETHER  
**INTERNAL BODY DIODE OF MOSFET  
1155 TA13  
12  
LTC1155  
U
O
TYPICAL APPLICATI S  
High Efficiency 60Hz Full-Wave Synchronous Rectifier  
9V/3A  
DC  
10k  
100k  
4 × IRFZ44*  
D
D
1N4148  
1N4148  
DS2  
IN1  
V
DS1  
G1  
S
+
2
3
7
110V AC  
6.3V AC  
+
S
D
S
D
6
4700µF  
16V  
**  
**  
**  
**  
LTC1155  
GND  
LT1006  
IN2  
G2  
4
S
S
18V  
1N4746A  
18V  
1N4746A  
10k  
100k  
10Ω  
0.03Ω  
1155 TA14  
MOSFETs ARE SYNCHRONOUSLY ENHANCED WHEN RECTIFIER CURRENT EXCEEDS 300mA  
*NO HEATSINK REQUIRED  
**INTERNAL BODY DIODE OF MOSFET  
Push-Pull Driver with Shoot-Through Current Lockout (fO < 100Hz)  
4.5V TO 6V  
5V  
0.01Ω  
10µF  
0.1µF  
300k  
100k  
100k  
DS1  
IN1  
V
DS2  
G1  
S
*
*
HI/LO  
IRLZ24  
74HC02  
LTC1155  
GND  
V
OUT  
IN2  
G2  
IRFZ24  
1N4148  
1N4148  
*OPPOSING GATE MUST DROP BELOW 2V BEFORE THE OTHER IS CHARGED  
1155 TA15  
13  
LTC1155  
TYPICAL APPLICATI S  
U
O
Full H-Bridge Driver with Shoot-Through Current Lockout and Stall Current Shutdown (fO < 100Hz)  
4.5V TO 6V  
0.01Ω  
10µF  
0.1µF  
100k  
5V  
DIRECTION  
74HC02  
DS1  
IN1  
V
S
DS2  
G1  
IRLZ44  
IRLZ44  
*
LTC1155  
GND  
IN2  
VN2222L  
G2  
M
DISABLE  
*
IRFZ44  
IRFZ44  
VN2222L  
1155 TA16  
*OPPOSING GATES ARE HELD OFF UNTIL OTHER GATES DROP BELOW 1.5V  
DC Motor Speed and Torque Control for Cordless Tools and Appliances  
100Ω  
+
6V  
0.1µF  
1.1k  
+
47µF  
16V  
0.1Ω  
10k  
TORQUE  
ADJUST  
300k  
1M  
1M  
1M  
1A TO  
10A  
100k  
MAX  
+
DS1  
IN1  
V
DS2  
G1  
S
1/2  
LT1017  
IRFZ24  
10k  
SPEED  
ADJUST  
120k  
LTC1155  
GND  
+
1M  
1/2  
LT1017  
IN2  
G2  
SMALL DC APPLIANCE  
OR TOOL MOTOR  
M
0.0033µF  
100k  
1155 TA17  
SPEED IS PROPORTIONAL TO PULSE WIDTH. TORQUE IS PROPORTIONAL TO CURRENT  
14  
LTC1155  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (milimeters) unless otherwise noted.  
J8 Package  
8-Lead CERDIP (Narrow 0.300, Hermetic)  
(LTC DWG # 05-08-1110)  
0.405  
(10.287)  
MAX  
0.005  
(0.127)  
MIN  
0.200  
(5.080)  
MAX  
0.300 BSC  
(0.762 BSC)  
CORNER LEADS OPTION  
(4 PLCS)  
6
5
8
7
0.015 – 0.060  
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
(0.381 – 1.524)  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
J8 1197  
1
2
3
4
0.045 – 0.068  
(1.143 – 1.727)  
0.125  
3.175  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.014 – 0.026  
(0.360 – 0.660)  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
8
7
6
5
4
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
(3.175)  
MIN  
0.020  
(0.508)  
MIN  
+0.035  
–0.015  
1
2
3
0.325  
N8 1197  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.889  
8.255  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1155  
TYPICAL APPLICATI S  
U
O
Isolated High Voltage High Side Switch with Circuit Breaker  
6V TO 12V  
1N5817  
1k  
1N4148  
1k  
C
0.1µF  
200V  
10mA  
CONTROL  
90V  
4N28  
1/6 74C14  
B
E
100k  
DS1  
IN1  
V
DS2  
G1  
S
+
6A MAX  
10µF  
25V  
1N4148  
100pF  
LTC1155  
GND  
1k  
1N5817  
IN2  
G2  
2N2222  
18V  
1N4746A  
0.1Ω  
1M  
M
MUR420  
1155 TA18  
Isolated Solid-State AC Relay with Circuit Breaker  
IN/OUT  
18V  
1N4746A  
18V  
1N4746A  
IRFZ24  
5V  
0.1µF  
300Ω  
0.01µF  
0.05Ω  
1/6 74C14  
100k  
5.6V  
1N5817  
1N4690A  
100k  
DS1  
IN1  
V
DS2  
G1  
S
0.0022µF  
IRFZ24  
+
600Ω  
1µF  
100k  
LTC1155  
GND  
IN/OUT  
24V AC  
2A MAX  
1N4148  
IN2  
G2  
ON/OFF  
100k  
T1*  
1/6 74C14  
EQUIVALENT FUNCTION  
2A  
IN/OUT  
ON/OFF  
IN/OUT  
*PICO ELECTRONICS F-28115 OR EQUIVALENT  
1155 TA19  
RELATED PARTS  
PART NUMBER  
LTC1153  
LT1161  
DESCRIPTION  
COMMENTS  
Auto-Reset Electronic Circuit Breaker  
Programmable Trip Current, Fault Status Output  
Quad Protected High Side MOSFET Driver  
Triple 1.8V to 6V High Side MOSFET Driver  
Dual 24V High Side MOSFET Driver  
8V to 48V Supply Range, Individual Short-Circuit Protection  
0.01µA Standby Current, Triple Driver in SO-8 Package  
Operates from 9V to 24V, Short-Circuit Protection  
LTC1163  
LTC1255  
LTC1477  
LTC1623  
LTC1710  
Protected Monolithic High Side Switch  
SMBus Dual High Side Switch Controller  
SMBus Dual Monolithic High Side Switch  
Low R  
0.07Switch, 2A Short-Circuit Protected  
DS(ON)  
2-Wire SMBus Serial Interface, Built-In Gate Charge Pumps  
Two Low R  
0.4/300mA Switches in 8-Lead MSOP Package  
1155fa LT/TP 0399 2K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1991  
DS(ON)  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY