LTC1164-6CJ#PBF [Linear]

IC SWITCHED CAPACITOR FILTER, ELLIPTIC/BESSEL, LOWPASS, CDIP14, CERDIP-14, Active Filter;
LTC1164-6CJ#PBF
型号: LTC1164-6CJ#PBF
厂家: Linear    Linear
描述:

IC SWITCHED CAPACITOR FILTER, ELLIPTIC/BESSEL, LOWPASS, CDIP14, CERDIP-14, Active Filter

LTE CD 有源滤波器
文件: 总12页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1164-6  
Low Power 8th Order  
Pin Selectable Elliptic or  
Linear Phase Lowpass Filter  
U
FEATURES  
DESCRIPTIO  
The LTC®1164-6 is a monolithic 8th order elliptic lowpass  
filter featuring clock-tunable cutoff frequency and low  
power supply current. Low power operation is achieved  
without compromising noise or distortion performance.  
At ±5V supplies the LTC1164-6 uses only 4mA supply  
8th Order Pin Selectable Elliptic or Bessel Filter  
4mA Supply Current with ±5V Supplies  
64dB Attenuation at 1.44 fCUTOFF (Elliptic Response)  
fCUTOFF Up to 30kHz (50:1 fCLK to fCUTOFF Ratio)  
110µVRMS Wideband Noise with ±5V Supplies  
current while keeping wideband noise below 110µVRMS  
.
Operates at Single 5V Supply with 1VRMS  
With a single 5V supply, the LTC1164-6 can provide up to  
10kHz cutoff frequency and 80dB signal-to-noise ratio  
while consuming only 2.5mA.  
Input Range  
Operates Up to ±8V Supplies  
TTL/CMOS Compatible Clock Input  
No External Components  
The LTC1164-6 provides an elliptic lowpass rolloff with  
stopband attenuation of 64dB at 1.44 fCUTOFF and an fCLK  
Available in 14-Pin Dip and 16-Pin SO Wide Packages  
-
to-fCUTOFF ratioof100:1(Pin10toV).Foraratioof100:1,  
fCUTOFF can be clock-tuned up to 10kHz. For a fCLK-to-  
fCUTOFF ratio of 50:1 (Pin 10 to V+), the LTC1164-6  
provides an elliptic lowpass filter with fCUTOFF frequencies  
up to 20kHz. When Pin 10 is connected to ground, the  
LTC1164-6 approximates an 8th order linear phase re-  
sponse with 65dB attenuation at 4.5 f3dB and fCLK/f3dB  
ratio of 160:1. The LTC1164-6 is pin compatible with the  
LTC1064-1.  
U
APPLICATIO S  
Antialiasing Filters  
Battery-Operated Instruments  
Telecommunication Filters  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
10kHz Anti-Aliasing Elliptic Filter  
Frequency Response  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NC  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
V
IN  
NC  
–8V  
LTC1164-6  
CLK = 1MHz  
8V  
–8V  
V
OUT  
8
1164-6 TA01  
WIDEBAND NOISE = 115µV  
RMS  
NOTE: THE CONNECTION FROM PIN 7 TO PIN 14 SHOULD BE MADE  
UNDER THE PACKAGE. THE POWER SUPPLIES SHOULD BE BYPASSED  
BY A 0.1µF CAPACITOR AS CLOSE TO THE PACKAGE AS POSSIBLE.  
1
10  
100  
FREQUENCY (kHz)  
1164-6 TA02  
11646fa  
1
LTC1164-6  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V) ............................. 16V  
Input Voltage (Note 2) ......... (V++ 0.3V) to (V– 0.3V)  
Output Short-Circuit Duration......................... Indefinite  
Power Dissipation............................................. 400mW  
Burn-In Voltage ...................................................... 16V  
Operating Temperature Range  
LTC1164-6C ...................................... 40°C to 85°C  
LTC1164-6M (OBSOLETE) .............. – 55°C to 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
W U  
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
TOP VIEW  
1
2
3
4
5
6
7
CONNECT 2  
NC  
14  
13  
12  
11  
10  
9
NC  
NUMBER  
NUMBER  
V
NC  
IN  
CONNECT 2  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
LTC1164-6CN  
LTC1164-6CSW  
V
GND  
V
IN  
+
CLK  
V
GND  
V
+
ELL/BESS  
GND  
LP6  
V
NC  
V
OUT  
GND  
NC  
CLK  
NC  
8
CONNECT 1  
ELL/BESS  
NC  
LP6  
N PACKAGE  
14-LEAD PDIP  
CONNECT 1  
V
OUT  
T
= 110°C, θ = 65°C/W  
JMAX  
JA  
SW PACKAGE  
16-LEAD PLASTIC SO  
J PACKAGE 14-LEAD CERDIP  
= 150°C, θ = 65°C/W  
T
JMAX  
LTC1164-6CJ  
LTC1164-6MJ  
JA  
T
= 110°C, θ = 85°C/W  
JA  
JMAX  
OBSOLETE PACKAGE  
Consider the N14 Package as an Alternate Source  
Order Options Tape and Reel: Add #TR Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
The  
denotes specifications that apply over the full operating temperature  
ELECTRICAL CHARACTERISTICS  
range, otherwise specifications are at T = 25°C. V = ±7.5V, R = 10k, T = 25°C, f = 400kHz, TTL or CMOS level (maximum clock  
A
S
L
A
CLK  
rise or fall time 1µs) and all gain measurements are referenced to passband gain, unless otherwise specified. (f /f  
) = 4kHz  
CLK CUTOFF  
at 100:1 and 8kHz at 50:1.  
PARAMETER  
CONDITIONS  
= 1kHz, (f /f ) = 100:1  
MIN  
TYP  
– 0.15  
MAX  
UNITS  
dB  
Passband Gain 0.1Hz to 0.25 f  
(Note 4)  
f
0.50  
0.25  
CUTOFF  
IN  
CLK C  
Passband Ripple with V = Single 5V  
1Hz to 0.8 f (Table 2)  
0.1 to – 0.3  
0.10  
– 0.30  
dB  
dB  
dB  
dB  
S
C
Gain at 0.50 f  
Gain at 0.90 f  
Gain at 0.95 f  
(Note 3)  
(Note 3)  
(Note 3)  
f
f
f
= 2kHz, (f /f ) = 100:1  
0.45  
0.75  
–1.40  
0.10  
0.10  
– 0.40  
CUTOFF  
CUTOFF  
CUTOFF  
IN  
IN  
IN  
CLK C  
= 3.6kHz, (f /f ) = 100:1  
CLK  
C
= 3.8kHz, (f /f ) = 100:1  
– 0.70  
CLK  
C
Gain at f  
(Note 3)  
f
f
= 4kHz, (f /f ) = 100:1  
3.70  
3.10  
2.70  
2.10  
2.30  
1.50  
dB  
dB  
CUTOFF  
IN  
IN  
CLK C  
= 8kHz, (f /f ) = 50:1  
CLK  
C
Gain at 1.44 f  
(Note 3)  
(Note 3)  
= 20kHz  
f
f
f
= 5.76kHz, (f /f ) = 100:1  
= 8kHz, (f /f ) = 100:1  
CLK C  
–75  
75  
3.70  
64  
64  
2.70  
58  
58  
2.30  
dB  
dB  
dB  
CUTOFF  
IN  
IN  
IN  
CLK C  
Gain at 2.0 f  
CUTOFF  
Gain with f  
= 200Hz, (f /f ) = 100:1  
CLK  
CLK C  
Gain with V = ±2.375V  
f
f
= 400kHz, f = 2kHz, (f /f ) = 100:1  
0.50  
3.50  
0.10  
2.50  
0.30  
2.00  
dB  
dB  
S
IN  
IN  
IN  
CLK C  
= 400kHz, f = 4kHz, (f /f ) = 100:1  
IN  
CLK C  
Input Frequency Range (Tables 3, 4)  
(f /f ) = 100:1  
0 – <f /2  
kHz  
kHz  
CLK  
C
CLK  
(f /f ) = 50:1  
0 – <f  
CLK  
C
CLK  
11646fa  
2
LTC1164-6  
The  
denotes specifications that apply over the full operating temperature  
ELECTRICAL CHARACTERISTICS  
range, otherwise specifications are at T = 25°C. V = ±7.5V, R = 10k, T = 25°C, f = 400kHz, TTL or CMOS level (maximum clock  
CLK  
A
S
L
A
rise or fall time 1µs) and all gain measurements are referenced to passband gain, unless otherwise specified. (f /f  
) = 4kHz  
CLK CUTOFF  
at 100:1 and 8kHz at 50:1.  
PARAMETER  
CONDITIONS  
V ±7.5V  
MIN  
TYP  
MAX  
UNITS  
Maximum f (Table 3)  
1.5  
1.0  
1.0  
MHz  
MHz  
MHz  
CLK  
S
V ±5V  
S
V = Single 5V, AGND = 2V  
S
Clock Feedthrough  
Wideband Noise  
Input at GND, f = f , Square Wave  
CLK  
V = ±7.5V, (f /f ) = 100:1  
500  
200  
µV  
µV  
S
CLK  
C
RMS  
RMS  
V = ±5V, (f /f ) = 50:1  
S
CLK C  
Input at GND, 1Hz f < f  
CLK  
V = ±7.5V  
115 ± 5%  
100 ± 5%  
µV  
µV  
S
RMS  
RMS  
kΩ  
V = ±2.5V  
S
Input Impedance  
45  
75  
110  
Output DC Voltage Swing  
V = ±2.375V  
S
V = ±7.5V  
S
±1.25  
±3.70  
±5.40  
±1.50  
±4.10  
±5.90  
V
V
V
S
V = ±5V  
Output DC Offset  
Output DC Offset Tempco  
Power Supply Current  
V = ± 5V, (f /f ) = 100:1  
±100  
±100  
2.5  
±160  
mV  
µV/°C  
mA  
mA  
mA  
mA  
S
CLK C  
V = ± 5V, (f /f ) = 100:1  
S
CLK C  
V = ± 2.375V, T > 25°C  
4.0  
4.5  
7.0  
8.0  
11.0  
12.5  
S
A
V = ± 5V, T > 25°C  
4.5  
7.0  
S
A
V = ± 7.5V, T > 25°C  
mA  
mA  
S
A
Power Supply Range  
±2.375  
±8  
V
+
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Connecting any pin to voltages greater than V or less than V  
may cause latch-up. It is recommended that no sources operating from  
external supplies be applied prior to power-up of the LTC1164-6.  
Note 3: All gains are measured relative to passband gain.  
Note 4: The cutoff frequency of the filter is abbreviated as f  
or f .  
C
CUTOFF  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Stopband Gain vs Frequency  
(Elliptic Response)  
Stopband Gain vs Frequency  
(Elliptic Response)  
10  
0
10  
V
f
= ±5V  
V
f
C
= ±5V  
CLK  
= 5kHz  
S
S
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
= 250kHz  
= 500kHz  
CLK  
(f /f ) = 50:1  
f
CLK  
C
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
+
(PIN 10 AT V )  
= 25°C  
(f /f ) = 100:1  
CLK  
C
T
(PIN 10 AT V )  
= 25°C  
A
WITH EXTERNAL  
SINGLE POLE LOW-  
PASS RC FILTER  
T
A
(f  
= 10kHz)  
– 3dB  
6
8
10 12 14 16  
18  
20 22  
2
4
6
8
10 12 14 16  
18  
20  
22  
2
4
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1164-6 G01  
1164-6 G02  
11646fa  
3
LTC1164-6  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Stopband Gain vs Frequency  
(Linear Phase Response)  
Passband Gain and Phase  
vs Frequency  
2.0  
0
10  
0
A. RESPONSE WITHOUT  
EXTERNAL RC FILTER  
V
= ±5V  
S
1.5  
1.0  
–45  
f
f
= 800kHz  
CLK  
= 5kHz  
B. RESPONSE WITH AN  
EXTERNAL SINGLE  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
C
(f /f ) = 160:1  
CLK  
C
POLE LOWPASS RC  
0.5  
–135  
–180  
–225  
–270  
–315  
–360  
–405  
–450  
(PIN 10 AT GND)  
T
FILTER (f  
AT 10kHz)  
– 3dB  
= 25°C  
A
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
V
= ±5V  
S
f
f
= 500kHz  
CLK  
= 5kHz  
A
B
C
(f /f ) = 100:1  
CLK  
C
(PIN 10 AT V )  
= 25°C  
T
A
2
6
10  
14 18 22 26 30  
FREQUENCY (kHz)  
34  
38  
42  
1
2
3
4
5
FREQUENCY (kHz)  
1164-6 G03  
1164-6 G04  
Maximum Passband over  
Temperature  
Passband Gain and Phase vs  
Frequency (Linear Phase Response)  
Passband Gain vs Frequency  
0.4  
0.2  
3
2
0
A
0.8  
0.4  
–30  
B
C
0
1
–60  
0
PHASE  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
0
–90  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–2.4  
–2.8  
A. T = 125°C  
A
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–120  
–150  
–180  
–210  
–240  
–270  
–300  
B. T = 85°C  
A
GAIN  
V
= ±5V  
D. T = –40°C  
S
A
f
f
= 500kHz  
CLK  
= 5kHz  
V
f
C
= ±5V  
CLK  
= 5kHz  
S
C
V
= ±5V  
S
= 800kHz  
(f /f ) = 100:1  
CLK  
C
f
f
= 1MHz  
CLK  
f
(PIN 10 AT V )  
T
= 10kHz  
CLK C  
(f /f ) = 160:1  
C
= 25°C  
CLK  
C
A
(f /f ) = 100:1  
(PIN 10 AT GND)  
= 25°C  
(10 REPRESENTA-  
TIVE UNITS)  
(PIN 10 AT V )  
T
A
1
5
10  
0.4  
1.0  
2.2  
2.8  
3.4  
4.0  
1
2
3
4
5
1.6  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1164-6 G07  
1164-6 G05  
1164-6 G11  
Passband Gain and Phase vs  
Frequency and f  
Passband vs Frequency and f  
CLK  
CLK  
0
3
2
2.0  
1.5  
A. RESPONSE WITHOUT  
EXTERNAL SINGLE  
POLE RC FILTER  
A. f  
f
B. f  
f
C. f  
f
D. f  
f
= 400kHz  
CUTOFF  
CLK  
V
= ±5V  
S
–45  
= 4kHz  
(f /f ) = 100:1  
CLK  
C
= 600kHz  
–90  
1
CLK  
A
B
(PIN 10 AT V )  
= 25°C  
1.0  
B. RESPONSE WITH AN  
EXTERNAL SINGLE  
POLE LOWPASS RC  
= 6kHz  
CUTOFF  
T
A
–135  
–180  
–225  
–270  
–315  
–360  
–405  
–450  
–495  
–540  
0
= 800kHz  
0.5  
CLK  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
= 8kHz  
CUTOFF  
PHASE  
A
FILTER (f  
AT 10kHz)  
– 3dB  
0
= 1MHz  
CLK  
= 10kHz  
0.5  
–1.0  
–1.5  
–2.0  
–2.5  
3.0  
CUTOFF  
B
V
= ±5V  
S
f
f
= 250kHz  
CLK  
C
= 5kHz  
(f /f ) = 50:1  
CLK  
C
A
B
C
D
(PIN 10 AT V )  
T
= 25°C  
A
1
2
3
4
5
1
5
10  
FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
1164-6 G06  
1164-6 G08  
11646fa  
4
LTC1164-6  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Passband over  
Temperature  
Passband vs Frequency and f  
CLK  
2.0  
1.5  
2.0  
1.5  
A. f  
f
= 250kHz  
CUTOFF  
CLK  
= 5kHz  
B. f  
CLK  
f
CUTOFF  
= 500kHz  
1.0  
1.0  
= 10kHz  
= 20kHz  
C. f  
f
= 1MHz  
T
= 70°C  
A
0.5  
CLK  
CUTOFF  
0.5  
0
0
T
= –40°C  
A
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–0.5  
–1.0  
–1.5  
A
C
B
V
= SINGLE 5V  
S
(f /f ) = 50:1  
CLK  
C
GND = 2V WITH  
V
= ±8V  
C
S
–2.0 EXTERNAL RC  
(f /f ) = 50:1  
CLK  
+
LOWPASS FILTER  
(f  
(PIN 10 AT V )  
= 25°C  
–2.5  
= 40kHz)  
T
– 3dB  
4
A
–3.0  
1
10  
FREQUENCY (kHz)  
30  
10 12 14 16  
2
6
8
18  
20  
22  
FREQUENCY (kHz)  
1164-6 G09  
1164-6 G10  
Group Delay vs Frequency  
(Linear Phase Response)  
Group Delay vs Frequency  
(Elliptic Response)  
THD + Noise vs Frequency  
(Elliptic Response)  
40  
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
250  
200  
150  
100  
50  
700  
600  
500  
400  
300  
200  
100  
0
V
= ±5V, V = 1V  
IN RMS  
A. f  
CLK  
= 250kHz, (f /f ) = 50:1  
CLK C  
S
f
= 800kHz  
CLK  
(20k RESISTOR PIN 14 TO V )  
= 500kHz, f = 5kHz  
WITH EXTERNAL RC LOWPASS  
(f /f ) = 160:1  
CLK  
C
f
FILTER (f = 10kHz)  
CLK  
C
C
f
= 5kHz  
C
A
B
(f /f ) = 100:1, T = 25°C  
B. f  
CLK  
= 500kHz  
CLK  
C
A
(5 REPRESENTATIVE UNITS)  
(f /f ) = 100:1  
CLK  
C
V
f
= ±5V  
S
= 5kHz  
C
T
= 25°C  
A
0
1
2
3
4
5
1
3
4
5
7
8
9
10 11  
2
6
1
2
3
4
5
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1164-6 G13  
1164-6 G22  
1164-6 G12  
THD + Noise vs Frequency  
(Elliptic Response)  
THD + Noise vs Frequency  
(Elliptic Response)  
THD + Noise vs Frequency  
(Linear Phase Response)  
40  
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
40  
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
40  
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
V
V
f
= ±5V  
V
f
= SINGLE 5V, V = 0.7V  
IN  
V
f
= ±5V, V = 1V  
,
RMS  
S
S
RMS  
S
IN  
= 1V  
= 500kHz, f = 5kHz,  
= 500kHz, f = 10kHz,  
IN  
CLK  
= 5kHz  
RMS  
CLK  
C
CLK  
CLK  
C
= 800kHz  
(f /f ) = 100:1, T = 25°C  
(f /f ) = 50:1, T = 25°C,  
CLK  
C
A
C
A
f
(5 REPRESENTATIVE UNITS)  
WITH EXTERNAL RC LOWPASS  
FILTER (f = 20kHz)  
(5 REPRESENTATIVE UNITS)  
C
(f /f ) = 160:1  
CLK  
C
– 3dB  
T
A
= 25°C  
0.5  
1
5
1
2
3
4
5
1
5
10  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1164-6 G23  
1164-6 G14  
1164-6 G16  
11646fa  
5
LTC1164-6  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Supply Current vs Power  
Supply Voltage  
THD + Noise vs RMS Input  
(Elliptic Response)  
THD + Noise vs RMS Input for  
Single 5V (Elliptic Response)  
12  
11  
10  
9
40  
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
40  
–45  
50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
(f /f ) = 100:1 OR 50:1  
CLK  
C
(f /f ) = 100:1 OR 50:1  
IN  
CLK  
C
f
= 1kHz, T = 25°C  
–55°C  
IN  
A
f
= 1kHz, T = 25°C  
A
A
B
25°C  
8
125°C  
7
V
V
= ±5V  
S
6
5
4
3
= ±7.5V  
2
S
A. GND = 2.5V  
B. GND = 2V  
1
0
0
1
2
3
4
5
6
7
8
9
10  
0.1  
1
2
0.1  
1
5
+
POWER SUPPLY (V OR V )  
INPUT (V  
)
INPUT (V )  
RMS  
RMS  
1164-6 G17  
1164-6 G18  
1164-6 G19  
Transient Response  
Transient Response  
1164-6 G21  
1164-6 G20  
1ms/DIV  
1ms/DIV  
VS = ±7.5V, VIN = ±3V 100Hz SQUARE WAVE  
CLK = 800kHz, (fCLK/fC) = 160:1, fCUTOFF = 5kHz  
LINEAR PHASE RESPONSE  
VS = ±7.5V, VIN = ±3V 100Hz SQUARE WAVE  
CLK = 500kHz, (fCLK/fC) = 100:1, fCUTOFF = 5kHz  
ELLIPTIC RESPONSE  
f
f
U
U
U
PI FU CTIO S (14-Lead Dual-In-Line Package)  
NC (Pins 1, 8, 13): Pins 1, 8, and 13 are not connected to  
any internal circuit point on the device and should prefer-  
ably be tied to analog ground.  
at least a 1µF capacitor (Figure 2). For single 5V operation  
at the highest fCLK of 1MHz, Pins 3 and 5 should be biased  
at 2V. This minimizes passband gain and phase variations  
(see Typical Performance Characteristics curves: Maxi-  
mum Passband for Single 5V, 50:1; and THD + Noise vs  
RMS Input for Single 5V, 50:1).  
V+ (Pins 4, 12):The V+ (Pin 4) and the V(Pin 12) should  
be bypassed with a 0.1µF capacitor to an adequate analog  
ground. The filter’s power supplies should be isolated  
from other digital or high voltage analog supplies. A low  
noise linear supply is recommended. Using a switching  
power supply will lower the signal-to-noise ratio of the  
filter. The supply during power-up should have a slew rate  
less than 1V/µs. When V+ is applied before Vand V–  
VIN (Pin 2): The input pin is connected internally through  
a 50k resistor tied to the inverting input of an op amp.  
GND (Pins 3, 5): The filter performance depends on the  
quality of the analog signal ground. For either dual or  
single supply operation, an analog ground plane sur-  
roundingthepackageisrecommended.Theanalogground  
planeshouldbeconnectedtoanydigitalgroundatasingle  
point. For dual supply operation, Pins 3 and 5 should be  
connected to the analog ground plane. For single supply  
operation Pins 3 and 5 should be biased at 1/2 supply and  
they should be bypassed to the analog ground plane with  
11646fa  
6
LTC1164-6  
U
U
U
(14-Lead Dual-In-Line Package)  
PI FU CTIO S  
could go above ground, a signal diode must be used to  
clampV.Figures1and2showtypicalconnectionsfordual  
and single supply operation.  
buffer,Figure3,canbeusedprovidedthatitsinputcommon  
mode range is well within the filter’s output swing. Pin 6 is  
an intermediate filter output providing an unspecified 6th  
order lowpass filter. Pin 6 should not be loaded.  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
*
ELLIPTIC/LINEARPHASE(Pin10):TheDClevelatthispin  
selects the desired filter response, elliptic or linear phase  
and determines the ratio of the clock frequency to the  
cutoff frequency of the filter. Pin 10 connected to V–  
provides an elliptic lowpass filter with clock-to-fCUTOFF  
ratio of 100:1. Pin 10 connected to analog ground pro-  
vides a linear phase lowpass filter with a clock- to-f–3dB  
ratio of 160:1 and a transient response overshoot of 1%.  
When Pin 10 is connected to V+ the clock-to-fCUTOFF ratio  
is 50:1 and the filter response is elliptic. Bypassing Pin 10  
to analog ground reduces the output DC offsets. If the DC  
level at Pin 10 is switched mechanically or electrically at  
slewratesgreaterthan1V/µswhilethedeviceisoperating,  
a10kresistorshouldbeconnectedbetweenPin10andthe  
DC source.  
V
V
0.1µF  
IN  
+
1k  
CLOCK SOURCE  
LTC1164-6  
0.1µF  
GND  
DIGITAL SUPPLY  
+
8
* OPTIONAL  
V
1164-6 F01  
OUT  
Figure 1. Dual Supply Operation for f /f  
= 100:1  
CLK CUTOFF  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
IN  
+
1k  
V
LTC1164-6  
CLOCK SOURCE  
0.1µF  
CLK (Pin 11): Any TTL or CMOS clock source with a  
square-wave output and 50% duty cycle (±10%) is an  
adequateclocksourceforthedevice.Thepowersupplyfor  
the clock source should not be the filter’s power supply.  
The analog ground for the filter should be connected to  
clock’s ground at a single point only. Table 1 shows the  
clock’s low and high level threshold value for a dual or  
single supply operation. A pulse generator can be used as  
a clock source provided the high level ON time is greater  
than 0.5µs. Sine waves are not recommended for clock  
input frequencies less than 100kHz, since excessively  
slow clock rise or fall times generate internal clock jitter  
(maximum clock rise or fall time 1µs). The clock signal  
should be routed from the right side of the IC package to  
avoid coupling into any input or output analog signal path.  
A 1k resistor between clock source and Pin 11 will slow  
down the rise and fall times of the clock to further reduce  
charge coupling, Figures 1 and 2.  
GND  
DIGITAL SUPPLY  
10k  
10k  
+
8
+
1µF  
V
OUT  
1164-6 F02  
Figure 2. Single Supply Operation for f /f  
= 100:1  
CLK CUTOFF  
Table 1. Clock Source High and Low Threshold Levels  
POWER SUPPLY  
Dual Supply = ±7.5V  
Dual Supply = ±5V  
Dual Supply = ±2.5V  
Single Supply = 12V  
Single Supply = 5V  
HIGH LEVEL  
2.18V  
1.45V  
0.73V  
7.80V  
1.45V  
LOW LEVEL  
0.5V  
0.5V  
– 2.0V  
6.5V  
0.5V  
V(Pins 7, 14): Pins 7 and 14 should be connected  
together. In a printed circuit board the connection should  
be done under the IC package through a short trace  
surrounded by the analog ground plane.  
VOUT (Pins 9, 6): Pin 9 is the specified output of the filter;  
it can typically source or sink 1mA. Driving coaxial cables  
or resistive loads less than 20k will degrade the total  
harmonicdistortionofthefilter.Whenevaluatingthedevice’s  
distortion an output buffer is required. A noninverting  
1k  
+
LT1006, f < 5kHz  
C
LT1200, f > 5kHz  
C
1164-6 F03  
Figure 3. Buffer for Filter Output  
11646fa  
7
LTC1164-6  
O U  
W U  
PPLICATI  
A
S I FOR ATIO  
Table 3. Clock Feedthrough  
Passband Response  
V
50:1  
60µV  
100µV  
150µV  
100:1  
60µV  
S
The passband response of the LTC1164-6 is optimized for  
a fCLK/fCUTOFF ratio of 100:1. Minimum passband ripple  
occursfrom1Hzto80%offCUTOFF. Athoughthepassband  
of the LTC1164-6 is optimized for ratio fCLK/fCUTOFF of  
100:1, if a ratio of 50:1 is desired, connect a single pole  
lowpass RC (f–3dB = 2 fCUTOFF) at the output of the filter.  
TheRCwillmakethepassbandgainresponseasflatasthe  
100:1 case. If the RC is omitted, and clock frequencies are  
below 500kHz the passband gain will peak by 0.4dB at  
± 2.5V  
±5V  
± 7.5V  
RMS  
RMS  
200µV  
500µV  
RMS  
RMS  
RMS  
RMS  
Note: The clock feedthrough at ±2.5V supplies is imbedded in the wideband noise of the filter. (The  
clock signal is a square wave.)  
Any parasitic switching transients during the rise and fall  
edges of the incoming clock are not part of the clock  
feedthroughspecifications. Switchingtransientshavefre-  
quency contents much higher than the applied clock; their  
amplitude strongly depends on scope probing techniques  
as well as grounding and power supply bypassing. The  
clock feedthrough, if bothersome, can be greatly reduced  
by adding a simple R/C lowpass network at the output of  
the filter (Pin 9). This R/C will completely eliminate any  
switching transient.  
90% fCUTOFF  
.
Table 2. Typical Passband Ripple with Single 5V Supply  
(f /f ) = 100:1, GND = 2V, 30kHz, Fixed Single Pole, Lowpass  
CLK  
C
RC Filter at Pin 9 (See Typical Applications)  
PASSBAND  
FREQUENCY  
PASSBAND GAIN  
(REFERENCED TO 0dB)  
f
= 1kHz  
f
= 10kHz  
CUTOFF  
CUTOFF  
T = 25°C  
T = 0°C  
T = 25°C  
T = 70°C  
A
A
(dB)  
A
A
Wideband Noise  
% of f  
(dB)  
(dB)  
(dB)  
CUTOFF  
10  
20  
30  
40  
50  
60  
70  
80  
The wideband noise of the filter is the total RMS value of  
the device’s noise spectral density and it is used to  
determine the operating signal-to-noise ratio. Most of its  
frequency contents lie within the filter passband and it  
cannot be reduced with post filtering. For instance, the  
0.00  
0.00  
0.00  
0.00  
0.01  
– 0.01  
– 0.02  
– 0.01  
0.01  
0.00  
0.01  
0.01  
0.02  
0.03  
0.05  
0.07  
0.02  
– 0.05  
– 2.68  
– 0.02  
– 0.05  
– 0.10  
– 0.13  
– 0.15  
– 0.18  
– 0.25  
– 0.39  
– 2.68  
– 0.01  
– 0.02  
– 0.03  
– 0.01  
– 0.01  
– 0.08  
– 0.23  
– 2.79  
0.01  
LTC1164-6widebandnoiseat±2.5Vsupplyis100µVRMS  
,
– 0.05  
– 0.18  
– 2.74  
90µVRMS of which have frequency contents from DC up to  
the filter’s cutoff frequency. The total wideband noise  
(µVRMS) is nearly independent of the value of the clock.  
The clock feedthrough specifications are not part of the  
wideband noise.  
90  
f
CUTOFF  
The gain peaking can approximate a sin χ/χ correction for  
someapplications.(SeeTypicalPerformanceCharacteristics  
curve, Passband vs Frequency and fCLK at fCLK/fC = 50:1.)  
Speed Limitations  
WhentheLTC1164-6operateswithasingle5Vsupplyandits  
cutoff frequency is clock-tuned to 10kHz, an output single  
pole RC filter can also help maintain outstanding passband  
flatness from 0°C to 70°C. Table 2 shows details.  
The LTC1164-6 optimizes AC performance versus power  
consumption. To avoid op amp slew rate limiting at  
maximum clock frequencies, the signal amplitude should  
be kept below a specified level as shown on Table 4.  
Clock Feedthrough  
Aliasing  
Clock feedthrough is defined as, the RMS value of the  
clock frequency and its harmonics that are present at the  
filter’s output (Pin 9). The clock feedthrough is tested with  
the input (Pin 2) grounded and, it depends on PC board  
layout and on the value of the power supplies. With proper  
layout techniques the values of the clock feedthrough are  
shown in Table 3.  
Aliasing is an inherent phenomenon of sampled data  
systems and it occurs when input frequencies close to the  
sampling frequency are applied. For the LTC1164-6 case,  
an input signal whose frequency is in the range of fCLK  
±4%, will be aliased back into the filter’s passband. If, for  
instance, an LTC1164-6 operating with a 100kHz clock  
11646fa  
8
LTC1164-6  
O U  
W U  
PPLICATI  
S I FOR ATIO  
A
Table 6. Transient Response of LTC Lowpass Filters  
and 1kHz cutoff frequency receives a 98.5kHz, 10mVRMS  
input signal, a 1.5kHz, 10µVRMS alias signal will appear at  
its output. When the LTC1164-6 operates with a clock-to-  
cutoff frequency of 50:1, aliasing occurs at twice the clock  
frequency. Table 5 shows details.  
DELAY  
TIME*  
(SEC)  
RISE  
SETTLING OVER-  
TIME** TIME*** SHOOT  
LOWPASS FILTER  
(SEC)  
(SEC)  
(%)  
LTC1064-3 Bessel  
LTC1164-5 Linear Phase  
LTC1164-6 Linear Phase  
0.50/f  
0.43/f  
0.43/f  
0.34/f  
0.34/f  
0.34/f  
0.80/f  
0.85/f  
1.15/f  
0.5  
0
1
C
C
C
C
C
C
C
C
C
Table 4. Maximum V vs V and f  
IN  
S
CLK  
CLK  
POWER SUPPLY  
MAXIMUM f  
MAXIMUM V  
IN  
(f > 35kHz)  
RMS IN  
LTC1264-7 Linear Phase  
LTC1164-7 Linear Phase  
LTC1064-7 Linear Phase  
1.15/f  
1.20/f  
1.20/f  
0.36/f  
0.39/f  
0.39/f  
2.05/f  
2.20/f  
2.20/f  
5
5
5
C
C
C
C
C
C
C
C
C
±7.5V  
1.5MHz  
1MHz  
1MHz  
1MHz  
1MHz  
1MHz  
1MHz  
1V  
3V  
0.7V  
(f > 25kHz)  
RMS IN  
(f > 250kHz)  
RMS IN  
LTC1164-5 Butterworth  
0.80/f  
0.48/f  
2.40/f  
11  
C
C
C
±5V  
2.5V  
0.5V  
(f > 25kHz)  
RMS IN  
(f > 100kHz)  
RMS IN  
LTC1164-6 Elliptic  
LTC1064-4 Elliptic  
LTC1064-1 Elliptic  
0.85/f  
0.90/f  
0.85/f  
0.54/f  
0.54/f  
0.54/f  
4.30/f  
4.50/f  
6.50/f  
18  
20  
20  
C
C
C
C
C
C
C
C
C
Single 5V  
0.7V  
0.5V  
(f > 25kHz)  
RMS IN  
(f > 100kHz)  
RMS IN  
* To 50% ±5%, ** 10% to 90% ±5%, *** To 1% ±0.5%  
Table 5. Aliasing (f  
INPUT FREQUENCY  
= 100kHz)  
CLK  
OUTPUT LEVEL  
(Relative to Input)  
(dB)  
OUTPUT FREQUENCY  
(Aliased Frequency)  
(kHz)  
(V = 1V  
)
IN  
RMS  
t
s
OUTPUT  
INPUT  
(kHz)  
/f = 100:1, f = 1kHz  
CUTOFF  
90%  
50%  
10%  
f
CLK  
C
96 (or 104)  
97 (or 103)  
98 (or 102)  
98.5 (or 101.5)  
99 (or 101)  
–75.0  
– 68.0  
– 65.0  
– 60.0  
– 3.2  
4.0  
3.0  
2.0  
1.5  
1.0  
0.5  
t
d
99.5 (or 100.5)  
– 0.5  
t
r
f
/f = 50:1, f = 2kHz  
CUTOFF  
CLK  
C
192 (or 208)  
194 (or 206)  
196 (or 204)  
198 (or 202)  
199 (or 201)  
199.5(or 200.5)  
76.0  
– 68.0  
– 63.0  
– 3.4  
– 1.3  
– 0.9  
8.0  
6.0  
4.0  
2.0  
1.0  
0.5  
0.54  
CUTOFF  
RISE TIME (t ) =  
±5%  
r
f
4.3  
CUTOFF  
SETTLING TIME (t ) =  
s
(TO 1% of OUTPUT)  
±5%  
f
0.85  
CUTOFF  
TIME DELAY (t ) = GROUP DELAY ≈  
(TO 50% OF OUTPUT)  
d
1164-6 F04  
f
Figure 4  
U
O
TYPICAL APPLICATI S  
8th Order Elliptic Lowpass Filter  
(f /f ) = 50:1  
CLK  
C
1
2
14  
13  
12  
11  
10  
9
V
+
IN  
+
V
NOTES:  
1. OPTIONAL OUTPUT BUFFER  
1/2πRC = (2)(f  
3
4
5
6
7
V
)
CUTOFF  
0.1µF  
LTC1164-6  
f
V
CLK  
+
2. PINS 1, 8, 13 CAN BE GROUNDED  
OR LEFT FLOATING  
®
0.1µF  
LT 1006  
V
R
+
V
OUT  
1164-6 TA06  
8
C
V
11646fa  
9
LTC1164-6  
TYPICAL APPLICATI S  
U
O
8th Order Elliptic Lowpass Filter (f /f ) = 100:1  
8th Order Linear Phase Lowpass Filter (f /f ) = 160:1  
CLK C  
CLK  
C
1
2
3
4
5
6
7
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
V
V
IN  
+
IN  
+
V
V
LTC1164-6  
0.1µF  
LTC1164-6  
f
0.1µF  
f
V
V
CLK  
CLK  
0.1µF  
0.1µF  
V
V
OUT  
OUT  
8
8
1164-6 TA07  
1164-6 TA08  
8th Order 20kHz Cutoff, Elliptic Filter Operating with a Single 5V Supply and Driving 1k, 1000pF Load  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
5V  
5V  
V
IN  
NOTES:  
1. TOTAL SUPPLY CURRENT I = 4mA  
S
(EXCLUDING OUTPUT LOAD CURRENT)  
2. FLAT PASSBAND UP TO 18kHz,  
1k  
5V  
7
2
3
f
CLK  
LTC1164-6  
5V  
51.1k  
+
= 1MHz  
f
= 20kHz  
0.1µF  
0.1µF  
–3dB  
3. THD + NOISE –70dB,  
1V V 3V , f = 1kHz  
V
LT1200  
4
OUT  
10k  
10k  
P-P IN P-P IN  
1k  
8
1000pF  
510pF  
1164-6 TA09  
6.65k  
Single 5V, 16th Order Lowpass Filter f  
= 10kHz  
CUTOFF  
R1  
789  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
= SINGLE 5V, I = 5mA TYP  
S
S
V
IN  
16TH ORDER LOWPASS FILTER  
C1  
FIXED f  
, f  
= 540kHz  
CUTOFF CLK  
0.01µF  
f
= 10kHz  
CUTOFF  
(f /f ) = 54:1  
CLK  
C
LTC1164-6  
IC1  
LTC1164-6  
IC2  
1/2πR1C1 = 1/2πR2C2 = 2f  
CUTOFF  
5V  
5V  
0.1µF  
0.1µF  
15k  
10k  
5V  
5V  
V
OUT  
+
8
8
R2  
7.89k  
C2  
1µF  
0.001µF  
1k  
f
1164-6 TA03  
CLK  
Gain vs Frequency  
THD + Noise vs Frequency  
40  
–45  
50 ELLIPTIC LOWPASS  
10  
V
= SINGLE 5V  
S
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
IS = 5mA, 16TH ORDER  
V
= 0.5V  
IN  
RMS  
= 540kHz  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
f
f
CLK  
C
= 10kHz  
V
S
= SINGLE 5V  
S
I
= 5mA, 16TH ORDER  
ELLIPTIC LOWPASS  
f
f
= 540kHz  
CLK  
CUTOFF  
= 10kHz  
1
10  
FREQUENCY (kHz)  
30  
1
5
10  
FREQUENCY (kHz)  
1164-6 TA05  
1164-6 TA04  
11646fa  
10  
LTC1164-6  
U
PACKAGE DESCRIPTION  
J Package  
14-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
.840  
(21.336)  
CORNER LEADS OPTION  
(4 PLCS)  
.005  
(0.127)  
MIN  
MAX  
16  
10  
15  
14  
12  
11  
9
8
13  
.023 – .045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
.220 – .310  
(5.588 – 7.874)  
.025  
(0.635)  
RAD TYP  
.045 – .065  
(1.143 – 1.65)  
FULL LEAD  
OPTION  
2
3
5
1
4
6
7
.200  
(5.080)  
MAX  
.300 BSC  
(7.62 BSC)  
.015 – .060  
(0.380 – 1.520)  
.008 – .018  
(0.203 – 0.457)  
0° – 15°  
.045 – .065  
(1.143 – 1.651)  
.125  
(3.175)  
MIN  
.100  
(2.54)  
BSC  
.014 – .026  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
(0.360 – 0.660)  
J16 0801  
OBSOLETE PACKAGE  
N Package  
14-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.770*  
(19.558)  
MAX  
14  
13  
12  
11  
10  
9
8
7
.255 ± .015*  
(6.477 ± 0.381)  
1
2
3
5
6
4
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
.130 ± .005  
(3.302 ± 0.127)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
+.035  
.325  
.005  
(0.127)  
MIN  
–.015  
.120  
(3.048)  
MIN  
.018 ± .003  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
–0.381  
N14 1103  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
11646fa  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC1164-6  
U
TYPICAL APPLICATION  
8th Order Low Power, Clock-Tunable Elliptic Filter with Active RC Input Antialiasing Filter and Output Smoothing Filter  
C2  
0.022µF  
R1  
1.15k  
R2  
76.8k  
R3  
5.62k  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
+
IN  
1/2  
C3  
0.001µF  
C1  
LT1013  
0.1µF  
V
0.1µF  
+
LTC1164-6  
f
V
CLK  
f
C
= 1kHz  
1/2  
LT1013  
0.1µF  
V
OUT  
V
ATTENUATION AT 10kHz = –48dB  
+
NOTES:  
C2  
0.001µF  
R2  
97.6k  
8
R1  
16.9k  
C1  
0.0047µF  
1. CLOCK-TUNABLE OVER ONE DECADE  
OF CUTOFF FREQUENCY  
2. BOTH INPUT AND OUTPUT RC ACTIVE  
FILTERS ARE 0.1dB CHEBYSHEV FILTERS  
WITH 1kHz RIPPLE BANDWIDTH  
100Hz f 1kHz  
C
10kHz f  
CLK  
100kHz  
f
= 1kHz  
C
ATTENUATION AT 10kHz = 30dB  
1164-6 TA10  
U
PACKAGE DESCRIPTION  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 ±.005  
.030 ±.005  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
TYP  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 ±.005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
.093 – .104  
.010 – .029  
(0.254 – 0.737)  
(0.940 – 1.143)  
× 45°  
(2.362 – 2.642)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
RELATED PARTS  
PART NUMBER  
LTC1069-1  
DESCRIPTION  
COMMENTS  
Operates from a Single 3.3V to ±5V Supply  
Low Power, 8th Order Elliptic Lowpass  
Very Low Power 8th Order Elliptic Lowpass  
LTC1069-6  
Optimized for 3V/5V Single Supply Operation, Consumes 1mA at 3V  
11646fa  
LT 0207 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 1993  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1164-6CN

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6CN#PBF

LTC1164-6 - Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter; Package: PDIP; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1164-6CS

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6CSW

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6CSW#PBF

暂无描述
Linear

LTC1164-6CSW#TR

LTC1164-6 - Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1164-6CSW#TRPBF

LTC1164-6 - Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter; Package: SO; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1164-6M

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6MJ

Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter
Linear

LTC1164-6MJ#PBF

IC SWITCHED CAPACITOR FILTER, ELLIPTIC/BESSEL, LOWPASS, CDIP14, CERDIP-14, Active Filter
Linear

LTC1164-6MJ/883

LTC1164-6MJ/883
Linear

LTC1164-6MS

IC SWITCHED CAPACITOR FILTER, ELLIPTIC, LOWPASS, PDSO14, PLASTIC, SO-14, Active Filter
Linear