LTC1343IGW#TRPBF [Linear]

LTC1343 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 44; Temperature Range: -40°C to 85°C;
LTC1343IGW#TRPBF
型号: LTC1343IGW#TRPBF
厂家: Linear    Linear
描述:

LTC1343 - Software-Selectable Multiprotocol Transceiver; Package: SSOP; Pins: 44; Temperature Range: -40°C to 85°C

文件: 总28页 (文件大小:385K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1343  
Software-Selectable  
Multiprotocol Transceiver  
U
FEATURES  
DESCRIPTIO  
The LTC®1343 is a 4-driver/4-receiver multiprotocol trans-  
ceiver that operates from a single 5V supply. Two LTC1343s  
form the core of a complete software-selectable DTE or DCE  
interface port that supports the RS232, RS449, EIA-530,  
EIA-530-A, V.35, V.36 or X.21 protocols. Cable termination  
maybeimplementedusingtheLTC1344software-selectable  
cable termination chip or by using existing discrete designs.  
Software-Selectable Transceiver Supports:  
RS232, RS449, EIA-530, EIA-530-A, V.35, V.36,  
X.21  
NET1 and NET2 Compliant  
Software-Selectable Cable Termination Using  
the LTC1344  
4-Driver/4-Receiver Configuration Provides a  
Complete 2-Chip DTE or DCE Port  
The LTC1343 runs from a single 5V supply using an internal  
charge pump that requires only five space saving surface mount  
capacitors. The mode pins are latched internally to allow sharing  
of the select lines between multiple interface ports.  
Operates from Single 5V Supply  
Internal Echoed Clock and Loop-Back Logic  
U
APPLICATIO S  
Software-selectableechoedclockandloop-backmodeshelp  
eliminate the need for external glue logic between the serial  
controller and line transceiver. The part features a flow-  
througharchitecturetosimplifyEMIshieldingandisavailable  
in the 44-lead SSOP surface mount package.  
Data Networking  
CSU and DSU  
Data Routers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
DTE Multiprotocol Serial Interface with DB-25 Connector  
CTS  
DSR  
DCD  
DTR  
RTS  
RL  
TM  
RXD  
RXC  
TXC  
SCTE  
TXD  
D2  
LL  
LTC1343  
D4  
LTC1343  
D4  
D1  
D2  
D3  
D1  
D3  
R3  
R2  
R1  
R4  
R3  
R2  
R1  
R4  
LTC1344  
13  
5
22  
6
10  
8
23 20 19  
4
21  
1
7
25 16  
3
9
17 12 15  
11 24 14  
2
18  
DB-25 CONNECTOR  
1343 TA01  
1
LTC1343  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
Supply Voltage ....................................................... 6.5V  
Input Voltage  
Transmitters ........................... 0.3V to (VCC + 0.3V)  
Receivers............................................... 18V to 18V  
Logic Pins .............................. 0.3V to (VCC + 0.3V)  
Output Voltage  
Transmitters ................. (VEE – 0.3V) to (VDD + 0.3V)  
Receivers................................ 0.3V to (VCC + 0.3V)  
Logic Pins .............................. 0.3V to (VCC + 0.3V)  
VEE........................................................ 10V to 0.3V  
VDD ....................................................... 0.3V to 10V  
Short-Circuit Duration  
Transmitter Output ..................................... Indefinite  
Receiver Output.......................................... Indefinite  
VEE.................................................................. 30 sec  
Operating Temperature Range  
ORDER PART  
NUMBER  
+
V
1
2
3
4
5
6
7
8
9
44 C2  
43 C2  
DD  
+
C1  
CHARGE PUMP  
PWRV  
CC  
42 V  
EE  
C1  
41 PGND  
40 GND  
39 D1 A  
38 D2 A  
37 D2 B  
36 D3 A  
35 D3 B  
34 D4 A  
33 D4 B  
32 R1 A  
31 R1 B  
30 R2 A  
29 R2 B  
28 R3 A  
27 R3 B  
26 R4 A  
25 423 SET  
24 EC  
LTC1343CGW  
LTC1343IGW  
D1  
D2  
D3  
D1  
D2  
V
CC  
D4  
D3  
D4EN 10  
INVERT 11  
R1EN 12  
R1O 13  
D4  
R1  
R2O 14  
15  
16  
17  
18  
19  
20  
21  
22  
R3O  
R4O  
R2  
R3  
R4  
M0  
M1  
M2  
CTRL/CLK  
DCE/DTE  
LATCH  
LTC1343C .............................................. 0°C to 70°C  
LTC1343I........................................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
23 LB  
GW PACKAGE  
44-LEAD PLASTIC SSOP  
TJMAX = 150°C, θJA = 65°C/ W  
Consult factory for Military grade parts.  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V (Notes 2, 3)  
SYMBOL PARAMETER  
Supplies  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
V
Supply Current (DCE Mode,  
CC  
V.10 Mode, No Load  
12  
80  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
CC  
All Digital Pins = GND or V  
)
V.10 Mode, Full Load  
150  
200  
160  
CC  
RS530, RS530-A, X.21 Modes, No Load  
RS530, RS530-A, X.21 Modes, Full Load  
V.35 Mode, No Load  
80  
160  
20  
V.35 Mode, Full Load  
115  
20  
V.28 Mode, No Load  
V.28 Mode, Full Load  
30  
90  
1
No-Cable Mode  
0.05  
P
Internal Power Dissipation (DCE Mode,  
All Digital Pins = GND or V  
V.10 Mode, Full Load  
400  
680  
500  
150  
mW  
mW  
mW  
mW  
D
)
CC  
RS530, RS530-A, X.21 Modes, Full Load  
V.35 Mode, Full Load  
V.28 Mode, Full Load  
+
V
V
Positive Charge Pump Output Voltage  
Negative Charge Pump Output Voltage  
Any Mode, No Load  
8.5  
8.0  
9.1  
7.0  
V
V
V.28 Mode, with Load  
V.28 Mode, Full Load  
V.35 Mode, Full Load  
7.8  
8.4  
6.7  
V
5.8  
5.5  
V
V
40°C T 85°C  
A
V.10, RS530, RS530A, X.21 Modes, Full Load  
5.0  
4.8  
6.1  
V
V
40°C T 85°C  
A
2
LTC1343  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
Supply Rise Time  
No-Cable Mode or Power-Up to Turn On  
2
ms  
r
Logic Inputs and Outputs  
V
V
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
2
V
V
IH  
IL  
0.8  
I
±10  
µA  
V
IN  
V
V
Output High Voltage  
I = 4mA  
3
4.5  
0.3  
OH  
OL  
O
Output Low Voltage  
I = 4mA  
O
0.8  
V
I
Output Short-Circuit Current  
0V V V , 0°C T 70°C  
60  
70  
60  
70  
mA  
mA  
OSR  
O
CC  
A
0V V V , 40°C T 85°C  
O
CC  
A
I
Three-State Output Current  
Differential Output Voltage  
M0 = M1 = M2 = V , 0V V V  
CC  
±1  
µA  
OZR  
CC  
O
V.11 Driver  
V
Open Circuit, R = 1.95k  
±6  
V
V
OD  
L
R = 50(Figure 1),  
±2  
L
OD  
V
at 50> 1/2 V at R = 1.95k  
OD L  
V  
OD  
Change in Magnitude of Differential  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
V
V
Common Mode Output Voltage  
R = 50(Figure 1)  
3.0  
0.2  
V
V
OC  
L
V  
Change in Magnitude of Common Mode R = 50(Figure 1)  
Output Voltage  
OC  
L
I
I
Short-Circuit Current  
0.25V V 0.25V, Power Off or  
±150  
±100  
25  
mA  
µA  
ns  
SS  
OZ  
O
No-Cable Mode or Driver Disabled  
Output Leakage Current  
0.25V V 0.25V, Power Off or  
±0.01  
O
No-Cable Mode or Driver Disabled  
t , t  
Rise or Fall Time  
Input to Output  
(Figures 2, 6)  
4
13  
r
f
t
(Figures 2, 6), 0°C T 70°C  
25  
25  
55  
55  
80  
90  
ns  
ns  
PLH  
A
(Figures 2, 6), 40°C T 85°C  
A
t
Input to Output  
(Figures 2, 6), 0°C T 70°C  
25  
25  
55  
55  
80  
90  
ns  
ns  
PHL  
A
(Figures 2, 6), 40°C T 85°C  
A
t  
Input to Output Difference,  
t
– t  
PHL  
(Figures 2, 6), 0°C T 70°C  
0
0
3
3
17  
25  
ns  
ns  
PLH  
A
(Figures 2, 6), 40°C T 85°C  
A
t
Output to Output Skew  
(Figures 2, 6)  
3
ns  
SKEW  
V.11 Receiver  
V
Input Threshold Voltage  
7V V 7V, 0°C T 70°C  
0.2  
0.3  
0.2  
0.3  
V
V
TH  
CM  
A
7V V 7V, 40°C T 85°C  
CM  
A
V  
TH  
Input Hysteresis  
7V V 7V, 0°C T 70°C  
15  
40  
60  
mV  
mV  
CM  
A
7V V 7V, 40°C T 85°C  
CM  
A
I
Input Current (A, B)  
Input Impedance  
Rise or Fall Time  
Input to Output  
10V V  
10V  
10V  
±0.50  
mA  
kΩ  
ns  
IN  
A, B  
A, B  
R
10V V  
20  
32  
15  
IN  
t , t  
(Figures 2, 7)  
(Figures 2, 7), CTRL = GND, 0°C T 70°C  
r
f
t
35  
25  
80  
400  
115  
130  
ns  
ns  
PLH  
A
CTRL = V , 0°C T 70°C  
CC  
A
(Figures 2, 7), CTRL = GND, 40°C T 85°C  
80  
400  
ns  
ns  
A
CTRL = V , 40°C T 85°C  
CC  
A
3
LTC1343  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
(Figures 2, 7), CTRL = GND, 0°C T 70°C  
MIN  
TYP  
MAX  
UNITS  
t
Input to Output  
35  
80  
400  
115  
ns  
ns  
PHL  
A
CTRL = V , 0°C T 70°C  
CC  
A
(Figures 2, 7), CTRL = GND, –40°C T 85°C  
25  
80  
400  
130  
ns  
ns  
A
CTRL = V , –40°C T 85°C  
CC  
A
t  
Input to Output Difference,  
Differential Output Voltage  
t
– t  
(Figures 2, 7), 0°C T 70°C  
0
0
5
5
17  
25  
ns  
ns  
PLH  
PHL  
A
(Figures 2, 7), –40°C T 85°C  
A
V.35 Driver  
V
Open Circuit  
6.0  
±0.66  
V
V
OD  
With Load, 4.0V V = 4.0V (Figure 3)  
±0.44  
12.6  
9.4  
±0.55  
11  
11  
CM  
I
I
I
Transmitter Output High Current  
Transmitter Output Low Current  
V
V
= 0V  
= 0V  
9.4  
12.6  
mA  
mA  
µA  
OH  
A, B  
A, B  
OL  
OZ  
Transmitter Output Leakage Current  
Rise or Fall Time  
0.25V V  
0.25V  
±0.01  
5
±100  
A, B  
t , t  
r
(Figures 3, 6)  
(Figures 3, 6), 0°C T 70°C  
ns  
f
t
Input to Output  
25  
25  
45  
45  
75  
90  
ns  
ns  
PLH  
A
(Figures 3, 6), –40°C T 85°C  
A
t
Input to Output  
(Figures 3, 6), 0°C T 70°C  
25  
25  
45  
45  
75  
90  
ns  
ns  
PHL  
A
(Figures 3, 6), –40°C T 85°C  
A
t  
Input to Output Difference,  
Output to Output Skew  
t
– t  
PHL  
(Figures 3, 6), 0°C T 70°C  
0
0
5
5
17  
25  
ns  
ns  
PLH  
A
(Figures 3, 6), –40°C T 85°C  
A
t
(Figures 3, 6)  
4
ns  
SKEW  
V.35 Receiver  
V
Differential Receiver Input  
Threshold Voltage  
2V (V + V )/2 2V (Figure 3)  
0.2  
20  
0.2  
V
TH  
A
B
V  
Receiver Input Hysteresis  
2V (V + V )/2 2V (Figure 3)  
11  
40  
mV  
mA  
kΩ  
ns  
TH  
A
B
I
Receiver Input Current (A, B)  
Receiver Input Impedance  
Rise or Fall Time  
10V V  
10V  
±0.50  
IN  
A, B  
A, B  
R
10V V  
10V  
32  
15  
IN  
t , t  
r
(Figures 3, 7)  
(Figures 3, 7), 0°C T 70°C  
f
t
Input to Output  
80  
80  
115  
130  
ns  
ns  
PLH  
A
(Figures 3, 7), –40°C T 85°C  
A
t
Input to Output  
(Figures 3, 7), 0°C T 70°C  
100  
100  
115  
130  
ns  
ns  
PHL  
A
(Figures 3, 7), –40°C T 85°C  
A
t  
Input to Output Difference,  
t
– t  
PHL  
(Figures 3, 7), 0°C T 70°C  
4
4
17  
25  
ns  
ns  
PLH  
A
(Figures 3, 7), –40°C T 85°C  
A
V.10 Driver  
V
Output Voltage  
Open Circuit, R = 3.9k  
L
±4.0  
±3.6  
±6.0  
V
V
O
L
R = 450(Figure 4)  
V at 450> 0.9 V at R = 3.9k  
O
O
L
Driver 1 Only  
I
I
Short-Circuit Current  
V = GND; EIA-530, X.21, EIA-530-A Modes  
±150  
±100  
mA  
SS  
OZ  
O
Output Leakage Current  
0.25V V 0.25V, Power Off or  
±0.1  
µA  
O
No-Cable Mode or Driver Disabled  
t , t  
Rise or Fall Time  
Input to Output  
Input to Output  
(Figures 4, 8), R = 450, C = 100pF  
r
f
PLH  
PHL  
L
L
R
= 100k  
4
8
8
µs  
µs  
µs  
423SET  
t
t
(Figures 4, 8), R = 450, C = 100pF  
L
L
R
= 100k  
423SET  
(Figures 4, 8), R = 450, C = 100pF  
L
L
R
= 100k  
423SET  
4
LTC1343  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V.10 Receiver  
V
Receiver Input Threshold Voltage  
0°C T 70°C  
0.2  
0.3  
0.2  
0.3  
V
V
TH  
A
–7V V 7V, 40°C T 85°C  
CM  
A
V  
Receiver Input Hysteresis  
Receiver Input Current  
Receiver Input Impedance  
Rise or Fall Time  
11  
50  
mV  
mA  
kΩ  
ns  
TH  
I
10V V 10V  
±0.50  
IN  
A
R
10V V 10V  
20  
30  
15  
IN  
A
t , t  
(Figures 5, 9)  
(Figures 5, 9)  
(Figures 5, 9)  
r
f
PLH  
PHL  
t
t
Input to Output  
350  
350  
ns  
Input to Output  
ns  
V.28 Driver  
V
Output Voltage  
Open Circuit  
L
±10  
V
V
O
R = 3k (Figure 4)  
±5  
7.6  
I
I
Short-Circuit Current  
V = GND  
O
±150  
±100  
mA  
SS  
OZ  
Output Leakage Current  
0.25V V 0.25V, Power Off or  
±0.01  
µA  
O
No-Cable Mode or Driver Disabled  
SR  
Slew Rate  
(Figures 4, 8), R = 3k, C = 2500pF  
4.0  
30.0  
2.5  
V/µs  
µs  
L
L
t
t
Input to Output  
Input to Output  
(Figures 4, 8), R = 3k, C = 2500pF  
1.6  
1.6  
PLH  
PHL  
L
L
(Figures 4, 8), R = 3k, C = 2500pF  
2.5  
µs  
L
L
V.28 Receiver  
V
V
Input Low Threshold Voltage  
Input High Threshold Voltage  
Receiver Input Hysteresis  
Receiver Input Impedance  
Rise or Fall Time  
1.4  
1.4  
0.4  
5
0.8  
V
V
THL  
TLH  
2.0  
0.1  
3
V  
1.0  
7
V
TH  
R
15V V 15V  
kΩ  
ns  
IN  
A
t , t  
r
(Figures 5, 9)  
15  
f
t
Input to Output  
(Figures 5, 9), CTRL = 0V  
CTRL = V  
110  
330  
ns  
ns  
PLH  
800  
800  
CC  
t
Input to Output  
(Figures 5, 9), CTRL = 0V  
CTRL = V  
170  
480  
ns  
ns  
PHL  
CC  
Note 1: Absolute Maximum Ratings are those beyond which the safety of a  
device may be impaired.  
Note 3: All typicals are given for V = 5V, C1 = C2 = C  
= C  
= 1µF,  
VDD  
CC  
VCC  
C
= 3.3µF tantalum capacitors and T = 25°C.  
VEE A  
Note 2: All currents into device pins are positive; all currents out of device  
are negative. All voltages are referenced to device ground unless otherwise  
specified.  
U
U
U
PIN FUNCTIONS  
C1(Pin 4): Capacitor C1 Negative Terminal.  
D1 (Pin 5): TTL Level Driver 1 Input.  
D2 (Pin 6): TTL Level Driver 2 Input.  
VDD (Pin 1): Generated Positive Supply Voltage for  
RS232. Connect a 1µF capacitor to ground.  
C1+ (Pin 2): Capacitor C1 Positive Terminal. Connect a  
1µF capacitor between C1+ and C1.  
D3 (Pin 7): TTL Level Driver 3 Input. Becomes a CMOS  
level output when the chip is in the echoed clock mode  
(EC = 0V).  
PWRVCC (Pin 3): Positive Supply for the Charge Pump.  
4.75V PWRVCC 5.25V. Tie to VCC (Pin 8) and bypass  
with a 1µF capacitor to ground.  
5
LTC1343  
U
U
U
PIN FUNCTIONS  
V
V
CC (Pin 8): Positive Supply for the Transceivers. 4.75V ≤  
CC 5.25V. Tie to PWRVCC (Pin 3).  
respective input buffers. The data latch allows the logic  
lines to be shared between multiple I/O ports.  
D4 (Pin 9): TTL Level Driver 4 Input.  
LB (Pin 23): TTL Level Loop-Back Select Input. When low  
the chip enters the loop-back configuration and is config-  
ured for normal operation when LB is high. The data on LB  
is latched when LATCH is high.  
D4EN (Pin 10): TTL Level Enable Input for Driver 4. When  
high, driver 4 outputs are enabled. When low, driver 4  
outputs are forced into a high impedance state. D4EN is  
not affected by the LATCH pin.  
EC (Pin 24): TTL Level Echoed Clock Select Input. When  
low the part enters the echoed clock configuration and is  
configured for normal operation when EC is high. The data  
on EC is latched when LATCH is high.  
INVERT (Pin 11): TTL Level Signal Invert Input. When  
high, an extra inverter will be added to the driver 4 and  
receiver 1 signal path. The data stream will change polar-  
ity, i.e., a 1 becomes 0 and a 0 becomes a 1. When the pin  
is low the data flows through with no polarity change.  
INVERT is not affected by the LATCH pin.  
423 SET (Pin 25): Analog Input Pin for the RS423 Driver  
Output Rise and Fall Time Set Resistor. Connect the  
resistor from the pin to ground.  
R1EN (Pin 12): Logic Level Enable Input for Receiver 1.  
When low, receiver 1 output is enabled. When high,  
receiver 1 output is forced into a high impedance state.  
R4 A (Pin 26): Receiver 4 Inverting Input.  
R3 B (Pin 27): Receiver 3 Noninverting Input.  
R3 A (Pin 28): Receiver 3 Inverting Input.  
R2 B (Pin 29): Receiver 2 Noninverting Input.  
R2 A (Pin 30): Receiver 2 Inverting Input.  
R1 B (Pin 31): Receiver 1 Noninverting Input.  
R1 A (Pin 32): Receiver 1 Inverting Input.  
D4 B (Pin 33): Driver 4 Noninverting Output.  
D4 A (Pin 34): Driver 4 Inverting Output.  
D3 B (Pin 35): Driver 3 Noninverting Output.  
D3 A (Pin 36): Driver 3 Inverting Output.  
D2 B (Pin 37): Driver 2 Noninverting Output.  
D2 A (Pin 38): Driver 2 Inverting Output.  
D1 A (Pin 39): Driver 1 Inverting Output.  
GND (Pin 40): Signal Ground. Connect to PGND (Pin 41).  
R1O (Pin 13): CMOS Level Receiver 1 Output.  
R2O (Pin 14): CMOS Level Receiver 2 Output.  
R3O (Pin 15): CMOS Level Receiver 3 Output.  
R4O (Pin 16): CMOS Level Receiver 4 Output.  
M0 (Pin 17): TTL Level Mode Select Input 0. The data on  
M0 is latched when LATCH is high.  
M1 (Pin 18): TTL Level Mode Select Input 1. The data on  
M1 is latched when LATCH is high.  
M2 (Pin 19): TTL Level Mode Select Input 2. The data on  
M2 is latched when LATCH is high.  
CTRL/CLK (Pin 20): TTL Level Mode Select Input. When  
the pin is low the chip will be configured for clock and data  
signals.Whenthepinishighthechipwillbeconfiguredfor  
control signals. The data on CTRL/CLK is latched when  
LATCH is high.  
PGND (Pin 41): Charge Pump Power Ground. Connect to  
the GND (Pin 40).  
DCE/DTE (Pin 21): TTL Level Mode Select Input. When  
high, the DCE mode is selected. When low the DTE mode  
is selected. The data on DCE/DTE is latched when LATCH  
is high.  
VEE (Pin42):GeneratedNegativeSupplyVoltage.Connect  
a 3.3µF capacitor to ground.  
C2(Pin 43): Capacitor C2 Negative Terminal. Connect a  
LATCH(Pin22):TTLLevelLogicSignalLatchInput.When  
low the input buffers on M0, M1, M2, CTRL/CLK, DCE/  
DTE, LB and EC are transparent. When LATCH is pulled  
high the data on the logic pins is latched into their  
1µF capacitor between C2+ and C2.  
C2+ (Pin 44): Capacitor C2 Positive Terminal. Connect a  
1µF capacitor between C2+ and C2.  
6
LTC1343  
TEST CIRCUITS  
A
R
C
L
L
B
A
50Ω  
100pF  
B
A
R
R
L
100Ω  
C
L
100pF  
V
OD  
15pF  
R
V
OC  
L
50Ω  
1343 F01  
1343 F02  
B
Figure 1. RS422 Driver Test Circuit  
Figure 2. RS422 Driver/Receiver AC Test Circuit  
50Ω  
125Ω  
50Ω  
V
CM  
B
B
D
125Ω  
R
V
OD  
A
A
15pF  
50Ω  
50Ω  
1343 F03  
Figure 3. V.35 Driver/Receiver Test Circuit  
D
A
D
A
A
R
R
L
C
L
15pF  
1343 F04  
1343 F04  
Figure 4. V.10/V.28 Driver Test Circuit  
Figure 5. V.10/V.28 Receiver Test Circuit  
W
U
ODE SELECTIO  
LTC1343 MODE NAME  
V.10, RS423  
M2  
0
M1  
0
M0  
0
CTRL/CLK  
D1  
D2  
D3  
D4  
R1  
R2  
R3  
R4  
X
0
1
X
X
0
1
X
X
X
V.10  
V.10  
V.10  
V.10  
V.10  
V.28  
V.28  
V.10  
V.28  
Z
V.10  
V.11  
V.11  
V.11  
V.11  
V.35  
V.28  
V.11  
V.28  
Z
V.10  
V.11  
V.10  
V.11  
V.11  
V.35  
V.28  
V.11  
V.28  
Z
V.10  
V.11  
V.11  
V.11  
V.11  
V.35  
V.28  
V.11  
V.28  
Z
V.10  
V.11  
V.11  
V.11  
V.11  
V.35  
V.28  
V.11  
V.28  
Z
V.10  
V.11  
V.10  
V.11  
V.11  
V.35  
V.28  
V.11  
V.28  
Z
V.10  
V.11  
V.11  
V.11  
V.11  
V.35  
V.28  
V.11  
V.28  
Z
V.10  
V.10  
V.10  
V.10  
V.10  
V.28  
V.28  
V.10  
V.28  
Z
EIA-530-A Clock and Data  
EIA-530-A Control  
Reserved  
0
0
1
0
0
1
0
1
0
X.21  
0
1
1
V.35 Clock and Data  
V.35 Control  
1
0
0
1
0
0
EIA-530, RS449, V.36  
V.28, RS232  
1
0
1
1
1
0
No Cable  
1
1
1
7
LTC1343  
U
W
W
SWITCHI G TI E WAVEFOR S  
5V  
f = 1MHz : t 10ns : t 10ns  
r
f
1.5V  
1.5V  
D
0V  
t
t
PHL  
PLH  
B – A  
V
O
90%  
90%  
10%  
V
= V(A) – V(B)  
DIFF  
50%  
50%  
10%  
–V  
1/2 V  
O
O
t
t
f
r
A
V
O
B
t
t
1343 F06  
SKEW  
SKEW  
Figure 6. V.11, V.35 Driver Propagation Delays  
V
B – A  
OD2  
f = 1MHz : t 10ns : t 10ns  
INPUT  
r
f
0V  
t
0V  
–V  
OD2  
t
PLH  
PHL  
V
R
OH  
OUTPUT  
1.5V  
1.5V  
V
OL  
1343 F07  
Figure 7. V.11, V.35 Receiver Propagation Delays  
3V  
0V  
D
A
1.5V  
t
1.5V  
PHL  
3V  
t
PLH  
V
O
3V  
1343 F08  
0V  
0V  
–3V  
–3V  
–V  
O
t
t
r
f
Figure 8. V.10, V.28 Driver Propagation Delays  
V
IH  
1.7V  
A
1.3V  
V
IL  
t
PHL  
t
PLH  
V
OH  
2.4V  
R
1343 F09  
0.8V  
V
OL  
Figure 9. V.10, V.28 Receiver Propagation Delays  
8
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
Overview  
software-selectable cable termination chip or by using  
existing discrete designs.  
The LTC1343 is a 4-driver/4-receiver multiprotocol trans-  
ceiverthatoperatesfromasingle5Vsupply.TwoLTC1343s  
form the core of a complete software-selectable DTE or  
DCE interface port that supports the RS232, RS449,  
EIA-530, EIA-530-A, V.35, V.36 or X.21 protocols. Cable  
termination may be implemented using the LTC1344  
A complete DCE-to-DTE interface operating in EIA-530  
modeisshowninFigure10.ThefirstLTC1343ofeachport  
is used to generate the clock and data signals along with  
LL (Local Loop-back) and TM (Test Mode). The second  
LTC1343isusedtogeneratethecontrolsignalsalongwith  
DTE  
DCE  
LTC1343  
D1  
LTC1344  
LTC1344  
LTC1343  
R4  
SERIAL  
SERIAL  
CONTROLLER  
CONTROLLER  
LL  
LL  
LL  
103Ω  
103Ω  
R3  
R2  
R1  
D4  
D2  
D3  
D4  
R1  
TXD  
TXD  
TXD  
SCTE  
SCTE  
SCTE  
TXC  
RXC  
103Ω  
103Ω  
103Ω  
TXC  
RXC  
TXC  
RXC  
R2  
D3  
RXD  
TM  
RXD  
TM  
RXD  
TM  
R3  
R4  
D2  
D1  
LTC1343  
D1  
LTC1343  
R4  
RL  
RL  
RL  
RTS  
RTS  
D2  
D3  
D4  
R1  
RTS  
DTR  
R3  
R2  
R1  
D4  
DTR  
DTR  
DCD  
DSR  
DCD  
DSR  
DCD  
DSR  
R2  
D3  
CTS  
RI  
R3  
R4  
D2  
D1  
CTS  
RI  
CTS  
RI  
1343 F10  
Figure 10. Complete Multiprotocol Interface in EIA-530 Mode  
9
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
will configure the port for DCE mode when high, and DTE  
when low.  
RL (Remote Loop-back) and RI (Ring Indicate). The  
LTC1344 cable termination chip is used only for the clock  
and data signals because they must support V.35 cable  
termination. The control signals do not need any external  
resistors.  
Theinterfaceprotocolmaybeselectedsimplybyplugging  
the appropriate interface cable into the connector. The  
mode pins are routed to the connector and are left uncon-  
nected (1) or wired to ground (0) in the cable as shown in  
Figure 11.  
Mode Selection  
The interface protocol is selected using the mode select  
pins M0, M1, M2 and CTRL/CLK (see the Mode Selection  
table). The CTRL/CLK pin should be pulled high if the  
LTC1343 is being used to generate control signals and  
pulled low if used to generate clock and data signals.  
The pull-up resistors R1 through R4 will ensure a binary  
1whenapinisleftunconnectedandthatthetwoLTC1343s  
and the LTC1344 enter the no-cable mode when the cable  
is removed. In the no-cable mode the LTC1343 supply  
current drops to less than 200µA and all LTC1343 driver  
outputs and LTC1344 resistive terminations are forced  
into a high impedance state. Note that the data latch pin,  
LATCH, is shorted to ground for all chips.  
For example, if the port is configured as a V.35 interface,  
the mode selection pins should be M2 =1, M1=0, M0 = 0.  
For the control signals, CTRL/CLK = 1 and the drivers and  
receiverswilloperateinRS232(V.28)electricalmode. For  
the clock and data signals, CTRL/CLK = 0 and the drivers  
and receivers will operate in V.35 electrical mode, except  
for the single-ended driver and receiver which will operate  
in the RS232 (V.28) electrical mode. The DCE/DTE pin  
The interface protocol may also be selected by the serial  
controller or host microprocessor as shown in Figure 12.  
The mode selection pins M0, M1, M2 and DCE/DTE can be  
shared between multiple interface ports, while each port  
21  
LATCH  
LTC1344  
DCE/  
DTE M2 M1 M0 (DATA)  
22 23 24  
1
CONNECTOR  
(DATA)  
M0  
R1, 10k  
R2, 10k  
R3, 10k  
R4, 10k  
LTC1343  
V
V
V
V
CC  
CC  
CC  
17  
18  
19  
21  
20  
22  
M1  
CTRL/CLK  
M2  
LATCH  
NC  
CC  
DCE/DTE  
NC  
CABLE  
LTC1343  
21  
19  
18  
17  
DCE/DTE  
M2  
20  
22  
CTRL/CLK  
LATCH  
M1  
V
CC  
M0  
1343 F11  
(DATA)  
Figure 11: Single Port DCE/V.35 Mode Selection in the Cable  
10  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
remain off even though the signal voltage is beyond the  
supply voltage for the FET drivers or the power is off.  
PORT #1  
M0  
M1  
Using the LTC1344 along with the LTC1343 solves the  
cable termination switching problem. Via software con-  
trol, the LTC1344 provides termination for the V.10  
(RS423), V.11 (RS422), V.28 (RS232) and V.35 electrical  
protocols.  
M2  
DCE/DTE  
LATCH  
PORT #2  
M0  
V.10 (RS423) Interface  
M1  
A typical V.10 unbalanced interface is shown in Figure 13.  
A V.10 single-ended generator output A with ground C is  
M2  
DCE/DTE  
connected to a differential receiver with inputs A  
nected to A, and input B connected to the signal return  
ground C. The receiver’s ground C is separate from the  
' con-  
'
'
LATCH  
CONTROLLER  
signal return. Usually, no cable termination is required for  
V.10 interfaces, but the receiver inputs must be compliant  
with the impedance curve shown in Figure 14.  
PORT #3  
M0  
M0  
M1  
M1  
M2  
M2  
BALANCED  
INTERCONNECTING  
DCE/DTE  
DCE/DTE  
LATCH 1  
LATCH 2  
LATCH 3  
CABLE  
LOAD  
GENERATOR  
CABLE  
TERMINATION  
RECEIVER  
LATCH  
A
C
A'  
1343 F12  
Figure 12: Mode Selection by the Controller  
B
'
'
has a unique data latch signal which acts as a write enable.  
When the LATCH pin is low the buffers on the M0, M1, M2,  
CTRL/CLK, DCE/DTE, LB and EC pins are transparent.  
When the LATCH pin is pulled high the buffers latch the  
data and changes on the input pins will no longer affect  
the chip.  
1343 F13  
C
Figure 13. Typical V.10 Interface  
I
Z
3.25mA  
The mode selection may also be accomplished by using  
jumpers to connect the mode pins to ground or VCC.  
Cable Termination  
–10V  
–3V  
V
Z
Traditional implementations have included switching re-  
sistors with expensive relays, or requiring the user to  
change termination modules every time the interface  
standard has changed. Custom cables have been used  
with the termination in the cable head, or separate termi-  
nations are built on the board and a custom cable routes  
the signals to the appropriate termination. Switching the  
terminations with FETs is difficult because the FETs must  
3V  
10V  
1343 F14  
–3.25mA  
Figure 14. V.10 Receiver Input Impedance  
11  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
ceiver inputs must also be compliant with the impedance  
curve shown in Figure 14.  
The V.10 receiver configuration in the LTC1343 and  
LTC1344 is shown in Figure 15. In V.10 mode switches S1  
and S2 inside the LTC1344 and S3 inside the LTC1343 are  
turned off. Switch S4 inside the LTC1343 shorts the  
noninverting receiver input to ground so the B input at the  
connector can be left floating. The cable termination is  
then the 30k input impedance to ground of the LTC1343  
V.10 receiver.  
In V.11 mode, all switches are off except S1 inside the  
LTC1344 which connects a 103differential termination  
impedance to the cable as shown in Figure 17.  
V.28 (RS232) Interface  
A typical V.28 unbalanced interface is shown in Figure 18.  
A. V.28 single-ended generator output A with ground C is  
V.11 (RS422) Interface  
connected to a single-ended receiver with inputs A  
nected to A, ground C  
ground C.  
'
con-  
A typical V.11 balanced interface is shown in Figure 16. A  
V.11 differential generator with outputs A and B with  
ground C is connected to a differential receiver with  
' connected via the signal return  
In V.28 mode all switches are off except S3 inside the  
LTC1343 which connects a 6k (R8) impedance to ground  
in parallel with 20k (R5) plus 10k (R6) for a combined  
impedance of 5k as shown in Figure 19. The noninverting  
input is disconnected inside the LTC1343 receiver and  
connected to a TTL level reference voltage for a 1.4V  
receiver trip point.  
groundC',inputsA'connectedtoA,B'connectedtoB.The  
V.11 interface has a differential termination at the receiver  
end that has a minimum value of 100. The termination  
resistor is optional in the V.11 specification, but for the  
highspeedclockanddatalines,theterminationisrequired  
to prevent reflections from corrupting the data. The re-  
A'  
A'  
A
A
LTC1343  
LTC1343  
LTC1344  
R5  
20k  
LTC1344  
R5  
20k  
R1  
R1  
R8  
6k  
R8  
6k  
51.5Ω  
51.5Ω  
R6  
10k  
R6  
10k  
RECEIVER  
RECEIVER  
S1  
S2  
S1  
S2  
S3  
S3  
R3  
124Ω  
R3  
124Ω  
R7  
10k  
R7  
10k  
R2  
51.5Ω  
R2  
51.5Ω  
R4  
20k  
R4  
20k  
B
B
B'  
C'  
B'  
C'  
S4  
S4  
1343 F17  
GND  
1343 F15  
GND  
Figure 17. V.11 Receiver Configuration  
Figure 15. V.10 Receiver Configuration  
BALANCED  
BALANCED  
INTERCONNECTING  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
CABLE  
LOAD  
GENERATOR  
CABLE  
TERMINATION  
CABLE  
TERMINATION  
RECEIVER  
RECEIVER  
A
A'  
A
A'  
100Ω  
MIN  
B
C
B'  
C'  
1343 F18  
C
C'  
1343 F16  
Figure 18. Typical V.28 Interface  
Figure 16. Typical V.11 Interface  
12  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
A
'
A
'
A
A
LTC1343  
LTC1343  
LTC1344  
R5  
20k  
LTC1344  
R5  
20k  
R1  
R1  
R8  
6k  
R8  
6k  
51.5Ω  
51.5Ω  
R6  
10k  
R6  
10k  
RECEIVER  
RECEIVER  
S3  
S1  
S2  
S1  
S2  
S3  
R3  
124Ω  
R3  
124Ω  
R7  
10k  
R7  
10k  
R2  
51.5Ω  
R2  
51.5Ω  
R4  
20k  
R4  
20k  
B
B
B'  
B'  
S4  
S4  
C'  
1343 F19  
GND  
C'  
1343 F21  
GND  
Figure 19. V.28 Receiver Configuration  
Figure 21. V.35 Receiver Configuration  
V.35 Interface  
The generator differential impedance must be 50to  
150and the impedance between shorted terminals (A  
and B) and ground C must be 150Ω ±15. For the  
generatortermination,switchesS1andS2arebothonand  
the top side of the center resistor is brought out to a pin so  
it can be bypassed with an external capacitor to reduce  
common mode noise as shown in Figure 22.  
A typical V.35 balanced interface is shown in Figure 20. A  
V.35 differential generator with outputs A and B with  
ground C is connected to a differential receiver with  
groundC',inputsA'connectedtoA,B'connectedtoB.The  
V.35 interface requires a T or delta network termination at  
the receiver end and the generator end. The receiver  
differentialimpedancemeasuredattheconnectormustbe  
100Ω ±10, and the impedance between shorted termi-  
Any mismatch in the driver rise and fall times or skew in  
the driver propagation delays will force current through  
the center termination resistor to ground, causing a high  
frequency common mode spike on the A and B terminals.  
ThecommonmodespikecancauseEMIproblemsthatare  
reduced by capacitor C1 which shunts much of the com-  
mon mode energy to ground rather than down the cable.  
nals (A' and B) and ground C' must be 150Ω ±15.  
InV.35mode,bothswitchesS1andS2insidetheLTC1344  
are on, connecting the T network impedance as shown in  
Figure 21. Both switches in the LTC1343 are off. The 30k  
input impedance of the receiver is placed in parallel with  
the T network termination, but does not affect the overall  
input impedance significantly.  
A
LTC1344  
51.5Ω  
BALANCED  
INTERCONNECTING  
S1  
ON  
CABLE  
GENERATOR  
LOAD  
V.35 DRIVER  
S2  
ON  
124Ω  
CABLE  
TERMINATION  
RECEIVER  
51.5Ω  
A'  
A
B
50Ω  
50Ω  
C1  
100pF  
125Ω  
125Ω  
C
1343 F22  
50Ω  
50Ω  
B
'
B
C
Figure 22. V.35 Driver Using the LTC1344  
C'  
1343 F20  
Figure 20. Typical V.35 Interface  
13  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
Echoed Clock Mode  
Loop-Back  
The LTC1343 contains the logic to generate the echoed  
clock when using a serial controller with only two clock  
pins. Figure 23 shows the chip in both the DTE and DCE  
echoed clock in EIA-530 mode. The control signals are not  
shown. The echoed clock configuration is selected by  
pulling the EC pin low. On the DTE side the transmit clock  
TXC receiver output is connected to the echoed clock,  
SCTE, driver input. The TXC pin on the serial controller is  
configuredasaninput. OntheDCEside, thetransmitclock  
from the serial controller is used to generate both TXC and  
RXC. A phase inverter is placed in the TXC signal path on  
both the DTE and DCE side to help correct phase problems  
with long cables. If the Invert pin is high, the phase of the  
data is inverted.  
The LTC1343 contains logic for placing the interface into  
a loop-back configuration for testing. Both DTE and DCE  
loop-back configurations are supported. Figure 24 shows  
a complete DTE interface in the loop-back configuration  
with the EC pin pulled high. The loop-back configuration is  
selected by pulling the LB pin low. Both the line side and  
logic side signals are looped back. The DCE loop-back  
configuration is shown in Figure 25.  
If the echoed clock mode is selected by pulling EC low, D3  
becomesanoutputandisconnectedtoreceiver2soutput  
R3inDTEmodeasshowninFigure26.Intheechoedclock  
DCE loop-back mode, driver 4 is connected to driver 3’s  
input D3 as shown in Figure 27.  
DTE  
DCE  
LTC1344  
SERIAL  
LTC1343  
LTC1344  
LTC1343  
SERIAL  
CONTROLLER  
LL  
CONTROLLER  
LL  
R4  
R3  
R2  
R1  
D1  
D2  
D3  
D4  
LL  
TXD  
TXC  
RXD  
RXC  
103Ω  
103Ω  
TXD  
SCTE  
INVERT  
INVERT  
TXC  
D4  
R1  
103Ω  
TXC  
RXC  
D3  
D2  
R2  
R3  
R4  
103Ω  
103Ω  
RXC  
RXD  
TM  
RXD  
TM  
TXD  
TM  
D1  
1343 F23  
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
1
1
0
1
0
1
0
1
1
0
0
Figure 23. EIA-530 Echoed Clock Configuration  
14  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
SERIAL  
LTC1343  
LTC1344  
LTC1344  
LTC1343  
SERIAL  
CONTROLLER  
LL  
CONTROLLER  
LL  
LL  
D1  
D2  
R4  
R3  
LL  
103Ω  
103Ω  
TXD  
TXD  
TXD  
TXD  
SCTE  
SCTE  
D3  
D4  
SCTE  
R2  
R1  
SCTE  
103Ω  
TXC  
RXC  
TXC  
RXC  
TXC  
RXC  
R1  
D4  
TXC  
RXC  
D3  
R2  
103Ω  
103Ω  
RXD  
TM  
RXD  
TM  
RXD  
TM  
D2  
D1  
RXD  
TM  
R3  
R4  
1
0
1
0
0
0
1
0
1
0
1
0
0
1
0
1 1  
0
1
0
1
0
1
0
1
0
LTC1343  
LTC1343  
RL  
RL  
D1  
RL  
R4  
RL  
RTS  
DTR  
RTS  
DTR  
R3  
D2  
D3  
D4  
RTS  
RTS  
DTR  
DTR  
R2  
R1  
DCD  
DSR  
DCD  
DSR  
R1  
DCD  
DSR  
DCD  
DSR  
D4  
R2  
D3  
CTS  
RI  
D2  
D1  
CTS  
RI  
R3  
R4  
CTS  
RI  
CTS  
RI  
1343 F24  
1343 F25  
1
0
1
1
1
0
1
0
1
0
1
1
0
0
1
0
Figure 24. Normal DTE Loop-Back  
Figure 25. Normal DCE Loop-Back  
15  
LTC1343  
APPLICATIONS INFORMATION  
U
W U U  
SERIAL  
LTC1343  
LTC1344  
LTC1344  
LTC1343  
SERIAL  
CONTROLLER  
CONTROLLER  
LL  
LL  
D1  
D2  
R4  
R3  
LL  
LL  
103Ω  
103Ω  
RXD  
RXC  
TXD  
TXC  
TXD  
TXD  
D3  
D4  
TXCE  
SCTE  
R2  
R1  
103Ω  
TXC  
RXC  
TXC  
RXC  
R1  
D4  
D3  
TXC  
R2  
103Ω  
103Ω  
RXC  
TXD  
TM  
RXD  
TM  
RXD  
TM  
D2  
D1  
RXD  
TM  
R3  
R4  
1
0
1
0
0
0
0
0
1
0
1
0
0
1
0
1 1  
0
1
0
1
0
1
0
0
0
LTC1343  
LTC1343  
RL  
RL  
D1  
RL  
R4  
RL  
R3  
D2  
D3  
D4  
RTS  
RTS  
DTR  
RTS  
RTS  
DTR  
DTR  
DTR  
R2  
R1  
DCD  
DSR  
DCD  
DSR  
R1  
DCD  
DSR  
DCD  
DSR  
D4  
R2  
D3  
CTS  
RI  
D2  
D1  
CTS  
RI  
R3  
R4  
CTS  
RI  
CTS  
RI  
1343 F27  
1
0
1
1
1
0
1
0
1
0
1
1
0
0
1
0
1343 F26  
Figure 26. Echoed Clock, DTE Loop-Back  
Figure 27. Echoed Clock, DCE Loop-Back  
16  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
5V  
No-Cable Mode  
1
2
3
4
8
44  
+
V
C2  
C2  
DD  
+
+
+
C3  
C2  
The no-cable mode (M0 = M1 = M2 = 1) is intended for the  
case when the cable is disconnected from the connector.  
The charge pump, bias circuitry, drivers and receivers are  
turned off, the driver outputs are forced into a high  
impedancestate, andthesupplycurrentdropstolessthan  
200µA. It can also be used to share I/O lines with other  
drivers and receivers without loading down the signals.  
1µF  
+
43  
42  
41  
40  
1µF  
C1  
C1  
1µF  
LTC1343  
CC  
PWRV  
V
EE  
C5  
+
C4  
1µF  
+
3.3µF  
C1  
PGND  
GND  
V
CC  
1343 F28  
Charge Pump  
Figure 28. Charge Pump  
The LTC1343 uses an internal capacitive charge pump to  
generate VDD and VEE as shown in Figure 28. A voltage  
doubler generates about 8V on VDD and a voltage inverter  
generates about 7.5V for VEE. Four 1µF surface mounted  
tantalum or ceramic capacitors are required for C1, C2, C3  
and C4. The VEE capacitor C5 should be a minimum of  
3.3µF. All capacitors are 16V.  
100  
10  
1
Receiver Fail-Safe and Glitch Filter  
All LTC1343 receivers feature fail-safe operation in all  
modesexceptno-cablemode. Ifthereceiverinputsareleft  
floating or shorted together by a termination resistor, the  
receiver output will always be forced to a logic high.  
External pull-up resistors are required on receiver outputs  
if fail-safe operation in the no-cable mode is desired.  
0.1  
1k  
10k  
100k  
1M  
5M  
RESISTANCE ()  
1343 F29  
When the chip is configured for control signals by pulling  
the CTRL/CLK pin high, a glitch filter is connected to all  
receiver inputs. The filter will reject any glitches at the  
receiver inputs less than 300ns.  
Figure 29. V.10 Driver Rise and Fall Time vs Resistor Value  
V.10 Driver Rise and Fall Times  
The rise and fall times of the V.10 drivers is programmed  
by placing a 1/8W, 5% resistor between the 423 SET (Pin  
25) and ground. The graph of Driver Rise and Fall Times  
vs Resistor Value is shown in Figure 29.  
LTC1343  
39  
26  
5
21  
16  
20  
24  
D1  
DCE/DTE  
R4  
Enabling the Single-Ended Driver and Receiver  
V
CC  
CTRL/CLK  
EC  
When the LTC1343 is being used to generate the control  
signals(CTRL/CLK=high)andtheECpinispulledlow, the  
DCE/DTE pin becomes an enable for driver 1 and receiver  
4sotheirinputsandoutputscanbetiedtogetherasshown  
in Figure 30.  
1343 F30  
Figure 30. Single-Ended Driver and Receiver Enable  
17  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
The EC pin has no affect on the configuration when CTRL/  
CLK is high except to allow the DCE/DTE pin to become an  
enable. When DCE/DTE is low, the driver 1 output is  
enabled. The receiver 4 output goes into three-state and  
the input presents a 30kload to ground.  
drivers and receivers into a high impedance state. In the  
DCE mode, the middle two LTC1343s are enabled and the  
topandbottomLTC1343sdisabled.Withthisscheme,any  
connector pin can be configured for sending or receiving  
signals. Note that only one LTC1344 is required.  
WhenDCE/DTEishigh,thedriver1outputgoesintothree-  
state and the receiver 4 output is enabled. The receiver 4  
input presents a 30kload to ground in all modes except  
when configured for RS232 operation when the input  
impedance is 5kto ground.  
Multiprotocol Interface with Ring-Indicate and a  
DB-25 Connector  
If the RI signal in RS232 mode is implemented, driver 4  
and receiver 1 in the control chip can be tied to connector  
Pin 22 in order to implement the RI signal in RS232 mode  
andDSRBsignalfortheothermodes.Figure35showsthe  
DTE configuration and Figure 36 the DCE configuration. In  
DCE mode, the DCE/DTE pin should be driven with a logic  
signal from the controller that goes low only when the  
interface is in the RS232 mode. Since the receiver 4 input  
impedance is greater than 30kin all modes except  
RS232, it can be enabled at all other times and not load  
down the line. When driver 1 is disabled, it remains in a  
high impedance state and does not load the line.  
DTE vs DCE Operation  
TheDCE/DTEpindoesnotallowagivenLTC1343pintobe  
reconfigured as a driver or receiver. The DCE/DTE pin only  
selects the loop-back topology and acts as an enable for  
the single-ended driver and receiver for control signals.  
However, theLTC1343canbeconfiguredforeitherDTEor  
DCE operation in one of three ways: a dedicated DTE or  
DCE port with a connector of appropriate gender, a port  
with one connector that can be configured for DTE or DCE  
operation by rerouting the signals to the LTC1343 using a  
dedicated DTE cable or dedicated DCE cable, or a port with  
one connector and one cable using four LTC1343s.  
Cable-Selectable Multiprotocol Interface  
A cable-selectable multiprotocol DTE/DCE interface is  
shown in Figure 37. The control signals LL, RL and TM are  
not implemented. The select lines M0, M1 and DCE/DTE  
are brought out to the connector. The mode is selected  
through the cable by wiring M0 (connector Pin 18), M1  
(connector Pin 21) and DCE/DTE (connector Pin 25) to  
ground (connector Pin 7) or letting them float. If M0, M1  
or DCE/DTE are floating, pull-up resistors R3, R4 and R5  
will pull the signals to VCC. The select bit M1 is hard wired  
to VCC. When the cable is pulled out, the interface will go  
into the no-cable mode.  
A dedicated DTE port using a DB-25 male connector is  
showninFigure31.Theinterfacemodeisselectedbylogic  
outputs from the controller or from jumpers to either VCC  
or GND on the mode select pins. A dedicated DCE port  
using a DB-25 female connector is shown in Figure 32.  
A port with one DB-25 connector that can be configured  
for either DTE or DCE operation is shown in Figure 33. The  
configuration requires separate cables for proper signal  
routing in DTE or DCE operation. For example, in DTE  
mode, the TXD signal is routed to connector Pins 2 and 14  
via driver 2 in the LTC1343. In DCE mode, driver 2 now  
routes the RXD signal to Pins 2 and 14.  
Multiprotocol Interface with a µDB-26 Connector  
The controller-selectable multiprotocol DTE/DCE inter-  
face with a standard µDB-26 connector is shown in Figure  
38. The RL, LL and TM signals are implemented and RI is  
mapped to Pin 26 on the connector. A cable-selectable  
versionisshowninFigure39. TheTMandRLsignalshave  
been dropped, but LL is still implemented.  
AcombinationDTE/DCEportthatdoesn’trequireseparate  
DCE/DTE cables is shown in Figure 34. In DTE mode, the  
top and bottom LTC1343s are enabled and the middle two  
are placed in the no-cable mode, which forces all of the  
18  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
C6  
C7  
C8  
100pF 100pF 100pF  
13  
12  
3
8
11  
LTC1344  
V
CC  
5V  
14  
2
21  
V
V
LATCH  
LATCH  
CC  
1
2
44  
+
+
C2  
C3  
1µF  
43  
42  
1µF  
+
C1  
1µF  
4
3
8
CHARGE  
PUMP  
EE  
C4  
+
DB-25 MALE  
CONNECTOR  
3.3µF  
DCE/  
DTE M2 M1 M0  
41  
+
C5  
1µF  
LTC1343  
D1  
5
4
6
7
10 16 15 18 17 19 20 22 23 24  
9 1  
5
39  
18  
LL A (141)  
LL  
TXD  
38  
37  
36  
35  
34  
33  
2
14  
24  
11  
TXD A (103)  
TXD B  
SCTE A (113)  
SCTE B  
6
7
9
D2  
D3  
D4  
SCTE  
10  
12  
13  
15  
12  
17  
9
3
16  
32  
31  
30  
29  
28  
27  
TXC A (114)  
TXC B  
RXC A (115)  
RXC B  
RXD A (104)  
RXD B  
TXC  
RXC  
RXD  
TM  
R1  
R2  
R3  
R4  
14  
15  
16  
20  
22  
11  
25  
25  
26  
21  
TM A (142)  
DCE  
CTRL  
19  
18  
17  
LATCH  
INVERT  
423 SET  
M2  
M1  
M0  
R1  
100k  
40  
23  
GND  
LB  
24  
44  
V
7
1
EC  
CC  
SGND (102)  
1
2
+
+
SHIELD (101)  
C10  
C11  
43  
42  
1µF  
1µF  
+
C9  
1µF  
4
3
8
CHARGE  
PUMP  
C13  
+
3.3µF  
V
CC  
41  
+
C12  
1µF  
LTC1343  
D1  
5
21  
39  
RL  
RL A (140)  
4
19  
20  
23  
38  
37  
36  
RTS A (105)  
RTS B  
DTR A (108)  
DTR B  
6
7
9
D2  
D3  
D4  
RTS  
DTR  
35  
34  
33  
10  
12  
13  
32  
31  
30  
29  
8
10  
6
DCD A (109)  
DCD B  
DSR A (107)  
DSR B  
CTS A (106)  
CTS B  
DCD  
DSR  
CTS  
R1  
R2  
R3  
R4  
14  
22  
28  
27  
5
13  
15  
16  
26  
21  
19  
18  
17  
24  
20  
22  
11  
25  
DCE  
M2  
M1  
M0  
V
CC  
CTRL  
1343 F31  
LATCH  
INVERT  
423 SET  
LATCH  
R2  
100k  
EC  
40  
23  
GND  
LB  
LB  
M2  
M1  
M0  
Figure 31: Controller-Selectable Multiprotocol DTE Port with DB-25 Connector  
19  
LTC1343  
APPLICATIONS INFORMATION  
U
W U U  
C6  
C7  
C8  
100pF 100pF 100pF  
13  
12  
3
8
11  
LTC1344  
V
CC  
5V  
14  
21  
V
V
LATCH  
LATCH  
CC  
1
2
44  
+
1µF  
+
C2  
C3  
43  
42  
1µF  
+
C1  
1µF  
2
4
3
8
CHARGE  
PUMP  
EE  
C4  
DB-25 FEMALE  
CONNECTOR  
3.3µF  
+
DCE/  
DTE M2 M1 M0  
41  
+
C5  
1µF  
LTC1343  
D1  
5
4
6
7
9
10 16 15 18 17 19 20 22 23 24 1  
5
39  
25  
TM A (142)  
TM  
RXD  
RXC  
TXC  
38  
37  
36  
35  
34  
33  
3
16  
17  
9
15  
12  
RXD A (104)  
RXD B  
RXC A (115)  
RXC B  
TXC A (114)  
TXC B  
6
7
9
D2  
D3  
D4  
10  
12  
13  
V
CC  
V
CC  
32  
31  
30  
29  
28  
27  
R1  
R2  
R3  
R4  
24  
11  
2
SCTE A (113)  
SCTE B  
TXD A (103)  
TXD B  
14  
15  
SCTE  
TXD  
LL  
14  
16  
20  
22  
11  
25  
18  
26  
21  
19  
18  
17  
LL A (141)  
DCE  
V
CC  
CTRL  
M2  
M1  
M0  
LATCH  
INVERT  
423 SET  
R1  
100k  
40  
23  
GND  
LB  
24  
44  
EC  
V
CC  
7
1
SGND (102)  
1
2
+
SHIELD (101)  
+
C10  
C11  
1µF  
43  
42  
1µF  
+
C9  
1µF  
4
3
8
CHARGE  
PUMP  
C13  
+
3.3µF  
V
CC  
41  
+
C12  
1µF  
LTC1343  
D1  
5
39  
5
13  
6
22  
8
38  
37  
36  
CTS A (106)  
CTS B  
DSR A (107)  
DSR B  
DCD A (109)  
DCD B  
6
7
9
D2  
D3  
D4  
CTS  
DSR  
35  
34  
33  
10  
DCD  
10  
12  
13  
V
CC  
32  
31  
30  
29  
R1  
R2  
R3  
R4  
20  
23  
DTR A (108)  
DTR B  
14  
15  
DTR  
CTS  
RL  
28  
27  
4
19  
RTS A (105)  
RTS B  
16  
20  
22  
11  
25  
26  
21  
19  
18  
17  
21  
RL A (140)  
DCE  
M2  
M1  
M0  
V
CC  
V
CC  
CTRL  
LATCH  
LATCH  
INVERT  
423 SET  
1343 F32  
R2  
100k  
40  
23  
GND  
LB  
24  
LB  
EC  
M2  
M1  
M0  
Figure 32: Controller-Selectable Multiprotocol DCE Port with DB-25 Connector  
20  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
C6  
C7  
C8  
100pF 100pF 100pF  
13  
12  
3
8
11  
LTC1344  
V
CC  
5V  
14  
2
21  
V
V
LATCH  
LATCH  
CC  
1
2
44  
+
+
C2  
C3  
43  
42  
1µF  
1µF  
+
C1  
1µF  
4
3
8
CHARGE  
PUMP  
EE  
C4  
+
DB-25 CONNECTOR  
3.3µF  
DCE/  
DTE M2 M1 M0  
41  
+
C5  
1µF  
LTC1343  
D1  
5
4
6
7
9
10 16 15 18 17 19 20 22 23 24 1  
DTE  
LL A  
DCE  
TM A  
5
39  
18  
DTE_LL/DCE_TM  
DTE_TXD/DCE_RXD  
DTE_SCTE/DEC_RXC  
38  
37  
36  
35  
34  
33  
2
14  
24  
11  
TXD A  
TXD B  
SCTE A  
SCTE B  
RXD A  
RXD B  
RXC A  
RXC B  
6
7
9
D2  
D3  
D4  
10  
12  
13  
32  
31  
30  
29  
28  
27  
15  
12  
17  
9
3
16  
TXC A  
TXC B  
RXC A  
RXC B  
RXD A  
RXD B  
TXC A  
TXC B  
SCTE A  
SCTE B  
TXD A  
TXD B  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
DTE_TM/DCE_LL  
R1  
R2  
R3  
R4  
14  
15  
16  
20  
22  
11  
25  
25  
26  
21  
19  
18  
17  
TM A  
LL A  
DCE  
CTRL  
M2  
M1  
M0  
LATCH  
INVERT  
423 SET  
R1  
100k  
40  
23  
GND  
LB  
24  
44  
V
7
1
EC  
CC  
SGND  
1
2
+
+
SHIELD  
C10  
C11  
43  
42  
1µF  
1µF  
+
C9  
1µF  
4
3
8
CHARGE  
PUMP  
C13  
+
3.3µF  
V
41  
CC  
+
C12  
1µF  
LTC1343  
D1  
5
21  
39  
DTE_RL/DCE_RL  
RL A  
RL A  
4
19  
20  
23  
38  
37  
36  
RTS A  
RTS B  
DTR A  
DTR B  
CTS A  
CTS B  
DSR A  
DSR B  
6
7
9
D2  
D3  
D4  
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
35  
34  
33  
10  
12  
13  
32  
31  
30  
29  
8
10  
6
DCD A  
DCD B  
DSR A  
DSR B  
DCD A  
DCD B  
DTR A  
DTR B  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
R1  
R2  
R3  
R4  
14  
15  
22  
28  
27  
5
13  
CTS A  
CTS B  
RTS A  
RTS B  
16  
20  
22  
11  
25  
26  
21  
19  
18  
17  
DCE  
M2  
M1  
M0  
V
CC  
CTRL  
1343 F33  
LATCH  
INVERT  
423 SET  
LATCH  
R2  
100k  
40  
23  
GND  
LB  
24  
LB  
EC  
DCE/DTE  
M2  
M1  
M0  
Figure 33. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector  
21  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
C6  
C7  
C8  
LTC1343  
100pF 100pF 100pF  
5
6
39  
D1  
D2  
D3  
D4  
38  
37  
36  
35  
34  
13  
12  
3
8
11  
7
21  
9
DCE  
DCE  
DCE  
DCE  
33  
10  
12  
LTC1344  
32  
31  
30  
29  
13  
14  
15  
16  
R1  
R2  
R3  
R4  
DCE/  
DTE  
28  
27  
5
4
6
7
9
10 16 15 18 17 19 20 22  
26  
DCE/DTE  
DB-25 CONNECTOR  
TM A (142)  
LTC1343  
D1  
25  
5
6
39  
TM  
RXD  
RXC  
TXC  
3
16  
17  
9
15  
12  
38  
37  
36  
35  
34  
33  
RXD A (104)  
RXD B  
RXC A (115)  
RXC B  
TXC A (114)  
TXC B  
D2  
D3  
D4  
7
21  
9
10  
12  
13  
V
32  
31  
30  
29  
CC  
R1  
R2  
R3  
R4  
24  
11  
2
SCTE A (113)  
SCTE B  
TXD A (103)  
TXD B  
14  
15  
16  
SCTE  
TXD  
LL  
28  
27  
14  
18  
26  
LL A (141)  
7
SGND (102)  
LTC1343  
D1  
5
6
39  
38  
37  
36  
35  
34  
33  
5
13  
6
22  
8
10  
CTS A (106)  
CTS B  
DSR A (107)  
DSR B  
DCD A (109)  
DCD B  
D2  
D3  
D4  
CTS  
DSR  
DCD  
7
21  
9
V
CC  
10  
12  
13  
1
32  
31  
30  
29  
SHIELD (101)  
R1  
R2  
R3  
R4  
20  
23  
4
DTR A (108)  
DTR B  
RTS A (105)  
RTS B  
14  
15  
16  
DTR  
RTS  
RL  
28  
27  
19  
26  
21  
RL A (140)  
LTC1343  
D1  
1343 F34  
5
6
39  
38  
37  
36  
35  
34  
33  
D2  
D3  
D4  
7
21  
9
10  
12  
13  
32  
31  
30  
29  
R1  
R2  
R3  
R4  
14  
15  
16  
28  
27  
26  
Figure 34. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25  
22  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
C6  
C7  
C8  
100pF 100pF 100pF  
13  
12  
3
8
11  
LTC1344  
V
CC  
5V  
14  
2
21  
V
V
LATCH  
LATCH  
CC  
1
2
44  
+
1µF  
+
C2  
C3  
1µF  
43  
42  
+
C1  
1µF  
4
3
8
CHARGE  
PUMP  
EE  
C4  
+
DB-25 MALE  
CONNECTOR  
3.3µF  
DCE/  
DTE M2 M1 M0  
41  
+
C5  
1µF  
LTC1343  
D1  
5
4
6
7
9
10 16 15 18 17 19 20 22 23 24  
1
5
39  
18  
LL A (141)  
LL  
TXD  
38  
37  
36  
35  
34  
33  
2
14  
24  
11  
TXD A (103)  
TXD B  
SCTE A (113)  
SCTE B  
6
7
9
D2  
D3  
D4  
SCTE  
10  
12  
13  
15  
12  
17  
9
3
16  
32  
31  
30  
29  
28  
27  
TXC A (114)  
TXC B  
RXC A (115)  
RXC B  
RXD A (104)  
RXD B  
TXC  
RXC  
RXD  
TM  
R1  
R2  
R3  
R4  
14  
15  
16  
20  
22  
11  
25  
25  
26  
21  
TM A (142)  
DCE  
CTRL  
19  
18  
17  
LATCH  
INVERT  
423 SET  
M2  
M1  
M0  
R1  
100k  
40  
23  
GND  
LB  
24  
44  
EC  
V
7
1
CC  
SGND (102)  
1
2
+
SHIELD (101)  
+
C10  
C11  
43  
42  
1µF  
1µF  
+
C9  
1µF  
4
3
8
CHARGE  
PUMP  
C13  
+
3.3µF  
V
CC  
41  
+
C12  
1µF  
LTC1343  
D1  
5
21  
39  
RL  
RL A (140)  
4
19  
20  
23  
38  
37  
36  
RTS A (105)  
RTS B  
DTR A (108)  
DTR B  
6
7
9
D2  
D3  
D4  
RTS  
DTR  
35  
34  
33  
10  
12  
13  
32  
31  
30  
29  
8
10  
6
DCD A (109)  
DCD B  
DSR A (107)  
DSR B/RI A (125)  
CTS A (106)  
CTS B  
DCD  
DSR  
CTS  
RI  
R1  
R2  
R3  
R4  
14  
22  
28  
27  
5
13  
15  
16  
26  
21  
20  
22  
11  
25  
V
DCE  
CTRL  
CC  
1343 F35  
LATCH  
INVERT  
423 SET  
LATCH  
19  
18  
17  
M2  
M1  
M0  
R2  
100k  
40  
23  
GND  
LB  
24  
V
LB  
EC  
CC  
M2  
M1  
M0  
Figure 35. Controller-Selectable Multiprotocol DTE Port with RI and DB-25 Connector  
23  
LTC1343  
APPLICATIONS INFORMATION  
U
W U U  
C6  
C7  
C8  
100pF 100pF 100pF  
13  
12  
3
8
11  
LTC1344  
V
CC  
5V  
14  
21  
V
V
LATCH  
LATCH  
CC  
1
2
44  
+
1µF  
+
C2  
C3  
43  
42  
1µF  
+
C1  
1µF  
2
4
3
8
CHARGE  
PUMP  
EE  
C4  
DB-25 FEMA;E  
CONNECTOR  
+
3.3µF  
DCE/  
DTE M2 M1 M0  
41  
+
C5  
1µF  
LTC1343  
D1  
5
4
6
7
9
10 16 15 18 17 19 20 22 23 24 1  
5
39  
25  
TM A (142)  
TM  
RXD  
RXC  
TXC  
38  
37  
36  
35  
34  
33  
3
16  
17  
9
15  
12  
RXD A (104)  
RXD B  
RXC A (115)  
RXC B  
TXC A (114)  
TXC B  
6
7
9
D2  
D3  
D4  
10  
12  
13  
V
CC  
V
CC  
32  
31  
30  
29  
28  
27  
R1  
R2  
R3  
R4  
24  
11  
2
SCTE A (113)  
SCTE B  
TXD A (103)  
TXD B  
14  
15  
SCTE  
TXD  
LL  
14  
16  
20  
22  
11  
25  
18  
26  
21  
19  
18  
17  
LL A (141)  
DCE  
V
CC  
CTRL  
M2  
M1  
M0  
LATCH  
INVERT  
423 SET  
R1  
100k  
40  
23  
GND  
LB  
24  
44  
EC  
V
CC  
7
1
SGND (102)  
1
2
+
+
SHIELD (101)  
C10  
C11  
1µF  
43  
42  
1µF  
+
C9  
1µF  
4
3
8
CHARGE  
PUMP  
C13  
+
3.3µF  
V
CC  
41  
+
C12  
1µF  
LTC1343  
D1  
5
39  
RI  
5
13  
6
22  
8
38  
37  
36  
CTS A (106)  
CTS B  
DSR A (107)  
DSR B/RI A (125)  
DCD A (109)  
DCD B  
6
7
9
D2  
D3  
D4  
CTS  
DSR  
35  
34  
33  
10  
DCD  
10  
12  
13  
V
CC  
32  
31  
30  
29  
R1  
R2  
R3  
R4  
20  
23  
DTR A (108)  
DTR B  
14  
15  
DTR  
CTX  
RL  
28  
27  
4
19  
RTS A (105)  
RTS B  
16  
20  
22  
11  
25  
26  
21  
19  
18  
17  
21  
RL A (140)  
DCE  
M2  
M1  
M0  
V
CC  
RIEN = RS232  
CTRL  
LATCH  
LATCH  
INVERT  
423 SET  
1343 F36  
R2  
100k  
40  
23  
GND  
LB  
24  
LB  
EC  
M2  
M1  
M0  
Figure 36. Controller-Selectable Multiprotocol DCE Port with RI and DB-25 Connector  
24  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
C6  
C7  
C8  
100pF 100pF 100pF  
13  
12  
3
8
11  
LTC1344  
V
CC  
5V  
14  
2
21  
V
LATCH  
CC  
1
2
44  
+
1µF  
+
C2  
C3  
43  
42  
1µF  
+
C1  
1µF  
4
3
8
CHARGE  
PUMP  
V
EE  
C4  
+
DB-25 CONNECTOR  
3.3µF  
DCE/  
DTE M2 M1 M0  
41  
+
C5  
1µF  
LTC1343  
D1  
5
4
6
7
9
10 16 15 18 17 19 20 22 23 24 1  
5
39  
V
DTE  
DCE  
CC  
38  
37  
36  
35  
34  
33  
2
14  
24  
11  
TXD A  
TXD B  
SCTE A  
SCTE B  
RXD A  
RXD B  
RXC A  
RXC B  
6
7
9
D2  
D3  
D4  
DTE_TXD/DCE_RXD  
DTE_SCTE/DEC_RXC  
10  
12  
13  
32  
31  
30  
29  
28  
27  
15  
12  
17  
9
3
16  
TXC A  
TXC B  
RXC A  
RXC B  
RXD A  
RXD B  
TXC A  
TXC B  
SCTE A  
SCTE B  
TXD A  
TXD B  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
R1  
R2  
R3  
R4  
14  
15  
16  
20  
22  
11  
25  
26  
21  
19  
18  
17  
DCE  
CTRL  
7
1
SGND  
V
M2  
M1  
M0  
LATCH  
INVERT  
423 SET  
CC  
SHIELD  
R1  
100k  
40  
23  
GND  
LB  
24  
44  
EC  
V
CC  
V
V
V
CC  
1
2
CC  
CC  
+
+
C10  
C11  
43  
42  
R3  
10k  
R4  
10k  
R5  
1µF  
+
1µF  
C9  
10k  
4
3
8
25  
CHARGE  
1µF  
C13  
+ 3.3µF  
DCE/DTE  
M1  
PUMP  
21  
18  
V
41  
CC  
+
C12  
1µF  
M0  
LTC1343  
D1  
5
39  
4
19  
20  
23  
38  
37  
36  
RTS A  
RTS B  
DTR A  
DTR B  
CTS A  
CTS B  
DSR A  
DSR B  
6
7
9
D2  
D3  
D4  
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
35  
34  
33  
10  
12  
13  
32  
31  
30  
29  
8
10  
6
DCD A  
DCD B  
DSR A  
DSR B  
DCD A  
DCD B  
DTR A  
DTR B  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/ DCE_RTS  
R1  
R2  
R3  
R4  
14  
15  
22  
28  
27  
5
13  
CTS A  
CTS B  
RTS A  
RTS B  
16  
20  
22  
11  
25  
26  
21  
19  
18  
17  
DCE  
M2  
M1  
M0  
V
CTRL  
CC  
1343 F37  
V
LATCH  
INVERT  
423 SET  
CC  
R2  
100k  
CABLE WIRING FOR MODE SELECTION  
CABLE WIRING FOR DTE/DCE  
SELECTION  
40  
23  
GND  
LB  
MODE  
V.35  
EIA-530, RS449,  
V.36, X.21  
RS232  
PIN 18  
PIN 7  
NC  
PIN 21  
PIN 7  
PIN 7  
24  
MODE  
DTE  
DCE  
PIN 25  
PIN 7  
NC  
LB  
EC  
PIN 7  
NC  
Figure 37. Cable-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector  
25  
LTC1343  
APPLICATIONS INFORMATION  
U
W U U  
C6  
C7  
C8  
100pF 100pF 100pF  
13  
12  
3
8
11  
LTC1344  
V
CC  
5V  
14  
2
21  
V
V
LATCH  
LATCH  
CC  
1
2
44  
+
1µF  
+
C2  
C3  
43  
42  
+
1µF  
C1  
1µF  
4
3
8
CHARGE  
PUMP  
EE  
C4  
+
µDB-26 CONNECTOR  
3.3µF  
DCE/  
DTE M2 M1 M0  
41  
+
C5  
1µF  
LTC1343  
D1  
5
4
6
7
9
10 16 15 18 17 19 20 22 23 24 1  
DTE  
LL A  
DCE  
TM A  
5
39  
18  
DTE_LL/DCE_TM  
DTE_TXD/DCE_RXD  
DTE_SCTE/DEC_RXC  
38  
37  
36  
35  
34  
33  
2
14  
24  
11  
TXD A  
TXD B  
SCTE A  
SCTE B  
RXD A  
RXD B  
RXC A  
RXC B  
6
7
9
D2  
D3  
D4  
10  
12  
13  
32  
31  
30  
29  
28  
27  
15  
12  
17  
9
3
16  
TXC A  
TXC B  
RXC A  
RXC B  
RXD A  
RXD B  
TXC A  
TXC B  
SCTE A  
SCTE B  
TXD A  
TXD B  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
DTE_TM/DCE_LL  
R1  
R2  
R3  
R4  
14  
15  
16  
20  
22  
11  
25  
25  
26  
21  
19  
18  
17  
TM A  
LL A  
DCE  
CTRL  
M2  
M1  
M0  
LATCH  
INVERT  
423 SET  
R1  
100k  
40  
23  
GND  
LB  
24  
44  
V
7
1
EC  
CC  
SGND  
1
2
+
+
SHIELD  
C10  
C11  
1µF  
43  
42  
1µF  
+
C9  
1µF  
4
3
8
CHARGE  
PUMP  
C13  
+
3.3µF  
V
41  
CC  
+
C12  
1µF  
LTC1343  
D1  
5
21  
39  
DTE_RL/DCE_RI  
RL A  
RI A  
4
19  
20  
23  
38  
37  
36  
RTS A  
RTS B  
DTR A  
DTR B  
CTS A  
CTS B  
DSR A  
DSR B  
6
7
9
D2  
D3  
D4  
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
35  
34  
33  
10  
12  
13  
32  
31  
30  
29  
8
10  
6
DCD A  
DCD B  
DSR A  
DSR B  
CTS A  
CTS B  
DCD A  
DCD B  
DTR A  
DTR B  
RTS A  
RTS B  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
R1  
R2  
R3  
R4  
14  
15  
22  
28  
27  
5
13  
DTE_CTS/DCE_RTS  
DTE_RI/DCE_RL  
16  
20  
22  
11  
25  
26  
21  
19  
18  
17  
26  
RI A  
RL A  
DCE  
M2  
M1  
M0  
V
CC  
CTRL  
LATCH  
INVERT  
423 SET  
LATCH  
1343 F38  
R2  
100k  
40  
23  
GND  
LB  
24  
EC  
V
CC  
LB  
DCE/DTE  
M2  
M1  
M0  
Figure 38. Controller-Selectable Multiprotocol DTE/DCE Port with DB-26 Connector  
26  
LTC1343  
U
W U U  
APPLICATIONS INFORMATION  
C6  
C7  
C8  
100pF 100pF 100pF  
13  
12  
3
8
11  
LTC1344  
V
CC  
5V  
14  
2
21  
V
V
LATCH  
CC  
1
2
44  
+
1µF  
+
C2  
C3  
43  
42  
1µF  
+
C1  
1µF  
4
3
8
CHARGE  
PUMP  
EE  
C4  
+
µDB-26 CONNECTOR  
3.3µF  
DCE/  
DTE M2 M1 M0  
41  
+
C5  
1µF  
LTC1343  
D1  
5
4
6
7
9
10 16 15 18 17 19 20 22 23 24 1  
5
39  
V
CC  
DTE  
DCE  
38  
37  
36  
35  
34  
33  
2
14  
24  
11  
TXD A  
TXD B  
SCTE A  
SCTE B  
RXD A  
RXD B  
RXC A  
RXC B  
6
7
9
D2  
D3  
D4  
DTE_TXD/DCE_RXD  
DTE_SCTE/DEC_RXC  
10  
12  
13  
32  
31  
30  
29  
28  
27  
15  
12  
17  
9
3
16  
TXC A  
TXC B  
RXC A  
RXC B  
RXD A  
RXD B  
TXC A  
TXC B  
SCTE A  
SCTE B  
TXD A  
TXD B  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
R1  
R2  
R3  
R4  
14  
15  
16  
20  
22  
11  
25  
26  
21  
19  
18  
17  
DCE  
CTRL  
7
1
SGND  
V
CC  
M2  
M1  
M0  
LATCH  
INVERT  
423 SET  
SHIELD  
R1  
100k  
40  
23  
GND  
LB  
24  
44  
EC  
V
CC  
V
V
V
CC  
1
2
CC  
CC  
+
+
C10  
C11  
1µF  
43  
42  
R3  
10k  
R4  
10k  
R5  
1µF  
+
C9  
1µF  
10k  
4
3
8
25  
CHARGE  
DCE/DTE  
M1  
C13  
+ 3.3µF  
PUMP  
21  
18  
V
CC  
41  
+
C12  
1µF  
M0  
LTC1343  
D1  
5
39  
DTE_LL/DCE_LL  
4
19  
20  
23  
38  
37  
36  
RTS A  
RTS B  
DTR A  
DTR B  
CTS A  
CTS B  
DSR A  
DSR B  
6
7
9
D2  
D3  
D4  
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
35  
34  
33  
10  
12  
13  
32  
31  
30  
29  
8
10  
6
DCD A  
DCD B  
DSR A  
DSR B  
DCD A  
DCD B  
DTR A  
DTR B  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
R1  
R2  
R3  
R4  
14  
15  
22  
28  
27  
5
13  
CTS A  
CTS B  
RTS A  
RTS B  
26  
16  
20  
22  
11  
25  
26  
21  
19  
18  
17  
LL B  
LL B  
DCE  
M2  
M1  
M0  
V
CC  
CTRL  
V
CC  
LATCH  
INVERT  
423 SET  
1343 F39  
R2  
100k  
CABLE WIRING FOR MODE SELECTION  
CABLE WIRING FOR DTE/DCE  
SELECTION  
40  
23  
GND  
LB  
MODE  
V.35  
EIA-530, RS449,  
V.36, X.21  
RS232  
PIN 18  
PIN 7  
NC  
PIN 21  
PIN 7  
PIN 7  
24  
MODE  
DTE  
DCE  
PIN 25  
PIN 7  
NC  
LB  
EC  
PIN 7  
NC  
Figure 39. Cable-Selectable Multiprotocol DTE Port with DB-26 Connector  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
27  
LTC1343  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
GW Package  
44-Lead Plastic SSOP (Wide 0.300)  
(LTC DWG # 05-08-1642)  
17.805 – 18.059*  
(0.701 – 0.711)  
44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23  
10.160 – 10.414  
(0.400 – 0.410)  
7.417 – 7.595**  
(0.292 – 0.299)  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22  
2.286 – 2.387  
(0.090 – 0.094)  
2.463 – 2.641  
(0.097 – 0.104)  
0.254 – 0.406  
(0.010 – 0.016)  
× 45°  
0° – 8° TYP  
0.127 – 0.292  
(0.005 – 0.0115)  
0.800  
(0.0315)  
BSC  
0.610 – 1.016  
(0.024 – 0.040)  
0.231 – 0.3175  
(0.0091 – 0.0125)  
0.304 – 0.431  
(0.012 – 0.017)  
NOTE: DIMENSIONS ARE IN MILLIMETERS  
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
*
SHALL NOT EXCEED 0.152mm (0.006") PER SIDE  
FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE  
G44 SSOP 1098  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1321  
Dual RS232/RS485 Transceiver  
2 RS232 Driver/Receiver Pairs or 2 RS485 Driver/Receiver Pairs  
2 RS232 Driver/Receiver or 4 RS232 Driver/Receiver Pairs  
Perfect for Terminating the LTC1343  
LTC1334  
Single 5V RS232/RS485 Multiprotocol Transceiver  
LTC1344/LTC1344A Software-Selectable Cable Terminator  
LTC1345  
LTC1346A  
LTC1543  
LTC1544  
LTC1545  
Single Supply V.35 Transceiver  
3 Driver/3 Receiver for Data and Clock Signals  
Dual Supply V.35 Transceiver  
3 Driver/3 Receiver for Data and Clock Signals  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Multiprotocol Transceiver  
3 Driver/3 Receiver for Data and Clock Signals  
4 Driver/4 Receiver for Control Signals Including LL  
5 Driver/5 Receiver for Control Signals Including LL, RL, TM  
1343fa LT/TP 0899 2K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1996  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1344

Software-Selectable Cable Terminator
Linear

LTC1344A

Software-Selectable Cable Terminator
Linear

LTC1344AC

Software-Selectable Cable Terminator
Linear

LTC1344ACG

Software-Selectable Cable Terminator
Linear

LTC1344ACG#TR

LTC1344A - Software-Selectable Cable Terminator; Package: SSOP; Pins: 24; Temperature Range: 0°C to 70°C
Linear

LTC1344ACG#TRPBF

LTC1344A - Software-Selectable Cable Terminator; Package: SSOP; Pins: 24; Temperature Range: 0°C to 70°C
Linear

LTC1344AI

Software-Selectable Cable Terminator
Linear

LTC1344AIG

Software-Selectable Cable Terminator
Linear

LTC1344C

Software-Selectable Cable Terminator
Linear

LTC1344CG

Software-Selectable Cable Terminator
Linear

LTC1344CG#PBF

LTC1344 - Software Selectable Cable Terminator; Package: SSOP; Pins: 24; Temperature Range: 0°C to 70°C
Linear

LTC1344CG#TRPBF

LTC1344 - Software Selectable Cable Terminator; Package: SSOP; Pins: 24; Temperature Range: 0°C to 70°C
Linear