LTC1390CN [Linear]

8-Channel Analog Multiplexer with Serial Interface; 8通道模拟多路复用器,串行接口
LTC1390CN
型号: LTC1390CN
厂家: Linear    Linear
描述:

8-Channel Analog Multiplexer with Serial Interface
8通道模拟多路复用器,串行接口

复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总8页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1390  
8-Channel  
Analog Multiplexer  
with Serial Interface  
U
DESCRIPTIO  
EATURE  
3-Wire Serial Digital Interface  
Data Retransmission Allows Series Connection  
with Serial A/D Converters  
Single 3V to ±5V Supply Operation  
Analog Inputs May Extend to Supply Rails  
Low Charge Injection  
Low RON: 75Max  
Low Leakage: ±5nA Max  
Guaranteed Break-Before-Make  
TTL/CMOS Compatible for All Digital Inputs  
Cascadable to Allow Additional Channels  
Can Be Used as a Demultiplexer  
S
F
The LTC®1390 is a high performance CMOS 8-to-1 analog  
multiplexer. It features a 3-wire digital interface with a  
bidirectional data retransmission feature, allowing it to be  
wired in series with a serial A/D converter while using only  
oneserialport.TheinterfacealsoallowsseveralLTC1390s  
to be wired in series or parallel, increasing the number of  
MUX channels available using only a single digital port. All  
the above features are also valid when LTC1390 operates  
as a demultiplexer such as with a D/A converter.  
The LTC1390 features a typical RON of 45, typical switch  
leakage of 50pA, and guaranteed break-before-make op-  
eration. Charge injection is ±10pC maximum. All digital  
inputs are TTL and CMOS compatible when operated from  
single or dual supplies. The inputs can withstand 100mA  
fault currents.  
O U  
PPLICATI  
A
S
Data Acquisition Systems  
Communication Systems  
Signal Multiplexing/Demultiplexing  
The LTC1390 is available in 16-pin PDIP and narrow SO  
packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
O
TYPICAL APPLICATI  
V
V
CC EE  
ON-Resistance vs  
Analog Input Voltage  
V
CC  
OPTIONAL A/D  
INPUT FILTER  
250  
200  
150  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
8
16  
T
= 25°C  
+
A
CS  
V
CC  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
V
15  
14  
13  
12  
11  
10  
9
+IN  
–IN  
CLK  
D
LTC1390  
LTC1096  
+
V
V
= 3V  
= 0V  
V
D
OUT  
DATA 2  
DATA 1  
CS  
ANALOG  
INPUTS  
GND  
V
REF  
100  
50  
0
CLK  
V
CC  
+
V
= 5V  
GND  
V
= 5V  
47k  
3-WIRE  
SERIAL  
INTERFACE  
DATA  
CLK  
CS  
LTC1390 • TA01  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
TO MUX AND ADC  
ANALOG INPUT VOLTAGE, V (V)  
S
LTC1390 • TA02  
1
LTC1390  
W W W  
U
W
U
ABSOLUTE AXI U RATI GS  
/O  
PACKAGE RDER I FOR ATIO  
(Note 1)  
Total Supply Voltage (V+ to V).............................. 15V  
Input Voltage  
TOP VIEW  
ORDER PART  
NUMBER  
+
1
2
3
4
5
6
7
8
V
D
V
16  
15  
14  
13  
12  
11  
10  
9
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
Analog Inputs ........................ V– 0.3V to V+ + 0.3V  
Digital Inputs ........................................ 0.3V to 15V  
Digital Outputs............................ 0.3V to V+ + 0.3V  
Power Dissipation............................................. 500mW  
Operating Temperature Range ..................... 0°C to 70°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LTC1390CN  
LTC1390CS  
DATA 2  
DATA 1  
CS  
CLK  
GND  
N PACKAGE  
16-LEAD PDIP  
S PACKAGE  
16-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 70°C/ W (N)  
JMAX = 150°C, θJA = 100°C/ W (S)  
T
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS  
V+ = 5V, V= 5V, GND = 0V, TA = operating temperature unless otherwise noted.  
SYMBOL PARAMETER  
Switch  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Analog Signal Range  
On Resistance  
(Note 2)  
–5  
5
V
ANALOG  
R
V = ±3.5V, I = 1mA  
S D  
ON  
T
25°C  
75  
75  
120  
MIN  
45  
T
MAX  
R vs V  
20  
0.5  
%
ON  
S
R vs Temperature  
%/°C  
ON  
I
I
I
Off Input Leakage  
Off Output Leakage  
On Channel Leakage  
V = 4V, V = 4V; V = 4V, V = 4V  
Channel Off  
0.05  
±5  
±50  
nA  
nA  
S(OFF)  
D(OFF)  
D(ON)  
S
D
S
D
V = 4V, V = 4V; V = 4V, V = 4V  
0.05  
0.05  
±5  
±50  
nA  
nA  
S
D
S
D
Channel Off  
V = V = ±4V  
±5  
±50  
nA  
nA  
S
D
Channel On  
Input  
+
V
V
High Level Input Voltage  
Low Level Input Voltage  
Low or High Level Current  
High Level Output Voltage  
V = 5.25V  
2.4  
2.4  
V
V
INH  
INL  
+
V = 4.75V  
0.8  
I
, I  
V
= 5V, V = 0V  
±1  
µA  
INL INH  
IN  
+
IN  
V
OH  
V = 4.75V, I = 10µA  
4.74  
4.50  
V
V
O
+
V = 4.75V, I = 360µA  
O
+
V
OL  
Low Level Output Voltage  
V = 4.75V, I = 0.5mA  
0.16  
0.8  
V
O
2
LTC1390  
ELECTRICAL CHARACTERISTICS  
V+ = 5V, V= 5V, GND = 0V, TA = operating temperature unless otherwise noted.  
SYMBOL PARAMETER  
Dynamic  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
t
t
t
Clock Frequency  
5
MHz  
ns  
CLK  
ON  
Enable Turn-On Time  
Enable Turn-Off Time  
Break-Before-Make Interval  
Off Isolation  
V = 2.5V, R = 1k, C = 35pF  
260  
100  
155  
70  
400  
200  
S
L
L
V = 2.5V, R = 1k, C = 35pF  
ns  
OFF  
S
L
L
35  
ns  
OPEN  
OIRR  
V = 2V , R = 1k, f = 100kHz  
dB  
pC  
pF  
S
P-P  
L
O
Charge Injection  
R = 0, C = 1000pF, V = 1V (Note 2)  
±2  
5
±10  
INJ  
S
L
S
C
C
Source Off Capacitance  
Drain Off Capacitance  
S(OFF)  
D(OFF)  
10  
pF  
Supply  
+
I
Positive Supply Current  
Negative Supply Current  
All Logic Inputs Tied Together, V = 0V or V = 5V  
15  
15  
40  
40  
µA  
µA  
IN  
IN  
I
All Logic Inputs Tied Together, V = 0V or V = 5V  
IN IN  
V+ = 3V, V= GND = 0V, TA = operating temperature unless otherwise noted.  
SYMBOL PARAMETER  
Switch  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Analog Signal Range  
On Resistance  
(Note 2)  
0
3
V
ANALOG  
R
V = 1.2V, I = 1mA  
S D  
ON  
T
25°C  
255  
255  
300  
MIN  
200  
T
MAX  
R vs V  
20  
0.5  
%
ON  
S
R vs Temperature  
%/°C  
ON  
I
I
I
Off Input Leakage  
Off Output Leakage  
On Channel Leakage  
V = 2.5V, V = 0.5V; V = 0.5V, V = 2.5V (Note 3)  
Channel Off  
±0.05  
±5  
±50  
nA  
nA  
S(OFF)  
D(OFF)  
D(ON)  
S
D
S
D
V = 2.5V, V = 0.5V; V = 0.5V, V = 2.5V (Note 3)  
±0.05  
±0.05  
±5  
±50  
nA  
nA  
S
D
S
D
Channel Off  
V = V = 0.5V, V = V = 2.5V (Note 3)  
±5  
±50  
nA  
nA  
S
D
S
D
Channel On  
Input  
+
V
V
High Level Input Voltage  
Low Level Input Voltage  
Low or High Level Current  
High Level Output Voltage  
V = 3.3V  
2.4  
2
V
V
INH  
INL  
+
V = 2.7V  
0.8  
I
, I  
V
= 3V, V = 0V  
±1  
µA  
INL INH  
IN  
+
IN  
V
OH  
V = 2.7V, I = 20µA  
2.68  
2.27  
V
V
O
+
V = 2.7V, I = 400µA  
O
+
V
OL  
Low Level Output Voltage  
V = 2.7V, I = 20µA  
0.01  
0.15  
V
V
O
+
V = 2.7V, I = 300µA  
0.8  
O
3
LTC1390  
ELECTRICAL CHARACTERISTICS  
V+ = 3V, V= GND = 0V, TA = operating temperature unless otherwise noted.  
SYMBOL PARAMETER  
Dynamic  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
t
t
t
Clock Frequency  
5
MHz  
ns  
CLK  
ON  
Enable Turn-On Time  
Enable Turn-Off Time  
Break-Before-Make Interval  
Off Isolation  
V = 1.5V, R = 1k, C = 35pF (Note 4)  
490  
190  
290  
70  
700  
300  
S
L
L
V = 1.5V, R = 1k, C = 35pF (Note 4)  
ns  
OFF  
S
L
L
(Note 4)  
125  
ns  
OPEN  
OIRR  
V = 2V , R = 1k, f = 100kHz  
dB  
pC  
pF  
S
P-P  
L
O
Charge Injection  
R = 0, C = 1000pF, V = 1V (Note 2)  
±1  
5
±5  
INJ  
S
L
S
C
C
Source Off Capacitance  
Drain Off Capacitance  
S(OFF)  
D(OFF)  
10  
pF  
Supply  
+
I
Positive Supply Current  
All Logic Inputs Tied Together, V = 0V or V = 3V  
0.2  
2
µA  
IN  
IN  
The  
denotes specifications which apply over the full operating  
Note 3: Leakage current with a single 3V supply is guaranteed by  
correlation with the leakage current of the ±5V supply.  
temperature range.  
Note 1: Absolute maximum ratings are those beyond which the safety of  
the device may be impaired.  
Note 4: Timing specifications with a single 3V supply is guaranteed by  
correlation with the timing specifications of the ±5V supply.  
Note 2: Guaranteed by design.  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Driver Output Low Voltage  
vs Output Current  
Driver Output High Voltage  
vs Output Current  
ON-Resistance vs Temperature  
300  
250  
200  
150  
6
5
4
3
2
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
T
V
V
= 25°C  
= 5V  
T
V
V
= 25°C  
= 5V  
A
A
+
+
= –5V  
= –5V  
DATA 2  
+
V
V
= 3V  
= 0V  
V
= 1.2V  
S
DATA 1  
DATA 1  
+
100  
50  
0
V
= 5V  
V
V
= 5V  
DATA 2  
= 0V  
S
40  
TEMPERATURE (˚C)  
60  
70  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OUTPUT VOLTAGE (V)  
4.0  
OUTPUT VOLTAGE (V)  
5.0  
0
10  
20  
30  
50  
2.0  
2.5  
3.0  
3.5  
4.5  
LTC1390 • G01  
LTC1390 • G02  
LTC1390 • G03  
4
LTC1390  
U
U
U
PIN FUNCTIONS  
analog signal transmission and allows data transfer from  
Data 2 to Data 1.  
S0 to S7 (Pins 1 to 8): Analog Multiplexer Inputs/Analog  
Demultiplexer Outputs.  
Data 1 (Pin 12): Bidirectional Digital Input/Output (TTL/  
CMOS Compatible). Input for the channel selection bits.  
GND (Pin 9): Digital Ground. Connect to system ground.  
CLK(Pin10):SystemClock(TTL/CMOSCompatible). The  
clock synchronizes the channel selection bits and the  
serial data transfer from Data 1 to Data 2.  
Data 2 (Pin 13): Bidirectional Digital Input/Output (TTL/  
CMOS Compatible).  
V(Pin 14): Negative Supply.  
CS (Pin 11):Chip Select Input (TTL/CMOS Compatible). A  
logic high on this input enables LTC1390 to read in the  
channel selection bits and allow data transfer from Data 1  
to Data 2. A logic low enables the desired channel for  
D (Pin 15): Analog Multiplexer Output/Analog  
Demultiplexer Input.  
V+ (Pin 16): Positive Supply.  
U U  
W
U
APPLICATIO S I FOR ATIO  
Multiplexer Operation  
When CS is high, the input data on the Data 1 pin is latched  
into the 4-bit shift register on each rising clock edge. The  
input data consists of an “EN” bit and a string of three bits  
for channel selection. If “EN” bit is logic high as illustrated  
in the first input data sequence, it enables the selected  
channel. To ensure correct operation, the CS must be  
pulled low before the next rising clock edge.  
Figure 1 shows the block diagram of the components  
within the LTC1390 required for MUX operation. The  
LTC1390 uses Data 1 to select its 8 channels and a chip  
selectinputCStoswitchontheselectedchannelasshown  
in Figure 2.  
CLK  
DATA 1  
CS  
Once the CS is pulled low, all channels are simultaneously  
switched off to ensure a break-before-make interval. After  
adelayoftON, theselectedchannelisswitchedonallowing  
signal transmission. The selected channel remains on  
CONTROL  
LOGIC  
4-BIT SHIFT  
REGISTER  
ANALOG  
INPUT  
MUX  
BLOCK  
ANALOG  
OUTPUT  
until the next falling edge of CS, and after a delay of tOFF  
,
it terminates the analog signal transmission and subse-  
quently allows the selection of the next channel. If “EN” bit  
is logic low, as illustrated in the second data sequence, it  
disables all channels and there will be no analog signal  
LTC1390 • F01  
Figure 1: Simplified Block Diagram of the MUX Operation  
CLK  
CS  
EN = LOW  
EN = HIGH  
DATA 1  
B2  
B1  
B0  
B2  
B1  
B0  
ANY  
ANALOG  
INPUTS  
D
LTC1390 • F02  
t
t
OFF  
ON  
Figure 2: Multiplexer Operation  
5
LTC1390  
APPLICATIO S I FOR ATIO  
U U  
W
U
transmission. Table 1 shows the various bit combinations  
selection or to Data 2 via Buffer 1 for data transfer. Data  
appears at Data 2 after the fourth rising edge of the clock.  
When CS is low, Buffer 2 is enabled and Buffer 1 is  
disabled,thusdigitalinputdataisdirectlytransferredfrom  
Data 2 to Data 1 without any clock delay.  
for channel selection.  
Table 1. Logic Table for Channel Selection  
CHANNEL STATUS  
All Off  
S0  
EN  
0
1
B2  
X
0
B1  
X
0
B0  
X
0
Multiplexer Expansion  
S1  
1
0
0
1
S2  
S3  
S4  
S5  
S6  
S7  
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
Several LTC1390s can be daisy-chained to expand the  
number of multiplexer inputs. No additional interface  
ports are required for the expansion. Figure 5 shows two  
LTC1390s connected at their analog outputs to form a 16-  
to-1 multiplexer at the input to an LTC1286 A/D converter.  
V
V
EE  
CC  
V
CC  
Digital Data Transfer Operation  
The block diagram of Figure 3 shows the components  
contained within the LTC1390 required for digital data  
transfer. Digital data transfer operation can be performed  
from Data 1 to Data 2 and vice versa as shown in Figure 4.  
When CS is high, Buffer 1 is enabled and Buffer 2 is  
disabled. The digital input data is fed into the 4-bit shift  
register and then shifted to the MUX switches for channel  
1
2
3
4
8
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
V
V
CC  
REF  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
V
7
6
5
+IN  
CLK  
LTC1286  
D
LTC1390  
A
V
–IN  
D
OUT  
DATA 2  
DATA 1  
CS  
ANALOG  
INPUTS  
GND  
CS  
CLK  
GND  
CLK  
V
CC  
4-BIT SHIFT  
REGISTER  
MUX  
SWITCHES  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
V
47k  
D
LTC1390  
B
DATA 2  
BUFFER 1  
V
DATA 2  
DATA 1  
CS  
ANALOG  
INPUTS  
DATA  
CS  
CS  
CLK  
CLK  
DATA 1  
BUFFER 2  
GND  
LTC1390 • F05  
LTC1390 • F03  
Figure 5. Daisy-Chaining Two LTC1390s for Expansion  
Figure 3. Simplified Block Diagram of the Digital Data  
Transfer Operation  
To ensure that only one channel is switched on at any one  
time,twosetsofchannelselectionbitsareneededforData  
as shown in Figure 6. The first data sequence is used to  
switch off one MUX and the second data sequence is used  
to select one channel from the other MUX, or vice versa.  
In other words, if bit “ENA” is high and bit “ENB” is low,  
one channel of MUX A is switched on and all channels of  
MUX B are switched off. If bit “ENA” is low and bit “ENB”  
is high, all channels of MUX A are switched off and one  
channel of MUX B is switched on.  
CLK  
CS  
1
2
3
4
Hi-Z  
DATA 1  
DATA 2  
DATA OUT  
DATA IN  
DATA IN  
DATA OUT  
LTC1390 • F04  
Figure 4. Digital Data Transfer Operation  
6
LTC1390  
U U  
W
U
APPLICATIO S I FOR ATIO  
CLK  
CS  
1
2
3
4
5
6
7
8
NULL  
BIT  
Hi-Z  
ENA A2  
A1  
A0  
ENB B2  
B1  
B0  
D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DATA  
t
t
t
DATA  
SMPL  
CONV  
DIGITAL INPUT FROM LTC1390  
DIGITAL OUTPUT FROM LTC1286  
LTC1390 • F06  
Figure 6. Timing Diagram for Figure 5  
Daisy-Chaining Five LTC1390s  
U
TYPICAL APPLICATIONS N  
+
BYPASS CAPACITOR FROM V TO GND AND  
V
CC  
V
TO GND REQUIRED FOR EACH LTC1390  
V
V
CC EE  
1
2
3
4
8
V
CC  
V
V
CC  
REF  
7
6
5
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
+IN  
CLK  
LTC1286  
47k  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
V
D
–IN  
D
OUT  
LTC1390  
A
V
GND  
CS  
DATA 2  
DATA 1  
CS  
ANALOG  
INPUTS  
CLK  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
V
V
V
CC EE  
D
LTC1390  
B
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
S0  
V
V
S1  
S2  
S3  
S4  
S5  
S6  
S7  
D
DATA 2  
DATA 1  
CS  
LTC1390  
D
ANALOG  
INPUTS  
V
DATA 2  
DATA 1  
CS  
ANALOG  
INPUTS  
CLK  
GND  
CLK  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
GND  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
V
D
LTC1390  
C
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
V
V
D
DATA 2  
DATA 1  
CS  
LTC1390  
ANALOG  
INPUTS  
E
V
DATA 2  
DATA 1  
CS  
ANALOG  
INPUTS  
DATA*  
CLK  
CS  
GND  
CLK  
CLK  
GND  
*
REQUIRES FIVE 4-BIT CHANNEL  
SELECTION DATA BYTES  
LTC1390 • TA03  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of circuits as described herein will not infringe on existing patent rights.  
7
LTC1390  
TYPICAL APPLICATIONS N  
U
Interfacing LTC1390 with LTC1257 for Demultiplex Operation  
V
CC  
V
EE  
OPTIONAL D/A  
OUTPUT FILTER  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
V
D
V
CC  
V
LTC1390  
CC  
1
2
3
4
8
7
6
5
V
CLK  
LTC1257  
IN  
V
CC  
47k  
DATA 2  
DATA 1  
CS  
ANALOG  
OUTPUTS  
D
V
OUT  
LOAD  
V
REF  
D
OUT  
GND  
CLK  
GND  
DATA  
CLK  
CS  
LTC1390 • F03  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
N Package  
16-Lead Plastic DIP  
0.770*  
(19.558)  
MAX  
0.300 – 0.325  
0.130 ± 0.005  
0.045 – 0.065  
(7.620 – 8.255)  
(3.302 ± 0.127)  
(1.143 – 1.651)  
14  
12  
10  
9
8
15  
13  
11  
16  
0.015  
(0.381)  
MIN  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
+0.025  
–0.015  
2
1
3
4
6
5
7
0.325  
(3.175)  
MIN  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.018 ± 0.003  
(0.457 ± 0.076)  
+0.635  
8.255  
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm).  
S Package  
16-Lead Plastic SOIC  
0.386 – 0.394*  
(9.804 – 10.008)  
0.010 – 0.020  
16  
15  
14  
13  
12  
11  
10  
9
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
(0.254 – 0.508)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.150 – 0.157*  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
1
2
3
4
5
6
7
8
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC201A/LTC202/LTC203  
LTC221/LTC222  
Micropower, Low Charge Injection, Quad CMOS Analog Switches  
Each Channel is Independently Controlled  
Parallel Controlled with Data Latches  
Micropower, Low Charge Injection, Quad CMOS Analog Switches  
with Data Latches  
LTC128x/LTC129x  
Serial A/Ds with Integral MUXs  
LT/GP 0695 10K • PRINTED IN THE USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
8
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1995  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY