LTC1403CMSE [Linear]

Serial 12-Bit/14-Bit, 2.8Msps Sampling ADCs with Shutdown; 串行12位/ 14位, 2.8Msps采样ADC ,带有关断
LTC1403CMSE
型号: LTC1403CMSE
厂家: Linear    Linear
描述:

Serial 12-Bit/14-Bit, 2.8Msps Sampling ADCs with Shutdown
串行12位/ 14位, 2.8Msps采样ADC ,带有关断

文件: 总20页 (文件大小:324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1403/LTC1403A  
Serial 12-Bit/14-Bit, 2.8Msps  
Sampling ADCs with Shutdown  
U
FEATURES  
DESCRIPTIO  
The LTC®1403/LTC1403A are 12-bit/14-bit, 2.8Msps se-  
rial ADCs with differential inputs. The devices draw only  
4.7mA from a single 3V supply and come in a tiny 10-lead  
MS package. A Sleep shutdown feature lowers power  
consumption to 10µW. The combination of speed, low  
power and tiny package makes the LTC1403/LTC1403A  
suitable for high speed, portable applications.  
2.8Msps Conversion Rate  
Low Power Dissipation: 14mW  
3V Single Supply Operation  
2.5V Internal Bandgap Reference can be Overdriven  
3-Wire Serial Interface  
Sleep (10µW) Shutdown Mode  
Nap (3mW) Shutdown Mode  
80dB Common Mode Rejection  
The 80dB common mode rejection allows users to elimi-  
nategroundloopsandcommonmodenoisebymeasuring  
signals differentially from the source.  
0V to 2.5V Unipolar Input Range  
Tiny 10-Lead MS Package  
U
The devices convert 0V to 2.5V unipolar inputs differen-  
tially. The absolute voltage swing for +AIN and –AIN  
extends from ground to the supply voltage.  
APPLICATIO S  
Communications  
Data Acquisition Systems  
The serial interface sends out the conversion results  
during the 16 clock cycles following CONVfor compat-  
ibility with standard serial interfaces. If two additional  
clock cycles for acquisition time are allowed after the data  
stream in between conversions, the full sampling rate of  
2.8Msps can be achieved with a 50.4MHz clock.  
Uninterrupted Power Supplies  
Multiphase Motor Control  
Multiplexed Data Acquisition  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
W
BLOCK DIAGRA  
2nd, 3rd and SFDR  
10µF 3V  
vs Input Frequency  
–44  
7
V
–50  
–56  
LTC1403A  
DD  
+
THREE-  
STATE  
SERIAL  
OUTPUT  
PORT  
A
A
THD  
2nd, SFDR  
IN  
1
2
+
–62  
14-BIT ADC  
SDO  
S & H  
8
–68  
–74  
IN  
3rd  
–80  
–86  
14  
V
REF  
3
4
10  
9
CONV  
SCK  
–92  
2.5V  
REFERENCE  
TIMING  
LOGIC  
10µF  
–98  
GND  
5
–104  
0.1  
1
10  
100  
1403A TA01  
6
11  
EXPOSED PAD  
FREQUENCY (MHz)  
1403A TA02  
1403af  
1
LTC1403/LTC1403A  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Notes 1, 2)  
PACKAGE/ORDER I FOR ATIO  
Supply Voltage (VDD)................................................. 4V  
Analog Input Voltage  
ORDER PART  
NUMBER  
(Note 3) ....................................–0.3V to (VDD + 0.3V)  
Digital Input Voltage ................... – 0.3V to (VDD + 0.3V)  
Digital Output Voltage.................. 0.3V to (VDD + 0.3V)  
Power Dissipation.............................................. 100mW  
Operation Temperature Range  
LTC1403C/LTC1403AC............................ 0°C to 70°C  
LTC1403I/LTC1403AI ......................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
LTC1403CMSE  
LTC1403IMSE  
LTC1403ACMSE  
LTC1403AIMSE  
+
A
A
1
2
3
4
5
10 CONV  
IN  
IN  
9
8
7
6
SCK  
SDO  
DD  
GND  
V
11  
REF  
GND  
GND  
V
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
MSE PART MARKING  
TJMAX = 125°C, θJA = 150°C/ W  
EXPOSED PAD IS GND (PIN 11)  
MUST BE SOLDERED TO PCB  
LTBDN  
LTBDP  
LTADF  
LTAFD  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
CO VERTER CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. With internal reference. VDD = 3V  
LTC1403  
TYP MAX  
LTC1403A  
TYP MAX  
PARAMETER  
CONDITIONS  
MIN  
12  
MIN  
14  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Offset Error  
(Notes 4, 5, 18)  
(Notes 4, 18)  
(Note 4, 18)  
–2  
±0.25  
±1  
2
–4  
±0.5  
±2  
4
LSB  
–10  
–30  
10  
30  
–20  
–60  
20  
60  
LSB  
Gain Error  
±5  
±10  
LSB  
Gain Tempco  
Internal Reference (Note 4)  
External Reference  
±15  
±1  
±15  
±1  
ppm/°C  
ppm/°C  
U
U
A ALOG I PUT  
The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. VDD = 3V  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Analog Differential Input Range (Notes 3, 9)  
2.7V V 3.3V  
0 to 2.5  
V
V
IN  
DD  
Analog Common Mode + Differential  
Input Range (Note 10)  
0 to V  
CM  
DD  
I
Analog Input Leakage Current  
1
µA  
pF  
ns  
ns  
ps  
IN  
C
Analog Input Capacitance  
13  
IN  
t
t
t
Sample-and-Hold Acquisition Time  
Sample-and-Hold Aperture Delay Time  
Sample-and-Hold Aperture Delay Time Jitter  
Analog Input Common Mode Rejection Ratio  
(Note 6)  
39  
ACQ  
AP  
1
0.3  
JITTER  
CMRR  
f
f
= 1MHz, V = 0V to 3V  
= 100MHz, V = 0V to 3V  
–60  
–15  
dB  
dB  
IN  
IN  
IN  
IN  
1403af  
2
LTC1403/LTC1403A  
U W  
DY A IC ACCURACY  
The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. VDD = 3V  
LTC1403  
TYP MAX  
LTC1403A  
TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MIN  
UNITS  
SINAD  
Signal-to-Noise Plus  
Distortion Ratio  
100kHz Input Signal  
1.4MHz Input Signal  
100kHz Input Signal, External V = 3.3V,  
70.5  
70.5  
72  
73.5  
73.5  
76.3  
dB  
dB  
dB  
68  
70  
REF  
V
DD  
3.3V  
750kHz Input Signal, External V = 3.3V,  
72  
76.3  
dB  
REF  
V
DD  
3.3V  
THD  
SFDR  
IMD  
Total Harmonic  
Distortion  
100kHz First 5 Harmonics  
1.4MHz First 5 Harmonics  
–87  
–83  
–90  
–86  
dB  
dB  
–76  
–78  
Spurious Free  
Dynamic Range  
100kHz Input Signal  
1.4MHz Input Signal  
–87  
–83  
–90  
–86  
dB  
dB  
+
Intermodulation  
Distortion  
1.25V to 2.5V 1.25MHz into A , 0V to 1.25V,  
–82  
–82  
dB  
IN  
1.2MHz into A  
IN  
Code-to-Code  
V
REF  
= 2.5V (Note 18)  
0.25  
1
LSB  
RMS  
Transition Noise  
Full Power Bandwidth  
V
= 2.5V , SDO = 11585LSB (Note 15)  
50  
5
50  
5
MHz  
MHz  
IN  
P-P  
P-P  
Full Linear Bandwidth S/(N + D) 68dB  
U U  
U
I TER AL REFERE CE CHARACTERISTICS The denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. VDD = 3V  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
2.5  
15  
MAX  
UNITS  
V
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
Settling Time  
I
OUT  
REF  
REF  
REF  
REF  
REF  
ppm/°C  
µV/V  
V
= 2.7V to 3.6V, V = 2.5V  
600  
0.2  
2
DD  
REF  
Load Current = 0.5mA  
ms  
U
U
The denotes the specifications which apply over the  
DIGITAL I PUTS A D DIGITAL OUTPUTS  
full operating temperature range, otherwise specifications are at TA = 25°C. VDD = 3V  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 3.3V  
= 2.7V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.6  
I
= 0V to V  
±10  
µA  
pF  
V
IN  
DD  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
5
IN  
V
= 3V, I = 200µA  
OUT  
2.5  
2.9  
OH  
OL  
DD  
V
V
= 2.7V, I  
= 2.7V, I  
= 160µA  
= 1.6mA  
0.05  
0.10  
V
V
DD  
DD  
OUT  
OUT  
0.4  
I
Hi-Z Output Leakage D  
V
= 0V to V  
DD  
±10  
µA  
pF  
OZ  
OUT  
OUT  
C
Hi-Z Output Capacitance D  
1
OZ  
OUT  
I
I
Output Short-Circuit Source Current  
Output Short-Circuit Sink Current  
V
V
= 0V, V = 3V  
20  
15  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
DD  
= V = 3V  
DD  
1403af  
3
LTC1403/LTC1403A  
W U  
POWER REQUIRE E TS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 17)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage  
2.7  
3.6  
V
DD  
I
Positive Supply Voltage  
Active Mode  
Nap Mode  
Sleep Mode (LTC1403)  
Sleep Mode (LTC1403A)  
4.7  
1.1  
2
7
mA  
mA  
µA  
DD  
1.5  
15  
10  
2
µA  
P
Power Dissipation  
Active Mode with SCK in Fixed State (Hi or Lo)  
12  
mW  
D
W U  
TI I G CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VDD = 3V  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
Maximum Sampling Frequency per Channel  
(Conversion Rate)  
2.8  
MHz  
SAMPLE(MAX)  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Minimum Sampling Period (Conversion + Acquisiton Period)  
Clock Period  
357  
ns  
THROUGHPUT  
(Note 16)  
19.8  
16  
2
10000  
ns  
SCK  
Conversion Time  
(Note 6)  
18  
SCLK cycles  
CONV  
Minimum Positive or Negative SCLK Pulse Width  
CONV to SCK Setup Time  
(Note 6)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
1
(Notes 6, 10)  
(Note 6)  
3
2
Nearest SCK Edge Before CONV  
0
3
Minimum Positive or Negative CONV Pulse Width  
SCK to Sample Mode  
(Note 6)  
4
4
(Note 6)  
4
5
CONV to Hold Mode  
(Notes 6, 11)  
(Notes 6, 7, 13)  
(Notes 6, 12)  
(Notes 6, 12)  
(Notes 6, 12)  
(Notes 6, 14)  
1.2  
45  
8
6
16th SCKto CONVInterval (Affects Acquisition Period)  
Minimum Delay from SCK to Valid Bits 0 Through 13  
SCK to Hi-Z at SDO  
7
8
6
9
Previous SDO Bit Remains Valid After SCK  
2
10  
12  
V
Settling Time After Sleep-to-Wake Transition  
2
REF  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
cycle later. It is best for CONV to rise half a clock before SCK, when  
running the clock at rated speed.  
Note 2: All voltage values are with respect to GND.  
Note 3: When these pins are taken below GND or above V , they will be  
clamped by internal diodes. This product can handle input currents greater  
Note 11: Not the same as aperture delay. Aperture delay is smaller (1ns)  
because the 2.2ns delay through the sample-and-hold is subtracted from  
the CONV to Hold mode delay.  
DD  
than 100mA below GND or greater than V without latchup.  
Note 12: The rising edge of SCK is guaranteed to catch the data coming  
out into a storage latch.  
Note 13: The time period for acquiring the input signal is started by the  
DD  
Note 4: Offset and full-scale specifications are measured for a single-  
+
ended A input with A grounded and using the internal 2.5V reference.  
IN  
IN  
16th rising clock and it is ended by the rising edge of convert.  
Note 14: The internal reference settles in 2ms after it wakes up from Sleep  
mode with one or more cycles at SCK and a 10µF capacitive load.  
Note 5: Integral linearity is tested with an external 2.55V reference and is  
defined as the deviation of a code from the straight line passing through  
the actual endpoints of a transfer curve. The deviation is measured from  
the center of quantization band.  
Note 15: The full power bandwidth is the frequency where the output code  
Note 6: Guaranteed by design, not subject to test.  
Note 7: Recommended operating conditions.  
swing drops to 3dB with a 2.5V input sine wave.  
Note 16: Maximum clock period guarantees analog performance during  
conversion. Output data can be read without an arbitrarily long clock.  
P-P  
Note 8: The analog input range is defined for the voltage difference  
+
between A and A  
.
Note 17: V = 3V, f  
= 2.8Msps.  
SAMPLE  
IN  
IN  
DD  
+
Note 9: The absolute voltage at A and A must be within this range.  
Note 18: The LTC1403A is measured and specified with 14-bit Resolution  
(1LSB = 152µV) and the LTC1403 is measured and specified with 12-bit  
Resolution (1LSB = 610µV).  
IN  
IN  
Note 10: If less than 3ns is allowed, the output data will appear one clock  
1403af  
4
LTC1403/LTC1403A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
TA = 25°C, VDD = 3V (LTC1403A)  
ENOBs and SINAD  
vs Input Frequency  
THD, 2nd and 3rd vs Input  
Frequency  
SFDR vs Input Frequency  
–44  
–50  
–56  
–62  
104  
98  
92  
86  
80  
74  
68  
62  
56  
50  
44  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
74  
71  
68  
65  
62  
59  
56  
53  
50  
THD  
2nd  
–68  
–74  
3rd  
–80  
–86  
9.0  
–92  
8.5  
–98  
–104  
8.0  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1403A G02  
1403A G17  
1403A G01  
98kHz Sine Wave 4096 Point  
FFT Plot  
1.3MHz Sine Wave 4096 Point  
FFT Plot  
SNR vs Input Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
74  
71  
68  
65  
62  
59  
56  
53  
50  
2.8Msps  
2.8Msps  
0
350k  
700k  
1.05M  
1.4M  
0
350k  
700k  
1.05M  
1.4M  
0.1  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
1403A G03  
1403A G04  
1403A G05  
1.4MHz Input Summed with  
1.56MHz Input IMD 4096 Point  
FFT Plot  
Differential Linearity  
vs Output Code  
Integral Linearity  
vs Output Code  
4
3
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
1.0  
0.8  
2.8Msps  
0.6  
2
0.4  
1
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
0
4096  
8192  
12288  
16383  
0
350k  
700k  
1.05M  
1.4M  
0
4096  
8192  
12288  
16383  
OUTPUT CODE  
FREQUENCY (Hz)  
OUTPUT CODE  
1403A G14  
1403A G06  
1403A G13  
1403af  
5
LTC1403/LTC1403A  
U W  
TA = 25°C, VDD = 3V (LTC1403A)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Differential and Integral Linearity  
vs Conversion Rate  
SINAD vs Conversion Rate  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
5
4
18 CLOCKS PER CONVERSION  
EXTERNAL V  
= 3.3V f ~f /3  
IN  
MAX INL  
REF  
S
3
2
MAX DNL  
EXTERNAL V  
= 3.3V f ~f /40  
IN  
REF  
S
1
0
–1  
–2  
–3  
–4  
–5  
MIN DNL  
MIN INL  
INTERNAL V  
= 2.5V f ~f /40  
IN  
REF  
S
INTERNAL V  
= 2.5V f ~f /3  
IN  
REF  
S
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0  
CONVERSION RATE (Msps)  
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0  
CONVERSION RATE (Msps)  
1403A G16  
1403A G15  
TA = 25°C, VDD = 3V (LTC1403 and LTC1403A)  
2.5VP-P Power Bandwidth  
CMRR vs Frequency  
PSRR vs Frequency  
0
–20  
12  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
6
0
–40  
–6  
–12  
–18  
–60  
–80  
–24  
–30  
–36  
–100  
–120  
–70  
100  
10k  
100k 1M  
10M 100M  
1k  
1M  
10M  
100M  
1G  
1
10  
100  
1k  
10k 100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1403A G07  
1403A G09  
1403A G08  
Reference Voltage vs Load  
Current  
VDD Supply Current vs  
Conversion Rate  
Reference Voltage vs VDD  
2.4902  
2.4900  
2.4898  
2.4896  
2.4894  
2.4892  
2.4890  
2.4902  
2.4900  
2.4898  
2.4896  
2.4894  
2.4892  
2.4890  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
LOAD CURRENT (mA)  
2.6  
2.8  
3.0  
3.2  
(V)  
3.4  
3.6  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
CONVERSION RATE (Msps)  
V
DD  
1403A G10  
1403A G11  
1403A G12  
1403af  
6
LTC1403/LTC1403A  
U
U
U
PI FU CTIO S  
+
+
AIN (Pin 1): Noninverting Analog Input. AIN operates  
fully differentially with respect to AINwith a 0V to 2.5V  
differential swing and a 0V to VDD common mode swing.  
10µF tantalum in parallel with 0.1µF ceramic). Keep in  
mindthatinternalanalogcurrentsanddigitaloutputsignal  
currents flow through this pin. Care should be taken to  
place the 0.1µF bypass capacitor as close to Pins 6 and 7  
as possible.  
AIN (Pin 2): Inverting Analog Input. AIN operates fully  
+
differentially with respect to AIN with a 2.5V to 0V  
differential swing and a 0V to VDD common mode swing.  
SDO (Pin 8): Three-State Serial Data Output. Each of  
output data words represents the difference between  
AIN+ and AINanalog inputs at the start of the previous  
conversion.  
VREF (Pin 3): 2.5V Internal Reference. Bypass to GND and  
to a solid analog ground plane with a 10µF ceramic  
capacitor (or 10µF tantalum in parallel with 0.1µF ce-  
ramic). Can be overdriven by an external reference be-  
tween 2.55V and VDD.  
SCK (Pin 9): External Clock Input. Advances the conver-  
sion process and sequences the output data on the rising  
edge. Responds to TTL (3V) and 3V CMOS levels. One  
or more pulses wake from sleep.  
GND (Pins 5, 6, 11): Ground and Exposed Pad. These  
ground pins and the exposed pad must be tied directly to  
the solid ground plane under the part. Keep in mind that  
analog signal currents and digital output signal currents  
flow through these pins.  
CONV (Pin 10): Convert Start. Holds the analog input  
signal and starts the conversion on the rising edge.  
Responds to TTL (3V) and 3V CMOS levels. Two pulses  
with SCK in fixed high or fixed low state start Nap mode.  
Four or more pulses with SCK in fixed high or fixed low  
state start Sleep mode.  
VDD (Pin 7): 3V Positive Supply. This single power pin  
supplies3Vtotheentirechip.BypasstoGNDandtoasolid  
analog ground plane with a 10µF ceramic capacitor (or  
W
BLOCK DIAGRA  
10µF 3V  
7
V
LTC1403A  
DD  
+
THREE-  
STATE  
SERIAL  
OUTPUT  
PORT  
A
A
IN  
1
2
+
14-BIT ADC  
SDO  
S & H  
8
IN  
14  
V
REF  
3
4
10  
9
CONV  
SCK  
2.5V  
REFERENCE  
TIMING  
LOGIC  
10µF  
GND  
5
1403A BD  
6
11  
EXPOSED PAD  
1403af  
7
LTC1403/LTC1403A  
W U  
W
TI I G DIAGRA  
LTC1403 Timing Diagram  
t
2
t
7
t
3
t
1
16  
17  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
t
16  
17  
18  
1
14  
SCK  
t
4
5
CONV  
t
6
t
ACQ  
INTERNAL  
S/H STATUS  
SAMPLE  
HOLD  
SAMPLE  
HOLD  
t
t
9
t
8
t
8
10  
SDO REPRESENTS THE ANALOG INPUT FROM THE PREVIOUS CONVERSION  
Hi-Z  
Hi-Z  
SDO  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1  
D0  
X
X
1403A TD01  
14-BIT DATA WORD  
CONV  
t
t
THROUGHPUT  
*BITS MARKED "X" AFTER D0 SHOULD BE IGNORED.  
LTC1403A Timing Diagram  
t
2
t
7
t
t
1
3
16  
17  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
t
16  
17  
18  
1
14  
SCK  
t
4
5
CONV  
t
6
t
ACQ  
INTERNAL  
S/H STATUS  
SAMPLE  
HOLD  
SAMPLE  
HOLD  
t
t
t
8
t
8
9
10  
SDO REPRESENTS THE ANALOG INPUT FROM THE PREVIOUS CONVERSION  
Hi-Z  
Hi-Z  
SDO  
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3  
D2  
D1  
D0  
1403A TD01b  
14-BIT DATA WORD  
CONV  
t
t
THROUGHPUT  
Nap Mode and Sleep Mode Waveforms  
SLK  
t
1
t
1
CONV  
NAP  
SLEEP  
t
12  
V
1403A TD02  
REF  
NOTE: NAP AND SLEEP ARE INTERNAL SIGNALS  
SCK to SDO Delay  
SCK  
SCK  
V
V
IH  
IH  
t
10  
8
t
t
9
V
V
90%  
10%  
OH  
OL  
SDO  
SDO  
1403A TD03  
1403af  
8
LTC1403/LTC1403A  
U
W U U  
APPLICATIO S I FOR ATIO  
DRIVING THE ANALOG INPUT  
detailed information is available in the Linear Technology  
Databooks and on the LinearViewTM CD-ROM.)  
The differential analog inputs of the LTC1403/LTC1403A are  
easy to drive. The inputs may be driven differentially or as a  
single-ended input (i.e., the AINinput is grounded). Both  
differential analog inputs, AIN+ with AIN, are sampled at the  
same instant. Any unwanted signal that is common to both  
inputsofeachinputpairwillbereducedbythecommonmode  
rejectionofthesample-and-holdcircuit.Theinputsdrawonly  
one small current spike while charging the sample-and-hold  
capacitors at the end of conversion. During conversion, the  
analoginputsdrawonlyasmallleakagecurrent. Ifthesource  
impedance of the driving circuit is low, then the LTC1403/  
LTC1403A inputs can be driven directly. As source imped-  
ance increases, so will acquisition time. For minimum acqui-  
sition time with high source impedance, a buffer amplifier  
must be used. The main requirement is that the amplifier  
driving the analog input(s) must settle after the small current  
spikebeforethenextconversionstarts(settlingtimemustbe  
39ns for full throughput rate). Also keep in mind while  
choosing an input amplifier, the amount of noise and har-  
monic distortion added by the amplifier.  
LTC®1566-1: Low Noise 2.3MHz Continuous Time Low-  
Pass Filter.  
LT1630:Dual30MHzRail-to-RailVoltageFBAmplifier.2.7V  
to ±15V supplies. Very high AVOL, 500µV offset and 520ns  
settling to 0.5LSB for a 4V swing. THD and noise are –93dB  
to40kHzandbelow1LSBto320kHz(AV =1,2VP-P into1k,  
VS =5V), makingthepartexcellentforACapplications(to1/  
3 Nyquist) where rail-to-rail performance is desired. Quad  
version is available as LT1631.  
LT1632:Dual45MHzRail-to-RailVoltageFBAmplifier.2.7V  
to ±15V supplies. Very high AVOL, 1.5mV offset and 400ns  
settling to 0.5LSB for a 4V swing. It is suitable for applica-  
tions with a single 5V supply. THD and noise are  
–93dB to 40kHz and below 1LSB to 800kHz (AV = 1,  
2VP-P into 1k, VS = 5V), making the part excellent for AC  
applications where rail-to-rail performance is desired.Quad  
version is available as LT1633.  
LT1813: Dual 100MHz 750V/µs 3mA Voltage Feedback  
Amplifier. 5V to ±5V supplies. Distortion is –86dB to 100kHz  
and –77dB to 1MHz with ±5V supplies (2VP-P into 500).  
Excellent part for fast AC applications with ±5V supplies.  
CHOOSING AN INPUT AMPLIFIER  
Choosing an input amplifier is easy if a few requirements are  
taken into consideration. First, to limit the magnitude of the  
voltage spike seen by the amplifier from charging the sam-  
pling capacitor, choose an amplifier that has a low output  
impedance(<100)attheclosed-loopbandwidthfrequency.  
For example, if an amplifier is used in a gain of 1 and has a  
unity-gain bandwidth of 50MHz, then the output impedance  
at 50MHz must be less than 100. The second requirement  
is that the closed-loop bandwidth must be greater than  
40MHz to ensure adequate small-signal settling for full  
throughput rate. If slower op amps are used, more time for  
settling can be provided by increasing the time between  
conversions. The best choice for an op amp to drive the  
LTC1403/LTC1403A will depend on the application. Gener-  
ally, applications fall into two categories: AC applications  
where dynamic specifications are most critical and time  
domainapplicationswhereDCaccuracyandsettlingtimeare  
most critical. The following list is a summary of the op amps  
that are suitable for driving the LTC1403/LTC1403A. (More  
LT1801: 80MHz GBWP, –75dBc at 500kHz, 2mA/Amplifier,  
8.5nV/Hz.  
LT1806/LT1807:325MHzGBWP,80dBcDistortionat5MHz,  
Unity-GainStable,R-RInandOut,10mA/Amplifier,3.5nV/Hz.  
LT1810: 180MHz GBWP, –90dBc Distortion at 5MHz,  
Unity-GainStable,R-RInandOut,15mA/Amplifier,16nV/Hz.  
LT1818/LT1819:400MHz,2500V/µs,9mA,Single/DualVolt-  
age Mode Operational Amplifier.  
LT6200: 165MHz GBWP, –85dBc Distortion at 1MHz, Unity-  
Gain Stable, R-R In and Out, 15mA/Amplifier,  
0.95nV/Hz.  
LT6203: 100MHz GBWP, –80dBc Distortion at 1MHz,  
Unity-Gain Stable, R-R In and Out, 3mA/Amplifier,  
1.9nV/Hz.  
LT6600-10: Amplifier/Filter Differential In/Out with 10MHz  
Cutoff.  
LinearView is a trademark of Linear Technology Corporation.  
1403af  
9
LTC1403/LTC1403A  
U
W U U  
APPLICATIO S I FOR ATIO  
51  
1
+
A
A
V
IN  
47pF  
3
3V  
V
REF  
REF  
2
IN  
LTC1403/  
LTC1403A  
REF  
LTC1403/  
LTC1403A  
10µF  
3
11  
GND  
10µF  
11  
1403A F02  
GND  
1403A F01  
Figure 1. RC Input Filter  
Figure 2  
INPUT FILTERING AND SOURCE IMPEDANCE  
INPUT RANGE  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add to  
the LTC1403/LTC1403A noise and distortion. The small-  
signalbandwidthofthesample-and-holdcircuitis50MHz.  
Any noise or distortion products that are present at the  
analog inputs will be summed over this entire bandwidth.  
Noisy input circuitry should be filtered prior to the analog  
inputs to minimize noise. A simple 1-pole RC filter is  
sufficient for many applications. For example, Figure 1  
shows a 47pF capacitor from AIN+ to ground and a 51Ω  
source resistor to limit the input bandwidth to 47MHz. The  
47pF capacitor also acts as a charge reservoir for the input  
sample-and-hold and isolates the ADC input from sam-  
pling-glitchsensitivecircuitry.Highqualitycapacitorsand  
resistors should be used since these components can add  
distortion. NPO and silvermica type dielectric capacitors  
have excellent linearity. Carbon surface mount resistors  
can generate distortion from self heating and from dam-  
age that may occur during soldering. Metal film surface  
mount resistors are much less susceptible to both prob-  
lems. When high amplitude unwanted signals are close in  
frequency to the desired signal frequency, a multiple pole  
filter is required. High external source resistance, com-  
bined with the 13pF of input capacitance, will reduce the  
rated 50MHz bandwidth and increase acquisition time  
beyond 39ns.  
The analog inputs of the LTC1403/LTC1403A may be  
driven fully differentially with a single supply. Each input  
may swing up to 3VP-P individually. In the conversion  
range, the noninverting input of each channel is always up  
to 2.5V more positive than the inverting input of each  
channel. The 0V to 2.5V range is also ideally suited for  
single-ended input use with single supply applications.  
The common mode range of the inputs extend from  
ground to the supply voltage VDD. If the difference be-  
tween the AIN+ and AINinputs exceeds 2.5V, the output  
code will stay fixed at all ones and if this difference goes  
below 0V, the ouput code will stay fixed at all zeros.  
INTERNAL REFERENCE  
TheLTC1403/LTC1403Ahasanon-chip,temperaturecom-  
pensated, bandgap reference that is factory trimmed near  
2.5V to obtain 2.5V input span. The reference amplifier  
output VREF, (Pin 3) must be bypassed with a capacitor to  
ground. The reference amplifier is stable with capacitors  
of 1µF or greater. For the best noise performance, a 10µF  
ceramicora10µFtantaluminparallelwitha0.1µFceramic  
is recommended. The VREF pin can be overdriven with an  
external reference as shown in Figure 2. The voltage of the  
external reference must be higher than the 2.5V of the  
class A pull-up output of the internal reference. The  
recommended range for an external reference is 2.55V to  
VDD. Anexternalreferenceat2.55VwillseeaDCquiescent  
load of 0.75mA and as much as 3mA during conversion.  
1403af  
10  
LTC1403/LTC1403A  
U
W U U  
APPLICATIO S I FOR ATIO  
LTC1403/LTC1403A Transfer  
Characteristic  
CMRR vs Frequency  
0
111...111  
111...110  
111...101  
–20  
–40  
–60  
–80  
000...010  
000...001  
000...000  
–100  
–120  
100  
10k  
100k 1M  
10M 100M  
1k  
0
FS – 1LSB  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
1403A F03  
1403A F05  
Figure 3  
Figure 4  
INPUT SPAN VERSUS REFERENCE VOLTAGE  
the inputs. The common mode rejection holds up at  
extremelyhighfrequencies,seeFigure3.Theonlyrequire-  
ment is that both inputs not go below ground or exceed  
VDD. Integral nonlinearity errors (INL) and differential  
nonlinearity errors (DNL) are largely independent of the  
common mode voltage. However, the offset error will  
vary. The change in offset error is typically less than 0.1%  
of the common mode voltage.  
The differential input range has a unipolar voltage span  
that equals the difference between the voltage at the  
referencebufferoutputVREF atPin3, andthevoltageatthe  
ground (Exposed Pad Ground). The differential input  
range of the ADC is 0V to 2.5V when using the internal  
reference. The internal ADC is referenced to these two  
nodes. This relationship also holds true with an external  
reference.  
Figure 4 shows the ideal input/output characteristics for  
the LTC1403/LTC1403A. The code transitions occur mid-  
way between successive integer LSB values (i.e., 0.5LSB,  
1.5LSB, 2.5LSB, FS – 1.5LSB). The output code is natural  
binarywith1LSB=2.5V/16384=153µVfortheLTC1403A,  
and 1LSB = 2.5V/4096 = 610µV for the LTC1403. The  
LTC1403A has 1LSB RMS of random white noise.  
DIFFERENTIAL INPUTS  
The LTC1403/LTC1403A has a unique differential sample-  
and-hold circuit that allows inputs from ground to VDD.  
The ADC will always convert the unipolar difference of  
AIN+ – AIN, independent of the common mode voltage at  
1403af  
11  
LTC1403/LTC1403A  
U
W U U  
APPLICATIO S I FOR ATIO  
optimumperformance, a10µFsurfacemountAVXcapaci-  
tor with a 0.1µF ceramic is recommended for the VDD and  
VREF pins. Alternatively, 10µF ceramic chip capacitors  
such as Murata GRM235Y5V106Z016 may be used. The  
capacitorsmustbelocatedasclosetothepinsaspossible.  
The traces connecting the pins and the bypass capacitors  
must be kept short and should be made as wide as  
possible.  
Figure5showstherecommendedsystemgroundconnec-  
tions. All analog circuitry grounds should be terminated at  
the LTC1403/LTC1403A GND (Pins 4, 5, 6 and exposed  
pad). The ground return from the LTC1403/LTC1403A  
(Pins 4, 5, 6 and exposed pad) to the power supply should  
belowimpedancefornoisefreeoperation.Digitalcircuitry  
groundsmustbeconnectedtothedigitalsupplycommon.  
In applications where the ADC data outputs and control  
signals are connected to a continuously active micropro-  
cessor bus, it is possible to get errors in the conversion  
results. These errors are due to feedthrough from the  
microprocessor to the successive approximation com-  
parator. The problem can be eliminated by forcing the  
microprocessor into a Wait state during conversion or by  
using three-state buffers to isolate the ADC data bus.  
Figure 5. Recommended Layout  
Board Layout and Bypassing  
POWER-DOWN MODES  
Wire wrap boards are not recommended for high resolu-  
tion and/or high speed A/D converters. To obtain the best  
performance from the LTC1403/LTC1403A, a printed cir-  
cuit board with ground plane is required. Layout for the  
printed circuit board should ensure that digital and analog  
signal lines are separated as much as possible. In particu-  
lar, care should be taken not to run any digital track  
alongside an analog signal track. If optimum phase match  
between the inputs is desired, the length of the two input  
wires should be kept matched.  
Upon power-up, the LTC1403/LTC1403A is initialized to  
the active state and is ready for conversion. The Nap and  
Sleep mode waveforms show the power-down modes for  
the LTC1403/LTC1403A. The SCK and CONV inputs con-  
trol the power-down modes (see Timing Diagrams). Two  
rising edges at CONV, without any intervening rising  
edges at SCK, put the LTC1403/LTC1403A. in Nap mode  
and the power drain drops from 14mW to 6mW. The  
internal reference remains powered in Nap mode. One or  
morerisingedgesatSCKwakeuptheLTC1403/LTC1403A  
for service very quickly, and CONV can start an accurate  
conversion within a clock cycle. Four rising edges at  
High quality tantalum and ceramic bypass capacitors  
should be used at the VDD and VREF pins as shown in the  
Block Diagram on the first page of this data sheet. For  
1403af  
12  
LTC1403/LTC1403A  
U
W U U  
APPLICATIO S I FOR ATIO  
CONV, without any intervening rising edges at SCK, put  
the LTC1403/LTC1403A in Sleep mode and the power  
drain drops from 16mW to 10µW. One or more rising  
edges at SCK wake up the LTC1403/LTC1403A for opera-  
tion. The internal reference (VREF ) takes 2ms to slew and  
settle with a 10µF load. Note that, using sleep mode more  
frequentlythanevery2ms, compromisesthesettledaccu-  
racyoftheinternalreference. Notethat, forslowerconver-  
sion rates, the Nap and Sleep modes can be used for  
substantial reductions in power consumption.  
sync input of the processor serial port. It is good practice  
to drive the LTC1403/LTC1403A CONV input first to avoid  
digital noise interference during the sample-to-hold tran-  
sition triggered by CONV at the start of conversion. It is  
also good practice to keep the width of the low portion of  
the CONV signal greater than 15ns to avoid introducing  
glitches in the front end of the ADC just before the sample-  
and-hold goes into hold mode at the rising edge of CONV.  
Minimizing Jitter on the CONV Input  
Inhighspeedapplicationswherehighamplitudesinewaves  
above 100kHz are sampled, the CONV signal must have as  
little jitter as possible (10ps or less). The square wave  
output of a common crystal clock module usually meets  
this requirement easily. The challenge is to generate a  
CONV signal from this crystal clock without jitter corrup-  
tion from other digital circuits in the system. A clock  
divider and any gates in the signal path from the crystal  
clock to the CONV input should not share the same  
integratedcircuitwithotherpartsofthesystem. Asshown  
intheinterfacecircuitexamples, theSCKandCONVinputs  
should be driven first, with digital buffers used to drive the  
serial port interface. Also note that the master clock in the  
DSP may already be corrupted with jitter, even if it comes  
directly from the DSP crystal. Another problem with high  
speed processor clocks is that they often use a low cost,  
low speed crystal (i.e., 10MHz) to generate a fast, but  
jittery, phase-locked-loop system clock (i.e., 40MHz). The  
jitter in these PLL-generated high speed clocks can be  
several nanoseconds. Note that if you choose to use the  
frame sync signal generated by the DSP port, this signal  
will have the same jitter of the DSP’s master clock.  
DIGITAL INTERFACE  
The LTC1403/LTC1403A has a 3-wire SPI (Serial Protocol  
Interface) interface. The SCK and CONV inputs and SDO  
output implement this interface. The SCK and CONV  
inputs accept swings from 3V logic and are TTL compat-  
ible, if the logic swing does not exceed VDD. A detailed  
description of the three serial port signals follows:  
Conversion Start Input (CONV)  
The rising edge of CONV starts a conversion, but subse-  
quent rising edges at CONV are ignored by the LTC1403/  
LTC1403A until the following 16 SCK rising edges have  
occurred. It is necessary to have a minimum of 16 rising  
edges of the clock input SCK between rising edges of  
CONV. But to obtain maximum conversion speed, it is  
necessary to allow two more clock periods between con-  
versions to allow 39ns of acquisition time for the internal  
ADC sample-and-hold circuit. With 16 clock periods per  
conversion, the maximum conversion rate is limited to  
2.8Msps to allow 39ns for acquisition time. In either case,  
the output data stream comes out within the first 16 clock  
periods to ensure compatibility with processor serial  
ports. The duty cycle of CONV can be arbitrarily chosen to  
be used as a frame sync signal for the processor serial  
port. A simple approach to generate CONV is to create a  
pulsethatisoneSCKwidetodrivetheLTC1403/LTC1403A  
and then buffer this signal with the appropriate number of  
inverters to ensure the correct delay driving the frame  
Serial Clock Input (SCK)  
The rising edge of SCK advances the conversion process  
and also udpates each bit in the SDO data stream. After  
CONVrises,thethirdrisingedgeofSCKstartsclockingout  
the 12/14 data bits with the MSB sent first. A simple  
approach is to generate SCK to drive the LTC1403/  
1403af  
13  
LTC1403/LTC1403A  
U
W U U  
APPLICATIO S I FOR ATIO  
LTC1403A first and then buffer this signal with the appro-  
priate number of inverters to drive the serial clock input of  
the processor serial port. Use the falling edge of the clock  
to latch data from the Serial Data Output (SDO) into your  
processor serial port. The 14-bit Serial Data will be re-  
ceived right justified, in a 16-bit word with 16 or more  
clocks per frame sync. It is good practice to drive the  
LTC1403/LTC1403A SCK input first to avoid digital noise  
interference during the internal bit comparison decision  
by the internal high speed comparator. Unlike the CONV  
input, the SCK input is not sensitive to jitter because the  
input signal is already sampled and held constant.  
HARDWARE INTERFACE TO TMS320C54x  
The LTC1403/LTC1403A is a serial output ADC whose  
interface has been designed for high speed buffered serial  
ports in fast digital signal processors (DSPs). Figure 6  
shows an example of this interface using a TMS320C54X.  
The buffered serial port in the TMS320C54x has direct  
accesstoa2kBsegmentofmemory. TheADC’sserialdata  
can be collected in two alternating 1kB segments, in real  
time, at the full 2.8Msps conversion rate of the LTC1403/  
LTC1403A.TheDSPassemblycodesetsframesyncmode  
at the BFSR pin to accept an external positive going pulse  
and the serial clock at the BCLKR pin to accept an external  
positive edge clock. Buffers near the LTC1403/LTC1403A  
may be added to drive long tracks to the DSP to prevent  
corruption of the signal to LTC1403/LTC1403A. This con-  
figuration is adequate to traverse a typical system board,  
but source resistors at the buffer outputs and termination  
resistors at the DSP, may be needed to match the charac-  
teristic impedance of very long transmission lines. If you  
need to terminate the SDO transmission line, buffer it first  
with one or two 74ACTxx gates. The TTL threshold inputs  
of the DSP port respond properly to the 3V swing from the  
SDO pin.  
Serial Data Output (SDO)  
Upon power-up, the SDO output is automatically reset to  
the high impedance state. The SDO output remains in high  
impedance until a new conversion is started. SDO sends  
out 12/14 bits in the output data stream beginning at the  
thirdrisingedgeofSCKaftertherisingedgeofCONV.SDO  
is always in high impedance mode when it is not sending  
out data bits. Please note the delay specification from SCK  
to a valid SDO. SDO is always guaranteed to be valid by the  
next rising edge of SCK. The 16-bit output data stream is  
compatible with the 16-bit or 32-bit serial port of most  
processors.  
3V  
7
5V  
V
V
CC  
DD  
10  
9
CONV  
SCK  
BFSR  
BCLKR  
BDR  
B13 B12  
8
6
SDO  
GND  
LTC1403/  
LTC1403A  
TMS320C54x  
CONV  
CLK  
3-WIRE SERIAL  
INTERFACELINK  
1403A F09  
0V TO 3V LOGIC SWING  
Figure 6. DSP Serial Interface to TMS320C54x  
1403af  
14  
LTC1403/LTC1403A  
U
W U U  
APPLICATIO S I FOR ATIO  
; 01-08-01 ******************************************************************  
; Files: 014SI.ASM -> 1403A Sine wave collection with Serial Port interface  
;
;
bvectors.asm  
s2k14ini.asm  
buffered mode to avoid standard mode bug.  
2k buffer size.  
; first element at 1024, last element at 1023, two middles at 2047 and 0000  
; unipolar mode  
; Works 16 or 64 clock frames.  
; negative edge BCLKR  
; negative BFSR pulse  
; -0 data shifted  
; 1' cable from counter to CONV at DUT  
; 2' cable from counter to CLK at DUT  
; ***************************************************************************  
.width  
160  
.length 110  
.title "sineb0 BSP in auto buffer mode"  
.mmregs  
.setsect ".text",  
0x500,0  
;Set address of executable  
.setsect "vectors", 0x180,0  
.setsect "buffer", 0x800,0  
.setsect "result", 0x1800,0  
.text  
;Set address of incoming 1403 data  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
;.text marks start of code  
start:  
;this label seems necessary  
;Make sure /PWRDWN is low at J1-9  
;to turn off AC01 adc  
tim=#0fh  
prd=#0fh  
tcr = #10h  
tspc = #0h  
pmst = #01a0h  
sp = #0700h  
dp = #0  
; stop timer  
; stop TDM serial port to AC01  
; set up iptr. Processor Mode STatus register  
; init stack pointer.  
; data page  
ar2 = #1800h  
ar3 = #0800h  
ar4 = #0h  
; pointer to computed receive buffer.  
; pointer to Buffered Serial Port receive buffer  
; reset record counter  
call sineinit  
; Double clutch the initialization to insure a proper  
sinepeek:  
call sineinit  
; reset. The external frame sync must occur 2.5 clocks  
; or more after the port comes out of reset.  
wait  
;
goto  
wait  
----------------Buffered Receive Interrupt Routine ------------------  
breceive:  
ifr = #10h  
TC = bitf(@BSPCE,#4000h) ; check which half (bspce(bit14)) of buffer  
if (NTC) goto bufull ; if this still the first half get next half  
; clear interrupt flags  
bspce = #(2023h + 08000h); turn on halt for second half (bspce(bit15))  
return_enable  
;
--------------mask and shift input data ----------------------------  
bufull:  
b = *ar3+ << -0  
b = #03FFFh & b  
; load acc b with BSP buffer and shift right -0  
; mask out the TRISTATE bits with #03FFFh  
;
*ar2+ = data(#0bh)  
; store B to out buffer and advance AR2 pointer  
TC = (@ar2 == #02000h) ; output buffer is 2k starting at 1800h  
if (TC) goto start  
goto bufull  
; restart if out buffer is at 1fffh  
1403af  
15  
LTC1403/LTC1403A  
;
-------------------dummy bsend return------------------------  
bsend  
return_enable  
;this is also a dummy return to define bsend  
;in vector table file BVECTORS.ASM  
;
----------------------- end ISR ----------------------------  
.copy "c:\dskplus\1403\s2k14ini.asm"  
;initialize buffered serial port  
.space 16*32 ;clear a chunk at the end to mark the end  
;======================================================================  
;
;
;
VECTORS  
;======================================================================  
.sect "vectors" ;The vectors start here  
.copy "c:\dskplus\1403\bvectors.asm" ;get BSP vectors  
.sect "buffer"  
.space 16*0x800  
.sect "result"  
.space 16*0x800  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
.end  
**********************************************************************  
(C) COPYRIGHT TEXAS INSTRUMENTS, INC. 1996  
**********************************************************************  
*
*
*
*
*
*
*
*
* File: s2k14ini.ASM BSP initialization code for the 'C54x DSKplus  
*
*
*
for use with 1403A in standard mode  
BSPC and SPC are the same in the 'C542  
BSPCE and SPCE seem the same in the 'C542  
**********************************************************************  
.title "Buffered Serial Port Initialization Routine"  
ON  
.set 1  
OFF  
YES  
.set !ON  
.set 1  
NO  
.set !YES  
.set 2  
.set 1  
.set 3  
.set 0  
BIT_8  
BIT_10  
BIT_12  
BIT_16  
GO  
.set 0x80  
**********************************************************************  
* This is an example of how to initialize the Buffered Serial Port (BSP).  
* The BSP is initialized to require an external CLK and FSX for  
* operation. The data format is 16-bits, burst mode, with autobuffering  
* enabled.  
*
*****************************************************************************************************  
*LTC1403 timing from LCC28 socket board with 10MHz crystal.  
*10MHz, divided from 40MHz, forced to CLKIN by 1403 board.  
*Horizontal scale is 25ns/chr or 100ns period at BCLKR  
*Timing measured at DSP pins. Jxx pin labels for jumper cable.  
*
*
*
*
*BFSR Pin J1-20 ~~\____/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\____/~~~~~~~~~~~*  
*BCLKR Pin J1-14 _/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~*  
*BDR  
Pin J1-26 _---_---_---<B13-B12-B11-B10-B09-B08-B07-B06-B05-B04-B03-B02-B01-B00>---_---<B13-B12*  
*CLKIN Pin J5-09 ~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~~*  
*C542 read  
*
0
B13 B12 B11 B10 B09 B08 B07 B06 B05 B04 B03 B02 B01 B00  
0
0
B13 B12*  
*
1403af  
16  
LTC1403/LTC1403A  
* negative edge BCLKR  
* negative BFSR pulse  
* no data shifted  
* 1' cable from counter to CONV at DUT  
* 2' cable from counter to CLK at DUT  
*No right shift is needed to right justify the input data in the main program  
*the two msbs should also be masked  
*
*
*****************************************************************************************************  
*
Loopback  
Format  
IntSync  
IntCLK  
BurstMode  
CLKDIV  
PCM_Mode  
FS_polarity  
CLK_polarity  
Frame_ignore  
XMTautobuf  
RCVautobuf  
XMThalt  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
NO  
BIT_16  
NO  
NO  
YES  
3
NO  
YES  
NO  
!YES  
NO  
YES  
NO  
;(digital looback mode?)  
;(Data format? 16,12,10,8)  
;(internal Frame syncs generated?) TXM bit  
;(internal clks generated?) MCM bit  
;(if BurstMode=NO, then Continuous) FSM bit  
;(3=default value, 1/4 CLOCKOUT)  
;(Turn on PCM mode?)  
;(change polarity)YES=^^^\_/^^^, NO=___/^\___  
;(change polarity)for BCLKR YES=_/^, NO=~\_  
;(inverted !YES -ignores frame)  
;(transmit autobuffering)  
DLB bit  
FO bit  
;(receive autobuffering)  
;(transmit buff halt if XMT buff is full)  
;(receive buff halt if RCV buff is full)  
;(address of transmit buffer)  
;(length of transmit buffer)  
;(address of receive buffer)  
RCVhalt  
NO  
XMTbufAddr  
XMTbufSize  
RCVbufAddr  
RCVbufSize  
*
0x800  
0x000  
0x800  
0x800  
;(length of receive buffer)works up to 800  
* See notes in the 'C54x CPU and Peripherals Reference Guide on setting up  
* valid buffer start and length values. Page 9-44  
*
*
**********************************************************************  
.eval ((Loopback >> 1)|((Format & 2)<<1)|(BurstMode <<3)|(IntCLK <<4)|(IntSync <<5)) ,SPCval  
.eval ((CLKDIV)|(FS_polarity <<5)|(CLK_polarity<<6)|((Format & 1)<<7)|(Frame_ignore<<8)|(PCM_Mode<<9)), SPCEval  
.eval (SPCEval|(XMTautobuf<<10)|(XMThalt<<12)|(RCVautobuf<<13)|(RCVhalt<<15)), SPCEval  
sineinit:  
bspc = #SPCval  
ifr = #10h  
; places buffered serial port in reset  
; clear interrupt flags  
imr = #210h  
; Enable HPINT,enable BRINT0  
intm = 0  
; all unmasked interrupts are enabled.  
; programs BSPCE and ABU  
bspce = #SPCEval  
axr = #XMTbufAddr  
bkx = #XMTbufSize  
arr = #RCVbufAddr  
bkr = #RCVbufSize  
bspc = #(SPCval | GO)  
return  
; initializes transmit buffer start address  
; initializes transmit buffer size  
; initializes receive buffer start address  
; initializes receive buffer size  
; bring buffered serial port out of reset  
;for transmit and receive because GO=0xC0  
; ***************************************************************************  
; File: BVECTORS.ASM -> Vector Table for the 'C54x DSKplus 10.Jul.96  
;
;
BSP vectors and Debugger vectors  
TDM vectors just return  
; ***************************************************************************  
; The vectors in this table can be configured for processing external and  
; internal software interrupts. The DSKplus debugger uses four interrupt  
; vectors. These are RESET, TRAP2, INT2, and HPIINT.  
;
;
*
DO NOT MODIFY THESE FOUR VECTORS IF YOU PLAN TO USE THE DEBUGGER  
*
1403af  
17  
LTC1403/LTC1403A  
U
W U U  
APPLICATIO S I FOR ATIO  
; All other vector locations are free to use. When programming always be sure  
; the HPIINT bit is unmasked (IMR=200h) to allow the communications kernel and  
; host PC interact. INT2 should normally be masked (IMR(bit 2) = 0) so that the  
; DSP will not interrupt itself during a HINT. HINT is tied to INT2 externally.  
;
;
;
.title "Vector Table"  
.mmregs  
reset  
nmi  
goto #80h  
nop  
nop  
;00; RESET * DO NOT MODIFY IF USING DEBUGGER *  
;04; non-maskable external interrupt  
return_enable  
nop  
nop  
nop  
trap2  
int0  
goto #88h  
nop  
nop  
.space 52*16  
;08; trap2 * DO NOT MODIFY IF USING DEBUGGER *  
;0C-3F: vectors for software interrupts 18-30  
;40; external interrupt int0  
return_enable  
nop  
nop  
nop  
int1  
return_enable  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
goto breceive  
nop  
nop  
nop  
;44; external interrupt int1  
;48; external interrupt int2  
;4C; internal timer interrupt  
;50; BSP receive interrupt  
;54; BSP transmit interrupt  
;58; TDM receive interrupt  
int2  
tint  
brint  
bxint  
trint  
goto bsend  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
txint  
int3  
return_enable  
nop  
nop  
;5C; TDM transmit interrupt  
;60; external interrupt int3  
return_enable  
nop  
nop  
nop  
hpiint  
dgoto #0e4h  
nop  
nop  
;64; HPIint * DO NOT MODIFY IF USING DEBUGGER *  
;68-7F; reserved area  
.space 24*16  
1403af  
18  
LTC1403/LTC1403A  
U
PACKAGE DESCRIPTIO  
MSE Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1663)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.06 ± 0.102  
2.794 ± 0.102  
(.110 ± .004)  
0.889 ± 0.127  
(.035 ± .005)  
(.081 ± .004)  
1
1.83 ± 0.102  
(.072 ± .004)  
5.23  
(.206)  
MIN  
2.083 ± 0.102 3.20 – 3.45  
(.082 ± .004) (.126 – .136)  
10  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
1
2
3
4 5  
GAUGE PLANE  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
MSOP (MSE) 0603  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
1403af  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC1403/LTC1403A  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC1608  
16-Bit, 500ksps Parallel ADC  
16-Bit, 333ksps Parallel ADC  
16-Bit, 250ksps Serial ADC  
14-Bit, 2.5Msps Parallel ADC  
14-Bit, 2.2Msps Parallel ADC  
±5V Supply, ±2.5V Span, 90dB SINAD  
±5V Supply, ±2.5V Span, 90dB SINAD  
5V, Configurable Bipolar/Unipolar Inputs  
5V, Selectable Spans, 80dB SINAD  
±5V Supply, ±2.5V Span, 78dB SINAD  
LTC1604  
LTC1609  
LTC1411  
LCT1414  
LTC1407/LTC1407A  
LTC1420  
12-/14-Bit, 3Msps Simultaneous Sampling ADC 3V, 2-Channel Differential, 14mW, MSOP Package  
12-Bit, 10Msps Parallel ADC  
12-Bit, 5Msps Parallel ADC  
12-Bit, 3Msps Parallel ADC  
12-Bit, 2.2Msps Serial ADC  
16-Bit, 250ksps Serial ADC  
5V, Selectable Spans, 72dB SINAD  
LTC1405  
5V, Selectable Spans, 115mW  
LTC1412  
±5V Supply, ±2.5V Span, 72dB SINAD  
5V or ±5V Supply, 4.096V or ±2.5V Span  
5V Supply, 1 and 2 Channel, 4.3mW, MSOP Package  
LTC1402  
LTC1864/LTC1865  
DACs  
LTC1666/LTC1667/LTC1668 12-/14-/16-Bit, 50Msps DACs  
87dB SFDR, 20ns Settling Time  
LTC1592  
16-Bit, Serial SoftSpanTM  
I
DAC  
±1LSB INL/DNL, Software Selectable Spans  
OUT  
References  
LT1790-2.5  
LT1461-2.5  
LT1460-2.5  
Micropower Series Reference in SOT-23  
Precision Voltage Reference  
0.05% Initial Accuracy, 10ppm Drift  
0.04% Initial Accuracy, 3ppm Drift  
0.1% Initial Accuracy, 10ppm Drift  
Micropower Series Voltage Reference  
SoftSpan is a trademark of Linear Technology Corporation.  
1403af  
LT/TP 1203 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2002  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1403CMSE#TR

LTC1403 - Serial 12-Bit, 2.8Msps Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1403CMSE#TRPBF

LTC1403 - Serial 12-Bit, 2.8Msps Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1403CMSE-1

Serial 12-Bit/14-Bit, 2.8Msps Sampling ADCs with Shutdown
Linear

LTC1403CMSE-1#PBF

LTC1403-1 - Serial 12-Bit, 2.8Msps Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1403CMSE-1#TRPBF

LTC1403-1 - Serial 12-Bit, 2.8Msps Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1403HMSE

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, PDSO10, PLASTIC, MSOP-10, Analog to Digital Converter
Linear

LTC1403HMSE#PBF

LTC1403 - Serial 12-Bit, 2.8Msps Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC1403HMSE#TR

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, PDSO10, PLASTIC, MSOP-10, Analog to Digital Converter
Linear

LTC1403HMSE#TRPBF

LTC1403 - Serial 12-Bit, 2.8Msps Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC1403IMSE

Serial 12-Bit/14-Bit, 2.8Msps Sampling ADCs with Shutdown
Linear

LTC1403IMSE#PBF

LTC1403 - Serial 12-Bit, 2.8Msps Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1403IMSE#TR

LTC1403 - Serial 12-Bit, 2.8Msps Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear