LTC1418I [Linear]

Low Power, 14-Bit, 200ksps ADC with Serial and Parallel I/O; 低功耗, 14位,串行和并行I位200ksps ADC / O
LTC1418I
型号: LTC1418I
厂家: Linear    Linear
描述:

Low Power, 14-Bit, 200ksps ADC with Serial and Parallel I/O
低功耗, 14位,串行和并行I位200ksps ADC / O

文件: 总28页 (文件大小:715K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1418  
Low Power, 14-Bit, 200ksps  
ADC with Serial and Parallel I/O  
U
FEATURES  
DESCRIPTION  
The LTC®1418 is a low power, 200ksps, 14-bit A/D  
converter. Data output is selectable for 14-bit parallel or  
serial format. This versatile device can operate from a  
single 5V or ±5V supply. An onboard high performance  
sample-and-hold, a precision reference and internal tim-  
ing minimize external circuitry requirements. The low  
15mW power dissipation is made even more attractive  
with two user selectable power shutdown modes.  
Single Supply 5V or ±5V Operation  
Sample Rate: 200ksps  
±1.25LSB INL and ±1LSB DNL Max  
Power Dissipation: 15mW (Typ)  
Parallel or Serial Data Output  
No Missing Codes Over Temperature  
Power Shutdown: Nap and Sleep  
External or Internal Reference  
Differential High Impedance Analog Input  
The LTC1418 converts 0V to 4.096V unipolar inputs from  
a single 5V supply and ±2.048V bipolar inputs from ±5V  
supplies. DC specs include ±1.25LSB INL, ±1LSB DNL  
and no missing codes over temperature. Outstanding AC  
performanceincludes82dBS/(N+D)and94dBTHDatthe  
Nyquist input frequency of 100kHz.  
Input Range: 0V to 4.096V or ±2.048V  
81.5dB S/(N + D) and 94dB THD at Nyquist  
28-Pin Narrow PDIP and SSOP Packages  
U
APPLICATIONS  
The flexible output format allows either parallel or serial I/O.  
The SPI/MICROWIRETM compatible serial I/O port can oper-  
ate as either master or slave and can support clock frequen-  
cies from DC to 10MHz. A separate convert start input and  
a data ready signal (BUSY) allow easy control of conversion  
start and data transfer.  
Remote Data Acquisition  
Battery Operated Systems  
Digital Signal Processing  
Isolated Data Acquisition Systems  
Audio and Telecom Processing  
Medical Instrumentation  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
MICROWIRE is a trademark of National Semiconductor Corporation.  
U
TYPICAL APPLICATION  
Low Power, 200kHz, 14-Bit Sampling A/D Converter  
5V  
10µF  
Typical INL Curve  
V
DD  
1.0  
SER/PAR  
LTC1418  
S/H  
D13  
+
A
IN  
0.5  
D5  
14  
14-BIT ADC  
SELECTABLE  
SERIAL/  
PARALLEL  
PORT  
A
IN  
D4 (EXTCLKIN)  
D3 (SCLK)  
D2 (CLKOUT)  
D1 (D  
0
4.096V  
BUFFER  
)
OUT  
REFCOMP  
D0 (EXT/INT)  
10µF  
–0.5  
BUSY  
CS  
8k  
TIMING AND  
LOGIC  
2.5V  
REFERENCE  
V
RD  
REF  
CONVST  
SHDN  
–1.0  
1µF  
0
4096  
8192  
12288  
16384  
OUTPUT CODE  
AGND  
V
DGND  
SS  
(0V OR 5V)  
1418 TA02  
1418 TA01  
1
LTC1418  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Notes 1, 2)  
TOP VIEW  
ORDER PART  
Supply Voltage (VDD)................................................. 6V  
Negative Supply Voltage (VSS)  
Bipolar Operation Only ........................... 6V to GND  
Total Supply Voltage (VDD to VSS)  
Bipolar Operation Only ....................................... 12V  
Analog Input Voltage (Note 3)  
Unipolar Operation .................. 0.3V to (VDD + 0.3V)  
Bipolar Operation...........(VSS – 0.3V) to (VDD + 0.3V)  
Digital Input Voltage (Note 4)  
+
NUMBER  
1
2
V
V
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
A
A
DD  
IN  
SS  
IN  
LTC1418ACG  
LTC1418ACN  
LTC1418AIG  
LTC1418AIN  
LTC1418CG  
LTC1418CN  
LTC1418IG  
LTC1418IN  
3
BUSY  
V
REF  
4
CS  
REFCOMP  
AGND  
D13 (MSB)  
D12  
5
CONVST  
RD  
6
7
SHDN  
8
SER/PAR  
D0 (EXT/INT)  
D11  
9
D10  
Unipolar Operation ................................0.3V to 10V  
Bipolar Operation.........................(VSS – 0.3V) to 10V  
Digital Output Voltage  
10  
11  
12  
13  
14  
D1 (D )  
OUT  
D9  
D2 (CLKOUT)  
D3 (SCLK)  
D4 (EXTCLKIN)  
D5  
D8  
D7  
D6  
Unipolar Operation .................. 0.3V to (VDD + 0.3V)  
Bipolar Operation...........(VSS – 0.3V) to (VDD + 0.3V)  
Power Dissipation.............................................. 500mW  
Operation Temperature Range  
LTC1418C................................................ 0°C to 70°C  
LTC1418I............................................ 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
DGND  
G PACKAGE  
N PACKAGE  
28-LEAD PLASTIC SSOP 28-LEAD NARROW PDIP  
TJMAX = 110°C, θJA = 95°C/ W (G)  
T
JMAX = 110°C, θJA = 100°C/ W (N)  
Consult factory for Military grade parts.  
U
CO VERTER  
CHARACTERISTICS  
With internal reference (Notes 5, 6) unless otherwise noted.  
LTC1418  
TYP  
LTC1418A  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
13  
14  
(Note 7)  
±0.8  
±0.7  
±5  
±2  
±0.5 ±1.25  
LSB  
±1.5  
±20  
±0.35  
±2  
±1  
LSB  
(Note 8)  
±10  
LSB  
Full-Scale Error  
Internal Reference  
External Reference = 2.5V  
±10  
±5  
±60  
±30  
±20  
±5  
±60  
±15  
LSB  
LSB  
Full-Scale Tempco  
I
I
I
= 0, Internal Reference, Commercial  
= 0, Internal Reference, Industrial  
= 0, External Reference  
±15  
±10  
±20  
±1  
±45  
ppm/°C  
ppm/°C  
ppm/°C  
OUT(REF)  
OUT(REF)  
OUT(REF)  
±5  
U
U
(Note 5)  
A ALOG I PUT  
SYMBOL PARAMETER  
CONDITIONS  
4.75V V 5.25V (Unipolar)  
MIN  
TYP  
MAX  
UNITS  
V
Analog Input Range (Note 9)  
0 to 4.096  
±2.048  
V
V
IN  
DD  
4.75V V 5.25V, 5.25V V 4.75V (Bipolar)  
DD  
SS  
I
Analog Input Leakage Current  
Analog Input Capacitance  
CS = High  
±1  
µA  
IN  
C
Between Conversions (Sample Mode)  
During Conversions (Hold Mode)  
25  
5
pF  
pF  
IN  
t
Sample-and-Hold Acquisition Time Commercial  
Industrial  
300  
300  
1000  
1000  
ns  
ns  
ACQ  
2
LTC1418  
W
U
(Note 5)  
DY  
A IC  
ACCURACY  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
81.5  
94  
95  
MAX  
UNITS  
dB  
S/(N + D) Signal-to-Noise Plus Distortion Ratio  
97.5kHz Input Signal  
79  
THD  
SFDR  
IMD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Intermodulation Distortion  
Full Power Bandwidth  
100kHz Input Signal, First 5 Harmonics  
100kHz Input Signal  
86  
dB  
86  
dB  
f
= 97.7kHz, f = 104.2kHz  
90  
5
dB  
IN1  
IN2  
MHz  
MHz  
Full Linear Bandwidth  
S/(N + D) 77dB  
0.5  
U U  
U
(Note 5)  
I TER AL REFERE CE CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2.520  
±45  
UNITS  
V
V
Output Voltage  
Output Tempco  
I
= 0  
2.480  
2.500  
V
REF  
REF  
OUT  
I
I
= 0, Commercial  
= 0, Industrial  
±10  
±20  
ppm/°C  
ppm/°C  
OUT  
OUT  
V
V
Line Regulation  
4.75V V 5.25V  
0.05  
0.05  
LSB/V  
LSB/V  
REF  
REF  
DD  
5.25V V 4.75V  
SS  
Output ResistanceU  
U
0.1mA ≤  
I
0.1mA  
8
kΩ  
OUT  
(Note 5)  
DIGITAL I PUTS AND OUTPUTS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 5.25V  
= 4.75V  
= 0V to V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
I
±10  
µA  
pF  
IN  
DD  
C
V
Digital Input Capacitance  
High Level Output Voltage  
1.4  
IN  
V
V
= 4.75V, I = 10µA  
= 4.75V, I = 200µA  
4.74  
V
V
OH  
DD  
DD  
O
O
4.0  
V
Low Level Output Voltage  
V
V
= 4.75V, I = 160µA  
0.05  
0.10  
V
V
OL  
DD  
DD  
O
= 4.75V, I = 1.6mA  
0.4  
±10  
15  
O
I
Hi-Z Output Leakage D13 to D0  
Hi-Z Output Capacitance D13 to D0  
Output Source Current  
V
= 0V to V , CS High  
µA  
pF  
OZ  
OUT  
DD  
C
CS High (Note 9)  
OZ  
I
I
V
V
= 0V  
10  
10  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
Output Sink Current  
= V  
DD  
U
W
(Note 5)  
POWER REQUIRE E TS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
4.75  
TYP  
MAX  
UNITS  
V
V
Positive Supply Voltage (Notes 10, 11)  
Negative Supply Voltage (Note 10)  
Positive Supply Current  
5.25  
V
V
DD  
SS  
Bipolar Only (V = 0V for Unipolar)  
4.75  
5.25  
SS  
I
I
Unipolar, RD High (Note 5)  
Bipolar, RD High (Note 5)  
SHDN = 0V, CS = 0V (Note 12)  
SHDN = 0V, CS = 5V (Note 12)  
3.0  
3.9  
570  
2
4.3  
4.5  
mA  
mA  
µA  
DD  
Nap Mode  
Sleep Mode  
µA  
Negative Supply Current  
Power Dissipation  
Bipolar, RD High (Note 5)  
SHDN = 0V, CS = 0V (Note 12)  
SHDN = 0V, CS = 5V (Note 12)  
1.4  
0.1  
0.1  
1.8  
mA  
µA  
µA  
SS  
Nap Mode  
Sleep Mode  
P
Unipolar  
Bipolar  
15.0  
26.5  
21.5  
31.5  
mW  
mW  
DIS  
3
LTC1418  
W U  
TI I G CHARACTERISTICS (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
µs  
f
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
200  
SAMPLE(MAX)  
CONV  
3.4  
0.3  
3.7  
4
1
5
Acquisition Time  
µs  
ACQ  
+ t  
Acquisition Plus Conversion Time  
CS to RD Setup Time  
µs  
ACQ  
1
CONV  
(Notes 9, 10)  
(Notes 9, 10)  
(Notes 9, 10)  
(Note 10)  
0
ns  
CSto CONVSTSetup Time  
CSto SHDNSetup Time to Ensure Nap Mode  
SHDNto CONVSTWake-Up Time from Nap Mode  
CONVST Low Time  
40  
40  
ns  
2
ns  
3
500  
ns  
4
(Notes 10, 11)  
CL = 25pF  
40  
ns  
5
CONVST to BUSY Delay  
35  
35  
70  
ns  
6
Data Ready Before BUSY↑  
20  
15  
ns  
ns  
7
t
t
t
Delay Between Conversions  
Wait Time RDAfter BUSY↑  
Data Access Time After RD↓  
(Note 10)  
500  
–5  
ns  
ns  
8
9
C = 25pF  
L
15  
20  
8
30  
40  
ns  
ns  
10  
C = 100pF  
L
40  
55  
ns  
ns  
t
Bus Relinquish Time  
20  
25  
30  
ns  
ns  
ns  
11  
Commercial  
Industrial  
t
t
t
t
f
f
t
t
t
t
t
RD Low Time  
t
ns  
ns  
12  
13  
14  
15  
10  
CONVST High Time  
40  
Delay Time, SCLKto D  
Valid  
C = 25pF (Note 9)  
35  
25  
70  
ns  
OUT  
L
Time from Previous Data Remain Valid After SCLK↓  
Shift Clock Frequency  
C = 25pF (Note 9)  
L
15  
0
ns  
(Notes 9, 10)  
(Notes 9, 10)  
(Notes 9, 10)  
(Notes 9, 10)  
(Notes 9, 10)  
(Notes 9, 10)  
(Notes 9, 10)  
12.5  
4.5  
MHz  
MHz  
µs  
SCLK  
External Conversion Clock Frequency  
Delay Time, CONVSTto External Conversion Clock Input  
SCLK High Time  
0.03  
EXTCLKIN  
dEXTCLKIN  
H SCLK  
533  
10  
20  
ns  
SCLK Low Time  
ns  
L SCLK  
EXTCLKIN High Time  
250  
250  
ns  
H EXTCLKIN  
L EXTCLKIN  
EXTCLKIN Low Time  
ns  
The  
denotes specifications which apply over the full operating  
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 8: Bipolar offset is the offset voltage measured from 0.5LSB  
when the output code flickers between 0000 0000 0000 00 and  
1111 1111 1111 11.  
temperature range; all other limits and typicals T = 25°C.  
A
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All voltage values are with respect to ground with DGND and  
AGND wired together (unless otherwise noted).  
Note 9: Guaranteed by design, not subject to test.  
Note 10: Recommended operating conditions.  
Note 11: The falling edge of CONVST starts a conversion. If CONVST  
returns high at a critical point during the conversion, it can create small  
errors. For best performance ensure that CONVST returns high either  
within 2.1µs after the conversion starts or after BUSY rises.  
Note 3: When these pin voltages are taken below V or above V , they  
SS  
DD  
will be clamped by internal diodes. This product can handle input currents  
greater than 100mA below V or above V without latchup.  
SS  
CC  
Note 4: When these pin voltages are taken below V they will be clamped  
SS  
by internal diodes. This product can handle input currents greater than  
100mA below V without latchup. These pins are not clamped to V  
.
SS  
DD  
Note 5: V = 5V, V = 0V or 5V, f  
= 200kHz, t = t = 5ns unless  
Note 12: Pins 16 (D4/EXTCLKIN), 17 (D3/SCLK) and 20 (DO/EXT/INT) at  
0V or 5V. See Power Shutdown.  
DD  
SS  
SAMPLE  
r f  
otherwise specified.  
Note 6: Linearity, offset and full-scale specifications apply for a single-  
ended input with A grounded.  
IN  
4
LTC1418  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Nonlinearity  
vs Output Code  
S/(N + D) vs Input Frequency  
and Amplitude  
Typical INL Curve  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.0  
0.5  
1.0  
0.5  
0
V
= 0dB  
IN  
V
= –20dB  
IN  
0
V
IN  
= –60dB  
0.5  
–0.5  
–1.0  
–1.0  
0
4096  
8192  
OUTPUT CODE  
12288  
16384  
1k  
10k  
100k  
1M  
0
4096  
8192  
OUTPUT CODE  
12288  
16384  
INPUT FREQUENCY (Hz)  
1418 G01  
1418 G06  
1418 TA02  
Signal-to-Noise Ratio  
vs Input Frequency  
Spurious-Free Dynamic Range  
vs Input Frequency  
Distortion vs Input Frequency  
0
–20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–20  
–40  
–40  
–60  
–60  
3RD  
THD  
–80  
–80  
2ND  
–100  
–120  
–100  
–120  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
1418 G04  
1418 G02  
1418 G03  
Nonaveraged, 4096 Point FFT,  
Input Frequency = 10kHz  
Nonaveraged, 4096 Point FFT,  
Input Frequency = 100kHz  
Intermodulation Distortion Plot  
0
0
–20  
0
–20  
f
f
f
= 200kHz  
SAMPLE  
IN1  
IN2  
f
f
= 200kHz  
f
f
= 200kHz  
SAMPLE  
IN  
SAMPLE  
IN  
= 97.65625kHz  
= 97.509765kHz  
= 9.9609375kHz  
20  
40  
= 104.248046kHz  
SFDR = 94.29  
SINAD = 81.4  
SFDR = 99.32  
SINAD = 82.4  
–40  
–40  
60  
–60  
–60  
80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
60 70  
FREQUENCY (kHz)  
0
10 20 30 40 50  
80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
1418 G05  
1418 F02b  
1418 F02a  
5
LTC1418  
TYPICAL PERFORMANCE CHARACTERISTICS  
U W  
Power Supply Feedthrough  
vs Ripple Frequency  
Input Offset Voltage Shift  
vs Source Resistance  
Input Common Mode Rejection  
vs Input Frequency  
0
–20  
10  
9
8
7
6
5
4
3
2
1
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40  
–60  
V
V
SS  
DD  
–80  
DGND  
–100  
–120  
10  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
1M  
10k 100k  
INPUT SOURCE RESISTANCE ()  
FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
1418 G10  
1418 G08  
1418 G09  
VDD Supply Current vs  
Temperature (Bipolar Mode)  
V
DD Supply Current vs  
VSS Supply Current vs  
Temperature (Bipolar Mode)  
Temperature (Unipolar Mode)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5
4
3
2
1
0
5
4
3
2
1
0
125  
125  
–75 –50  
0
25 50  
100  
150  
125  
100 150  
–75 –50  
0
25 50  
100  
150  
–25  
75  
–75 –50  
0
25 50  
–25  
75  
–25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1418 G12  
1418 G11  
1418 G13  
VDD Supply Current vs Sampling  
Frequency (Bipolar Mode)  
VDD Supply Current vs Sampling  
Frequency (Unipolar Mode)  
VSS Supply Current vs Sampling  
Frequency (Bipolar Mode)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5
4
3
2
1
0
5
4
3
2
1
0
0
100  
150  
200  
250  
300  
50  
0
50  
150  
200  
250  
300  
0
50  
150  
200  
250  
300  
100  
100  
SAMPLING FREQUENCY (kHz)  
SAMPLING FREQUENCY (kHz)  
SAMPLING FREQUENCY (kHz)  
1418 G14  
1418 G15  
1418 G16  
6
LTC1418  
U
U
U
PIN FUNCTIONS  
AIN+ (Pin 1): Positive Analog Input.  
AIN(Pin 2): Negative Analog Input.  
the internal conversion clock. An input high indicates an  
external conversion clock will be assigned to Pin 16  
(EXTCLKIN).  
VREF (Pin 3): 2.50V Reference Output. Bypass to AGND  
with 1µF.  
SER/PAR (Pin 21): Data Output Mode.  
SHDN (Pin 22): Power Shutdown Input. Low selects  
shutdown. Shutdown mode selected by CS. CS = 0 for nap  
mode and CS = 1 for sleep mode.  
REFCOMP (Pin 4): 4.096V Reference Bypass Pin.  
Bypass to AGND with 10µF tantalum in parallel with 0.1µF  
ceramic.  
RD (Pin 23): Read Input. This enables the output drivers  
when CS is low.  
AGND (Pin 5): Analog Ground.  
D13 to D6 (Pins 6 to 13): Three-State Data Outputs  
(Parallel). D13 is the most significant bit.  
CONVST(Pin24):ConversionStartSignal.Thisactivelow  
signal starts a conversion on its falling edge.  
DGND (Pin 14): Digital Ground for Internal Logic. Tie to  
AGND.  
CS (Pin 25): Chip Select. This input must be low for the  
ADC to recognize the CONVST and RD inputs. CS also sets  
the shutdown mode when SHDN goes low. CS and SHDN  
low select the quick wake-up nap mode. CS high and  
SHDN low select sleep mode.  
D5 (Pin 15): Three-State Data Output (Parallel).  
D4 (EXTCLKIN) (Pin 16): Three-State Data Output  
(Parallel). Conversion clock input (serial) when Pin 20  
(EXT/INT) is tied high.  
BUSY (Pin 26): The BUSY Output Shows the Converter  
Status. It is low when a conversion is in progress.  
D3 (SCLK) (Pin 17): Three-State Data Output (Parallel).  
Data clock input (serial).  
V
SS (Pin 27): Negative Supply, 5V for Bipolar Operation.  
D2(CLKOUT)(Pin18):Three-StateDataOutput(Parallel).  
Conversion clock output (serial).  
Bypass to AGND with 10µF tantalum in parallel with 0.1µF  
ceramic. Analog ground for unipolar operation.  
D1 (DOUT) (Pin 19): Three-State Data Output (Parallel).  
Serial data output (serial).  
VDD (Pin 28): 5V Positive Supply. Bypass to AGND with  
10µF tantalum in parallel with 0.1µF ceramic.  
D0(EXT/INT)(Pin20): Three-StateDataOutput(Parallel).  
Conversion clock selector (serial). An input low enables  
TEST CIRCUITS  
Load Circuits for Access Timing  
Load Circuits for Output Float Delay  
5V  
5V  
1k  
1k  
DBN  
DBN  
DBN  
DBN  
30pF  
1k  
C
L
C
1k  
30pF  
L
DGND  
DGND  
B) V TO HI-Z  
OL  
A) HI-Z TO V AND V TO V  
B) HI-Z TO V AND V TO V  
A) V TO HI-Z  
OH  
OH OL  
OH  
OL OH  
OL  
1418 TC02  
1418 TC01  
7
LTC1418  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
C
SAMPLE  
SAMPLE  
+
A
IN  
V
V
: 5V  
DD  
C
: 0V FOR UNIPOLAR MODE  
5V FOR BIPOLAR MODE  
SS  
A
IN  
8k  
2.5V  
ZEROING SWITCHES  
V
2.5V REF  
REF  
+
REF AMP  
COMP  
14-BIT CAPACITIVE DAC  
4.096V  
REFCOMP  
AGND  
14  
D13  
D0  
SUCCESSIVE APPROXIMATION  
REGISTER  
SHIFT  
REGISTER  
D3/(SCLK)  
D1/(D  
INTERNAL  
CLOCK  
CONTROL LOGIC  
MUX  
DGND  
)
OUT  
1418 BD  
D4 (EXTCLKIN) D0 (EXT/INT) SHDN CONVST RD CS SER/PAR D2/(CLKOUT) BUSY  
NOTE: PIN NAMES IN PARENTHESES  
REFER TO SERIAL MODE  
U
W U U  
APPLICATIONS INFORMATION  
+
CONVERSION DETAILS  
C
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
+
A
A
IN  
IN  
ZEROING SWITCHES  
HOLD  
The LTC1418 uses a successive approximation algorithm  
and an internal sample-and-hold circuit to convert an  
analog signal to a 14-bit parallel or serial output. The ADC  
is complete with a precision reference and an internal  
clock. The control logic provides easy interface to micro-  
processors and DSPs (please refer to Digital Interface  
section for the data format).  
HOLD  
C
HOLD  
HOLD  
+
C
DAC  
+
C
DAC  
COMP  
+
V
DAC  
Conversion start is controlled by the CS and CONVST  
inputs. At the start of the conversion the successive  
approximation register (SAR) is reset. Once a conversion  
cycle has begun it cannot be restarted.  
14  
V
D13  
DAC  
OUTPUT  
LATCH  
SAR  
D0  
1418 F01  
During the conversion, the internal differential 14-bit  
capacitive DAC output is sequenced by the SAR from the  
most significant bit (MSB) to the least significant bit (LSB).  
Figure 1. Simplified Block Diagram  
8
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
0
–20  
+
Referring to Figure 1, the AIN and AIN inputs are con-  
nected to the sample-and-hold capacitors (CSAMPLE) dur-  
ingtheacquirephase andthecomparatoroffsetisnulledby  
the zeroing switches. In this acquire phase, a minimum  
delay of 1µs will provide enough time for the sample-and-  
hold capacitors to acquire the analog signal. During the  
convert phase the comparator zeroing switches open,  
putting the comparator into compare mode. The input  
switches the CSAMPLE capacitors to ground, transferring  
the differential analog input charge onto the summing  
junction. This input charge is successively compared with  
the binary weighted charges supplied by the differential  
capacitive DAC. Bit decisions are made by the high speed  
comparator. At the end of a conversion, the differential  
DAC output balances the AIN+ and AINinput charges. The  
SAR contents (a 14-bit data word) which represent the  
f
f
= 200kHz  
SAMPLE  
IN  
= 9.9609375kHz  
SFDR = 99.32  
SINAD = 82.4  
–40  
–60  
–80  
–100  
–120  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
1418 F02a  
Figure 2a. LTC1418 Nonaveraged, 4096 Point FFT,  
Input Frequency = 10kHz  
0
+
f
f
= 200kHz  
SAMPLE  
IN  
difference of AIN and AIN are loaded into the 14-bit  
output latches.  
= 97.509765kHz  
–20  
–40  
SFDR = 94.29  
SINAD = 81.4  
DYNAMIC PERFORMANCE  
–60  
The LTC1418 has excellent high speed sampling capabil-  
ity. FFT (Fast Fourier Transform) test techniques are used  
to testtheADC’sfrequencyresponse, distortionand noise  
at the rated throughput. By applying a low distortion sine  
wave and analyzing the digital output using an FFT algo-  
rithm, the ADC’s spectral content can be examined for  
frequencies outside the fundamental. Figure 2 shows a  
typical LTC1418 FFT plot.  
–80  
–100  
–120  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
1418 F02b  
Figure 2b. LTC1418 Nonaveraged, 4096 Point FFT,  
Input Frequency = 97.5kHz  
Signal-to-Noise Ratio  
The signal-to-noise plus distortion ratio [S/(N + D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 2a shows a typical spectral content with  
a 200kHz sampling rate and a 10kHz input. The dynamic  
performance is excellent for input frequencies up to and  
beyond the Nyquist limit of 100kHz.  
Effective Number of Bits  
The effective number of bits (ENOBs) is a measurement of  
the resolution of an ADC and is directly related to the  
S/(N + D) by the equation:  
N = [S/(N + D) – 1.76]/6.02  
where N is the effective number of bits of resolution and  
S/(N + D) is expressed in dB. At the maximum sampling  
rate of 200kHz the LTC1418 maintains near ideal ENOBs  
up to the Nyquist input frequency of 100kHz (refer to  
Figure 3).  
9
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
14  
13  
12  
11  
10  
9
shown in Figure 4. The LTC1418 has good distortion  
performance up to the Nyquist frequency and beyond.  
Intermodulation Distortion  
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused by  
the presence of another sinusoidal input at a different  
frequency.  
8
7
6
5
4
3
2
1k  
10k  
100k  
1M  
INPUT FREQUENCY (Hz)  
If two pure sine waves of frequencies fa and fb are applied  
to the ADC input, nonlinearities in the ADC transfer func-  
tion can create distortion products at the sum and differ-  
ence frequencies of mfa ±nfb, where m and n = 0, 1, 2, 3,  
etc. For example, the 2nd order IMD terms include  
(fa + fb). If the two input sine waves are equal in magni-  
tude, thevalue(indecibels)ofthe2ndorderIMDproducts  
can be expressed by the following formula:  
1418 F03  
Figure 3. Effective Bits and Signal/(Noise + Distortion)  
vs Input Frequency  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD is  
expressed as:  
Amplitude at fa+ fb  
(
)
IMD fa + fb = 20Log  
(
)
Amplitude at fa  
2
2
2
2
V2 + V3 + V4 +...Vn  
0
20  
THD = 20Log  
f
f
f
= 200kHz  
SAMPLE  
IN1  
IN2  
V1  
= 97.65625kHz  
= 104.248046kHz  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through Vn are the amplitudes of the  
secondthroughnthharmonics.THDvsInputFrequencyis  
40  
60  
80  
0
–20  
–40  
–60  
–100  
–120  
60 70  
0
10 20 30 40 50  
80 90 100  
FREQUENCY (kHz)  
1418 G05  
3RD  
–80  
Figure 5. Intermodulation Distortion Plot  
THD  
2ND  
–100  
–120  
Peak Harmonic or Spurious Noise  
1k  
10k  
100k  
1M  
INPUT FREQUENCY (Hz)  
The peak harmonic or spurious noise is the largest spec-  
tral component excluding the input signal and DC. This  
value is expressed in decibels relative to the RMS value of  
a full-scale input signal.  
1418 G03  
Figure 4. Distortion vs Input Frequency  
10  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
small-signal settling for full throughput rate. If slower op  
amps are used, more settling time can be provided by  
increasing the time between conversions.  
Full-Power and Full-Linear Bandwidth  
The full-power bandwidth is that input frequency at which  
the amplitude of the reconstructed fundamental is  
reduced by 3dB for a full-scale input signal.  
The best choice for an op amp to drive the LTC1418 will  
depend on the application. Generally, applications fall into  
two categories: AC applications where dynamic specifica-  
tionsaremostcriticalandtimedomainapplicationswhere  
DC accuracy and settling time are most critical. The  
followinglistisasummaryoftheopampsthataresuitable  
for driving the LTC1418. More detailed information is  
available in the Linear Technology Databooks and on the  
LinearViewTM CD-ROM.  
The full-linear bandwidth is the input frequency at which  
the S/(N + D) has dropped to 77dB (12.5 effective bits).  
The LTC1418 has been designed to optimize input band-  
width, allowingtheADCtoundersampleinputsignalswith  
frequenciesabovetheconverter’sNyquistFrequency. The  
noise floor stays very low at high frequencies; S/(N + D)  
becomes dominated by distortion at frequencies far  
beyond Nyquist.  
LT®1354: 12MHz, 400V/µs Op Amp. 1.25mA maximum  
supply current. Good AC and DC specifications. Suitable  
for dual supply application.  
DRIVING THE ANALOG INPUT  
The differential analog inputs of the LTC1418 are easy to  
drive.Theinputsmaybedrivendifferentiallyorasasingle-  
ended input (i.e., theAINinputisgrounded). The AIN+ and  
LT1357: 25MHz, 600V/µs Op Amp. 2.5mA maximum  
supply current. Good AC and DC specifications. Suitable  
for dual supply application.  
AIN inputs are sampled at the same instant. Any  
unwanted signal that is common mode to both inputs will  
be reduced by the common mode rejection of the sample-  
and-hold circuit. The inputs draw only one small current  
spike while charging the sample-and-hold capacitors at  
the end of conversion. During conversion, the analog  
inputs draw only a small leakage current. If the source  
impedance of the driving circuit is low then the LTC1418  
inputs can be driven directly. As source impedance  
increases so will acquisition time (see Figure 6). For  
minimum acquisition time, with high source impedance, a  
bufferamplifiermustbeused.Theonlyrequirementisthat  
the amplifier driving the analog input(s) must settle after  
thesmallcurrentspikebeforethenextconversionstarts—  
1µs for full throughput rate.  
LT1366/LT1367: Dual/Quad Precision Rail-to-Rail Input  
and Output Op Amps. 375µA supply current per amplifier.  
1.8V to ±15V supplies. Low input offset voltage: 150µV.  
Good for low power and single supply applications with  
sampling rates of 20ksps and under.  
LT1498/LT1499: 10MHz, 6V/µs, Dual/Quad Rail-to-Rail  
Input and Output Op Amps. 1.7mA supply current per  
100  
10  
1
Choosing an Input Amplifier  
Choosing an input amplifier is easy if a few requirements  
aretakenintoconsideration.First,chooseanamplifierthat  
has a low output impedance (<100) at the closed-loop  
bandwidth frequency. For example, if an amplifier is used  
in a gain of 1 and has a closed-loop bandwidth of 10MHz,  
then the output impedance at 10MHz must be less than  
100. The second requirement is that the closed-loop  
bandwidth must be greater than 5MHz to ensure adequate  
0.1  
1
10  
100  
1k  
10k  
100k  
SOURCE RESISTANCE ()  
1418 F06  
Figure 6. tACQ vs Source Resistance  
LinearView is a trademark of Linear Technology Corporation.  
11  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
amplifier. 2.2V to ±15V supplies. Good AC performance,  
input noise voltage = 12nV/Hz (typ).  
Input Range  
The ±2.048V and 0V to 4.096V input ranges of the  
LTC1418 are optimized for low noise and low distortion.  
Most op amps also perform well over these ranges,  
allowing direct coupling to the analog inputs and eliminat-  
ing the need for special translation circuitry.  
LT1630/LT1631: 30MHz, 10V/µs, Dual/Quad Rail-to-Rail  
Input and Output Precision Op Amps. 3.5mA supply  
current per amplifier. 2.7V to ±15V supplies. Best AC  
performance, input noise voltage = 6nV/Hz (typ),  
THD = 86dB at 100kHz.  
Some applications may require other input ranges. The  
LTC1418 differential inputs and reference circuitry can  
accommodate other input ranges often with little or no  
additional circuitry. The following sections describe the  
reference and input circuitry and how they affect the input  
range.  
Input Filtering  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add to  
the LTC1418 noise and distortion. The small-signal band-  
widthofthesample-and-holdcircuitis5MHz. Anynoiseor  
distortion products that are present at the analog inputs  
will be summed over this entire bandwidth. Noisy input  
circuitry should be filtered prior to the analog inputs to  
minimize noise. A simple 1-pole RC filter is sufficient for  
many applications. For example, Figure 7 shows a 2000pF  
capacitorfrom +AIN togroundanda100sourceresistor  
to limit the input bandwidth to 800kHz. The 2000pF  
capacitor also acts as a charge reservoir for the input  
sample-and-hold and isolates the ADC input from sam-  
pling glitch sensitive circuitry. High quality capacitors and  
resistors should be used since these components can add  
distortion. NPO and silver mica type dielectric capacitors  
haveexcellentlinearity.Carbonsurfacemountresistorscan  
also generate distortion from self heating and from damage  
that may occur during soldering. Metal film surface mount  
resistors are much less susceptible to both problems.  
INTERNAL REFERENCE  
The LTC1418 has an on-chip, temperature compensated,  
curvature corrected, bandgap reference which is factory  
trimmedto2.500V.Itisinternallyconnectedtoareference  
amplifier and is available at Pin 3. A 8k resistor is in series  
with the output so that it can be easily overdriven in  
applications where an external reference is required, see  
Figure 8. The reference amplifier compensation pin  
(REFCOMP, Pin 4) must be connected to a capacitor to  
ground. The reference is stable with capacitors of 1µF or  
greater. For the best noise performance, a 10µF in parallel  
with a 0.1µF ceramic is recommended.  
The VREF pin can be driven with a DAC or other means  
to provide input span adjustment. The reference should  
be kept in the range of 2.25V to 2.75V for specified  
linearity.  
5V  
100  
1
2
3
4
5
+
A
A
V
ANALOG INPUT  
IN  
IN  
2000pF  
V
DD  
1
2
3
4
+
A
A
V
IN  
5V  
ANALOG  
INPUT  
LTC1418  
IN  
REF  
V
IN  
LTC1418  
V
OUT  
REFCOMP  
AGND  
REF  
10µF  
LT1460  
REFCOMP  
AGND  
1418 F07  
0.1µF  
10µF  
5
1418 F08  
Figure 7. RC Input Filter  
Figure 8. Using the LT1460 as an External Reference  
12  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
scale error adjustment. Zero offset is achieved by adjust-  
ing the offset applied to the AINinput. For zero offset  
error apply 125µV (i.e., 0.5LSB) at the input and adjust  
the offset at the AINinput until the output code flickers  
between00000000000000and00000000000001. For  
full-scale adjustment, an input voltage of 4.095625V  
(FS – 1.5LSBs) is applied to AIN+ and R2 is adjusted until  
the output code flickers between 1111 1111 1111 10 and  
1111 1111 1111 11.  
UNIPOLAR / BIPOLAR OPERATION AND ADJUSTMENT  
Figure 9a shows the ideal input/output characteristics for  
theLTC1418. Thecodetransitionsoccurmidwaybetween  
successive integer LSB values (i.e., 0.5LSB, 1.5LSB,  
2.5LSB,FS1.5LSB).Theoutputcodeisnaturalbinary  
with1LSB=FS/16384=4.096V/16384=250µV.Figure9b  
shows the input/output transfer characteristics for the  
bipolar mode in two’s complement format.  
Unipolar Offset and Full-Scale Error Adjustment  
Bipolar Offset and Full-Scale Error Adjustment  
In applications where absolute accuracy is important,  
offset and full-scale errors can be adjusted to zero. Offset  
error must be adjusted before full-scale error. Figures  
10aand10bshowtheextracomponentsrequiredforfull-  
Bipolaroffsetandfull-scaleerrorsareadjustedinasimilar  
fashion to the unipolar case. Again, bipolar offset error  
must be adjusted before full-scale error. Bipolar offset  
FS  
4.096V  
R7  
R8  
1LSB =  
=
111...111  
111...110  
111...101  
111...100  
16384 16384  
48k  
5V  
100Ω  
ANALOG INPUT  
R3  
V
1
DD  
R1  
50k  
+
A
IN  
IN  
R4  
2
3
4
5
24k  
100Ω  
A
V
LTC1418  
R5 R2  
47k 50k  
REF  
UNIPOLAR  
ZERO  
R6  
24k  
REFCOMP  
AGND  
000...011  
000...010  
000...001  
000...000  
V
SS  
0.1µF  
10µF  
1418 F10a  
0V  
1
LSB  
FS – 1LSB  
INPUT VOLTAGE (V)  
1418 F9a  
Figure 10a. Offset and Full-Scale Adjust Circuit  
If 5V Is Not Available  
Figure 9a. LTC1418 Unipolar Transfer Characteristics  
–5V  
5V  
011...111  
ANALOG INPUT  
BIPOLAR  
ZERO  
V
DD  
011...110  
1
2
3
4
5
R1  
50k  
+
A
A
V
IN  
IN  
R3  
24k  
R4  
100Ω  
000...001  
000...000  
111...111  
111...110  
LTC1418  
R5 R2  
47k 50k  
REF  
R6  
24k  
REFCOMP  
AGND  
V
SS  
0.1µF  
100...001  
100...000  
10µF  
FS = 4.096V  
1LSB = FS/16384  
1418 F10b  
*
1N5817  
*ONLY NEEDED IF V GOES  
SS  
ABOVE GROUND  
–5V  
–1 0V  
LSB  
1
LSB  
–FS/2  
FS/2 – 1LSB  
INPUT VOLTAGE (V)  
1418 F9b  
Figure 10b. Offset and Full-Scale Adjust Circuit  
If 5V Is Available  
Figure 9b. LTC1418 Bipolar Transfer Characteristics  
13  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
nected to this analog ground plane. Low impedance ana-  
loganddigitalpowersupplycommonreturnsareessential  
to low noise operation of the ADC and the foil width for  
these tracks should be as wide as possible. In applications  
where the ADC data outputs and control signals are  
connected to a continuously active microprocessor bus, it  
is possible to get errors in the conversion results. These  
errors are due to feedthrough from the microprocessor to  
the successive approximation comparator. The problem  
can be eliminated by forcing the microprocessor into a  
wait state during conversion or by using three-state buff-  
ers to isolate the ADC data bus. The traces connecting the  
pins and bypass capacitors must be kept short and should  
be made as wide as possible.  
error adjustment is achieved by adjusting the offset  
applied to the AIN input. For zero offset error apply  
+
125µV (i.e., 0.5LSB) at AIN and adjust the offset  
at the AIN input until the output code flickers between  
0000 0000 0000 00 and 1111 1111 1111 11. For  
full-scale adjustment, an input voltage of 2.047625V  
(FS – 1.5LSBs) is applied to AIN+ and R2 is adjusted until  
the output code flickers between 0111 1111 1111 10 and  
0111 1111 1111 11.  
BOARD LAYOUT AND GROUNDING  
Wire wrap boards are not recommended for high resolu-  
tion or high speed A/D converters. To obtain the best  
performance from the LTC1418, a printed circuit board  
with ground plane is required. The ground plane under the  
ADC area should be as free of breaks and holes as  
possible, such that a low impedance path between all ADC  
grounds and all ADC decoupling capacitors is provided. It  
iscriticaltopreventdigitalnoisefrombeingcoupledtothe  
analog input, reference or analog power supply lines.  
Layout should ensure that digital and analog signal lines  
are separated as much as possible. In particular, care  
should be taken not to run any digital track alongside an  
analog signal track.  
The LTC1418 has differential inputs to minimize noise  
coupling. Common mode noise on the AIN+ and AINleads  
will be rejected by the input CMRR. The AINinput can be  
usedasagroundsensefortheAIN+ input;theLTC1418will  
hold and convert the difference voltage between AIN+ and  
AIN. The leads to AIN+ (Pin 1) and AIN(Pin 2) should be  
kept as short as possible. In applications where this is not  
possible, the AIN+ and AINtraces should be run side by  
side to equalize coupling.  
SUPPLY BYPASSING  
An analog ground plane separate from the logic system  
ground should be established under and around the ADC.  
Pin 5 (AGND) and Pin 14 (DGND) and all other analog  
groundsshouldbeconnectedtothissingleanalogground  
plane. The REFCOMP bypass capacitor and the VDD by-  
pass capacitor should also be connected to this analog  
ground plane. No other digital grounds should be con-  
High quality, low series resistance ceramic, 10µF bypass  
capacitors should be used at the VDD and REFCOMP pins.  
Surface mount ceramic capacitors such as Murata  
GRM235Y5V106Z016 provide excellent bypassing in a  
small board space. Alternatively 10µF tantalum capacitors  
in parallel with 0.1µF ceramic capacitors can be used.  
1
+
DIGITAL  
SYSTEM  
LTC1418  
REFCOMP AGND  
A
IN  
A
IN  
V
V
V
DD  
DGND  
14  
REF  
SS  
ANALOG  
INPUT  
CIRCUITRY  
2
3
4
5
27  
10µF  
28  
10µF  
+
1µF  
10µF  
ANALOG GROUND PLANE  
1418 F11  
Figure 11. Power Supply Grounding Practice  
14  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
15  
LTC1418  
APPLICATIONS INFORMATION  
U
W U U  
1418 F12b  
Figure 12b. Suggested Evaluation Circuit Board— Component Side Top Silkscreen  
1418 F12c  
Figure 12c. Suggested Evaluation Circuit Board—Top Layer  
16  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
1418 F12d  
Figure 12d. Suggested Evaluation Circuit Board—Solder Side Layout  
Internal Clock  
Bypass capacitors must be located as close to the pins as  
possible. The traces connecting the pins and the bypass  
capacitorsmustbekeptshortandshouldbemadeaswide  
as possible.  
The ADC has an internal clock. In parallel output mode the  
internal clock is always used as the conversion clock. In  
serial output mode either the internal clock or an external  
clockmaybeusedastheconversionclock(seeFigure20).  
The internal clock is factory trimmed to achieve a typical  
conversion time of3.4µs and a maximumconversiontime  
over the full operating temperature range of 4µs. No exter-  
naladjustmentsarerequired,andwiththeguaranteedmaxi-  
mum acquisition time of 1µs, throughput performance of  
200ksps is assured.  
Example Layout  
Figures 12a, 12b, 12c and 12d show the schematic and  
layoutofasuggestedevaluationboard.Thelayoutdemon-  
stratestheproperuseofdecouplingcapacitorsandground  
plane with a 2-layer printed circuit board.  
DIGITAL INTERFACE  
Power Shutdown  
The LTC1418 can operate in serial or parallel mode. In  
parallel mode the ADC is designed to interface with micro-  
processors as a memory mapped device. The CS and RD  
control inputs are common to all peripheral memory  
interfacing. In serial mode only four digital interface lines  
are required, SCLK, CONVST, EXTCLKIN and DOUT. SCLK,  
the serial data shift clock can be an external input or  
supplied by the LTC1418 internal clock.  
The LTC1418 provides two power shutdown modes, nap  
andsleep, tosavepowerduringinactiveperiods. Thenap  
mode reduces the power by 80% and leaves only the  
digitallogicandreferencepoweredup. Thewake-uptime  
from nap to active is 500ns (see Figure 13a). In sleep  
mode all bias currents are shut down and only leakage  
current remainsabout 2µA. Wake-up time from sleep  
17  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
mode is much slower since the reference circuit must  
power up and settle to 0.005% for full 14-bit accuracy.  
Sleep mode wake-up time is dependent on the value of  
the capacitor connected to the REFCOMP (Pin 4). The  
wake-up time is 30ms with the recommended 10µF  
capacitor. Shutdown is controlled by Pin 22 (SHDN); the  
ADC is in shutdown when it is low. The shutdown mode  
is selected with Pin 25 (CS); low selects nap (see Figure  
13b), high selects sleep.  
CS  
CONVST  
RD  
t
2
t
1
1418 F14  
Figure 14. CS to CONVST Set-Up Timing  
or serial data formats, outputs will be active only when CS  
and RD are low. Any other combination of CS and RD will  
three-state the output. In unipolar mode (VSS = 0V) the  
datawillbeinstraightbinaryformat(correspondingtothe  
unipolar input range). In bipolar mode (VSS = 5V), the  
datawillbeintwo’scomplementformat(correspondingto  
the bipolar input range).  
SHDN  
t
4
CONVST  
1418 F13a  
Figure 13a. SHDN to CONVST Wake-Up Timing  
Parallel Output Mode  
CS  
Parallel mode is selected with a logic 0 applied to the  
SER/PARpin.Figures15through19showdifferentmodes  
of parallel output operation. In modes 1a and 1b (Figures  
15 and 16) CS and RD are both tied low. The falling edge  
of CONVST starts the conversion. The data outputs are  
always enabled and data can be latched with the BUSY  
rising edge. Mode 1a shows operation with a narrow logic  
low CONVST pulse. Mode 1b shows a narrow logic high  
CONVST pulse.  
t
3
SHDN  
1418 F13b  
Figure 13b. CS to SHDN Timing  
Conversion Control  
Conversion start is controlled by the CS and CONVST  
inputs.AfallingedgeofCONVSTpinwillstartaconversion  
after the ADC has been selected (i.e., CS is low, see Figure  
14). Once initiated, it cannot be restarted until the conver-  
sion is complete. Converter status is indicated by the  
BUSY output. BUSY is low during a conversion.  
In mode 2 (Figure 17) CS is tied low. The falling edge of  
CONVST signal again starts the conversion. Data outputs  
are in three-state until read by the MPU with the RD signal.  
Mode 2 can be used for operation with a shared databus.  
In slow memory and ROM modes (Figures 18 and 19), CS  
istiedlowandCONVSTandRDaretiedtogether. TheMPU  
starts the conversion and reads the output with the RD  
signal. Conversions are started by the MPU or DSP (no  
external sample clock).  
Data Output  
The data format is controlled by the SER/PAR input pin;  
logic low selects parallel output format. In parallel mode  
the14-bitdataoutputwordD0toD13isupdatedattheend  
of each conversion on Pins 6 to 13 and Pins 15 to 20. A  
logic high applied to SER/PAR selects the serial formatted  
data output and Pins 16 to 20 assume their serial function,  
Pins 6 to 13 and 15 are in the Hi-Z state. In either parallel  
InslowmemorymodetheprocessortakesRD(=CONVST)  
low and starts the conversion. BUSY goes low forcing the  
processorintoawaitstate.Thepreviousconversionresult  
appears on the data outputs. When the conversion is  
complete, the new conversion results appear on the data  
18  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
CS = RD = 0  
CONVST  
t
CONV  
(SAMPLE N)  
t
5
t
t
8
6
BUSY  
DATA  
t
7
DATA (N – 1)  
DB13 TO DB0  
DATA N  
DB13 TO DB0  
DATA (N + 1)  
DB13 TO DB0  
1418 F15  
Figure 15. Mode 1a. CONVST Starts a Conversion. Data Outputs Always Enabled  
(CONVST =  
)
t
13  
t
CS = RD = 0  
CONV  
t
5
CONVST  
t
t
8
6
t
6
BUSY  
t
7
DATA (N – 1)  
DB13 TO DB0  
DATA N  
DB13 TO DB0  
DATA (N + 1)  
DB13 TO DB0  
DATA  
1418 F16  
Figure 16. Mode 1b. CONVST Starts a Conversion. Data Outputs Always Enabled  
(CONVST =  
)
t
(SAMPLE N)  
CS = 0  
12  
t
t
8
CONV  
t
5
CONVST  
BUSY  
RD  
t
6
t
t
11  
9
t
12  
t
10  
DATA N  
DB13 TO DB0  
DATA  
1418 F17  
Figure 17. Mode 2. CONVST Starts a Conversion. Data is Read by RD  
19  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
CS = 0  
t
t
8
CONV  
(SAMPLE N)  
RD = CONVST  
t
6
t
11  
BUSY  
DATA  
t
t
7
10  
DATA (N – 1)  
DB13 TO DB0  
DATA N  
DB13 TO DB0  
DATA N  
DB13 TO DB0  
DATA (N + 1)  
DB13 TO DB0  
1418 F18  
Figure 18. Slow Memory Mode Timing  
CS = 0  
t
t
8
CONV  
(SAMPLE N)  
RD = CONVST  
BUSY  
t
t
11  
6
t
10  
DATA (N – 1)  
DB13 TO DB0  
DATA N  
DB13 TO DB0  
DATA  
1418 F19  
Figure 19. ROM Mode Timing  
eitherbeforethenextconversionstartsoritcanbeclocked  
out during the next conversion. To enable the serial data  
output buffer and shift clock, CS and RD must be low.  
outputs; BUSY goes high releasing the processor and the  
processor takes RD (= CONVST) back high and reads the  
new conversion data.  
Figure 20 shows a function block diagram of the LTC1418  
in serial mode. There are two pieces to this circuitry: the  
conversion clock selection circuit (EXT/INT, EXTCLKIN  
andCLKOUT)andtheserialport(SCLK,DOUT,CSandRD).  
In ROM mode, the processor takes RD (= CONVST) low,  
startingaconversionandreadingthepreviousconversion  
result. Aftertheconversioniscomplete, theprocessorcan  
read the new result and initiate another conversion.  
Conversion Clock Selection (Serial Mode)  
Serial Output Mode  
In Figure 20, the conversion clock controls the internal  
ADC operation. The conversion clock can be either inter-  
nal or external. By connecting EXT/INT low, the internal  
clock is selected. This clock generates 16 clock cycles  
which feed into the SAR for each conversion.  
Serial output mode is selected when the SER/PAR input  
pin is high. In this mode, Pins 16 to 20, D0 (EXT/INT), D1  
(DOUT), D2 (CLKOUT), D3 (SCLK) and D4 (EXTCLKIN)  
assume their serial functions as shown in Figure 20.  
(During this discussion these pins will be referred to by  
their serial function names: EXT/INT, DOUT, CLKOUT,  
SCLK and EXTCLKIN.) As in parallel mode, conversions  
are started by a falling CONVST edge with CS low. After a  
conversion is completed and the output shift register has  
been updated, BUSY will go high and valid data will be  
available on DOUT (Pin 19). This data can be clocked out  
To select an external conversion clock, tie EXT/INT high  
and apply an external conversion clock to EXTCLKIN (Pin  
16). (When an external shift clock (SCLK) is used during  
a conversion, the SCLK should be used as the external  
conversion clock to avoid the noise generated by the  
20  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
• • •  
17  
23  
25  
SCLK*  
RD  
CLOCK  
INPUT  
DATA  
IN  
14  
DATA  
OUT  
SHIFT  
REGISTER  
CS  
THREE  
STATE  
BUFFER  
19  
D
OUT  
*
SAR  
16 CONVERSION CLOCK CYCLES  
THREE  
STATE  
BUFFER  
18  
CLKOUT*  
• • •  
EOC  
16  
20  
EXTCLKIN*  
EXT/INT*  
INTERNAL  
CLOCK  
26  
BUSY  
*PINS 16 TO 20 ARE LABELED WITH THEIR SERIAL FUNCTIONS  
1418 F20  
Figure 20. Functional Block Diagram for Serial Mode (SER/PAR = High)  
asynchronous clocks. To maintain accuracy the external  
conversion clock frequency must be between 30kHz and  
4.5MHz.) The SAR sends an end of conversion signal,  
EOC, thatgatestheexternalconversionclocksothatonly  
16 clock cycles can go into the SAR, even if the external  
clock, EXTCLKIN, contains more than 16 cycles.  
The SCLK is used to clock the shift register. Data may be  
clocked out with the internal conversion clock operating  
asamasterbyconnectingCLKOUT(Pin18)toSCLK(Pin  
17) or with an external data clock applied to D3 (SCLK).  
The minimum number of SCLK cycles required to  
transfer a data word is 14. Normally, SCLK contains 16  
clockcyclesforawordlengthof16bits;14bitswithMSB  
first, followed by two trailing zeros.  
When CS and RD are low, these 16 cycles of conversion  
clock (whether internally or externally generated) will  
appear on CLKOUT during each conversion and then  
CLKOUT will remain low until the next conversion. If  
desired, CLKOUT can be used as a master clock to drive  
the serial port. Because CLKOUT is running during the  
conversion,itisimportanttoavoidexcessiveloadingthat  
can cause large supply transients and create noise. For  
the best performance, limit CLKOUT loading to 20pF.  
A logic high on RD disables SCLK and three-states DOUT  
.
IncaseofusingacontinuousSCLK, RDcanbecontrolled  
to limit the number of shift clocks to the desired number  
(i.e., 16 cycles) and to three-state DOUT after the data  
transfer.  
A logic high on CS three-states the DOUT output buffer. It  
also inhibits conversion when it is tied high. In power  
shutdown mode (SHDN = low), a high CS selects sleep  
mode while a low CS selects nap mode. For normal serial  
port operation, CS can be grounded.  
Serial Port  
The serial port in Figure 20 is made up of a 16-bit shift  
register and a three-state output buffer that are con-  
trolled by three inputs: SCLK, RD and CS. The serial port  
has one output, DOUT, that provides the serial output  
data.  
DOUT outputs the serial data; 14 bits, MSB first, on the  
falling edge of each SCLK (see Figures 21 and 22). If 16  
SCLKs are provided, the 14 data bits will be followed by  
21  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
two zeros. The MSB (D13) will be valid on the first rising  
and the first falling edge of the SCLK. D12 will be valid on  
the second rising and the second falling edge as will all  
the remaining bits. The data may be captured on either  
edge. The largest hold time margin is achieved if data is  
captured on the rising edge of SCLK.  
SCLK  
V
t
IL  
t
14  
15  
V
V
OH  
D
OUT  
OL  
1418 F21  
BUSY gives the end of conversion indication. When the  
LTC1418 is configured as a master serial device, BUSY  
can be used as a framing pulse and to three-state the  
Figure 21. SCLK to DOUT Delay  
BUSY (= RD)  
24  
26  
23  
17  
CONVST  
CONVST  
BUSY  
RD  
µP OR DSP  
(CONFIGURED  
AS SLAVE)  
OR  
SCLK  
LTC1418  
CLKOUT  
SHIFT  
CLKOUT ( = SCLK)  
18  
REGISTER  
D
OUT  
19  
20  
D
OUT  
EXT/INT  
CS  
25  
1418 F22a  
(SAMPLE N)  
CS = EXT/INT = 0  
t
(SAMPLE N + 1)  
5
CONVST  
t
13  
t
t
8
6
BUSY (= RD)  
HOLD  
9
SAMPLE  
HOLD  
t
10  
1
2
3
4
5
6
7
8
10  
11  
12  
13  
14  
15  
16  
1
2
3
CLKOUT (= SCLK)  
t
7
Hi-Z  
Hi-Z  
FILL  
ZEROS  
D
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D13  
D13  
D12 D11  
DATA N  
OUT  
DATA (N – 1)  
t
CONV  
t
1418 F22b  
11  
CLKOUT  
(= SCLK)  
V
IL  
t
14  
t
15  
V
V
OH  
OL  
D
OUT  
D13  
D12  
D11  
CAPTURE ON  
CAPTURE ON  
RISING CLOCK FALLING CLOCK  
Figure 22. Internal Conversion Clock Selected. Data Transferred During Conversion Using  
the ADC Clock Output as a Master Shift Clock (SCLK Driven from CLKOUT)  
22  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
serial port after transferring the serial output data by  
tying it to the RD pin.  
clock and the SCLK. The internal clock has been optimized  
for the fastest conversion time, consequently this mode  
can provide the best overall speed performance. To select  
an internal conversion clock, tie EXT/INT (Pin 20) low. The  
internal clock appears on CLKOUT (Pin 18) which can be  
tied to SCLK (Pin 17) to supply the SCLK.  
Figures 22 to 25 show several serial modes of operation,  
demonstrating the flexibility of the LTC1418 serial port.  
Serial Data Output During a Conversion  
Using External Clock for Conversion and Data Transfer.  
In Figure 23, data from the previous conversion is output  
during the conversion with an external clock providing  
both the conversion clock and the shift clock. To select an  
external conversion clock, tie EXT/INT high and apply the  
Using Internal Conversion Clock for Conversion and  
Data Transfer. Figure 22 shows data from the previous  
conversion being clocked out during the conversion with  
the LTC1418 internal clock providing both the conversion  
BUSY (= RD)  
24  
26  
23  
CONVST  
CONVST  
BUSY  
RD  
EXTCLKIN ( = SCLK)  
16  
EXTCLKIN  
µP OR DSP  
LTC1418  
SCLK  
17  
D
OUT  
19  
20  
D
OUT  
EXT/INT  
CS  
25  
5V  
1418 F23a  
(SAMPLE N)  
CS = 0, EXT/INT = 5  
t
(SAMPLE N + 1)  
5
CONVST  
t
13  
t
6
t
8
BUSY (= RD)  
HOLD  
9
SAMPLE  
HOLD  
2
t
dEXTCLKIN  
1
2
3
4
5
6
7
8
10  
11  
12  
13  
14  
15  
16  
1
3
EXTCLKIN (= SCLK)  
t
10  
t
7
Hi-Z  
Hi-Z  
FILL  
ZEROS  
D
OUT  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D13  
D13  
D12 D11  
DATA N  
DATA (N – 1)  
t
CONV  
t
11  
1418 F23b  
EXTCLKIN  
(= SCLK)  
t
LEXTCLKIN  
V
IL  
t
HEXTCLKIN  
t
14  
t
15  
V
OH  
D
D13  
D12  
D11  
OUT  
V
OL  
CAPTURE ON  
CAPTURE ON  
RISING CLOCK FALLING CLOCK  
Figure 23. External Conversion Clock Selected. Data Transferred During Conversion Using  
the External Clock (External Clock Drives Both EXTCLKIN and SCLK)  
23  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
clocktoEXTCLKIN. ThesameclockisalsoappliedtoSCLK  
to provide a data shift clock. To maintain accuracy the  
conversion clock frequency must be between 30kHz and  
4.5MHz.  
Serial Data Output After a Conversion  
UsingInternalConversionClockandExternalDataClock.  
In this mode, data is output after the end of each conver-  
sion but before the next conversion is started (Figure 24).  
The internal clock is used as the conversion clock and an  
external clock is used for the SCLK. This mode is useful in  
applications where the processor acts as a master serial  
device. This mode is SPI and MICROWIRE compatible. It  
It is not recommended to clock data with an external clock  
during a conversion that is running on an internal clock  
because the asynchronous clocks may create noise.  
24  
26  
23  
17  
INT  
C0  
CONVST  
CONVST  
BUSY  
RD  
SCK  
SCLK  
LTC1418  
µP OR DSP  
19  
20  
MISO  
D
OUT  
EXT/INT  
CS  
25  
1418 F24a  
t
5
CS = EXT/INT = 0  
CONVST  
t
13  
t
6
t
8
SAMPLE  
BUSY  
RD  
HOLD  
t
9
1
2
3
4
5
9
6
8
7
7
8
6
9
5
10 11 12 13 14 15 16  
SCLK  
t
10  
t
11  
Hi-Z  
FILL  
Hi-Z  
t
D
OUT  
D13 12 11 10  
4
3
2
1
0
ZEROS  
(SAMPLE N)  
DATA N  
CONV  
1418 F24b  
t
LSCLK  
SCLK  
V
t
IL  
HSCLK  
t
14  
t
15  
V
V
OH  
OL  
D
D13  
D12  
D11  
OUT  
CAPTURE ON  
CAPTURE ON  
RISING CLOCK FALLING CLOCK  
Figure 24. Internal Conversion Clock Selected. Data Transferred After Conversion  
Using an External SCLK. BUSYIndicates End of Conversion  
24  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
alsoallowsoperationwhentheSCLKfrequencyisverylow  
(less than 30kHz). To select the internal conversion clock  
tie EXT/INT low. The external SCLK is applied to SCLK. RD  
can be used to gate the external SCLK, such that data will  
clock only after RD goes low and to three-state DOUT after  
data transfer. If more than 16 SCLKs are provided, more  
zeros will be filled in after the data word indefinitely.  
Using External Conversion Clock and External Data  
Clock. In Figure 25, data is also output after each conver-  
sion is completed and before the next conversion is  
started. An external clock is used for the conversion clock  
and either another or the same external clock is used for  
the SCLK. This mode is identical to Figure 24 except that  
an external clock is used for the conversion. This mode  
24  
16  
26  
23  
CLKOUT  
INT  
CONVST  
CONVST EXTCLKIN  
BUSY  
RD  
C0  
µP OR DSP  
LTC1418  
SCLK  
17  
19  
20  
SCK  
MISO  
D
OUT  
EXT/INT  
5V  
1418 F25a  
CS  
25  
1
5
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
4
CS = 0, EXT/INT = 5  
EXTCLKIN  
t
dEXTCLKIN  
t
t
7
CONVST  
t
13  
t
6
t
8
SAMPLE  
BUSY  
RD  
HOLD  
t
9
1
2
3
4
5
6
8
7
7
8
6
9
5
10 11 12 13 14 15 16  
SCLK  
t
t
11  
10  
Hi-Z  
FILL  
Hi-Z  
D
OUT  
D13 12 11 10  
9
4
3
2
1
0
ZEROS  
(SAMPLE N)  
t
CONV  
DATA N  
1418 F25b  
t
LSCLK  
SCLK  
V
IL  
t
HSCLK  
t
14  
t
15  
V
OH  
D
D13  
D12  
D11  
OUT  
V
OL  
CAPTURE ON  
CAPTURE ON  
RISING CLOCK FALLING CLOCK  
Figure 25. External Conversion Clock Selected. Data Transferred After Conversion  
Using an External SCLK. BUSYIndicates End of Conversion  
25  
LTC1418  
U
W U U  
APPLICATIONS INFORMATION  
accuracy. If more than 16 SCLKs are provided, more zeros  
will be filled in after the data word indefinitely. To select the  
external conversion clock tie EXT/INT high. The external  
SCLKisappliedtoSCLK.RDcanbeusedtogatetheexternal  
SCLK such that data will clock only after RD goes low.  
allows the user to synchronize the A/D conversion to an  
external clock either to have precise control of the internal  
bit test timing or to provide a precise conversion time. As in  
Figure 24, this mode works when the SCLK frequency is  
very low (less than 30kHz). However, the external conver-  
sion clock must be between 30kHz and 4.5MHz to maintain  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
G Package  
28-Lead Plastic SSOP (0.209)  
(LTC DWG # 05-08-1640)  
0.397 – 0.407*  
(10.07 – 10.33)  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
0.301 – 0.311  
(7.65 – 7.90)  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
0.205 – 0.212**  
(5.20 – 5.38)  
0.068 – 0.078  
(1.73 – 1.99)  
0° – 8°  
0.0256  
(0.65)  
BSC  
0.005 – 0.009  
(0.13 – 0.22)  
0.022 – 0.037  
(0.55 – 0.95)  
0.002 – 0.008  
(0.05 – 0.21)  
0.010 – 0.015  
(0.25 – 0.38)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
G28 SSOP 0694  
26  
LTC1418  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
N Package  
28-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
1.370*  
(34.789)  
MAX  
28 27 26 25 24  
23 22 21 20  
19 18 17 16 15  
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.020  
(0.508)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
0.125  
(3.175)  
MIN  
0.005  
(0.127)  
MIN  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.325  
–0.015  
+0.889  
8.255  
N28 1197  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
27  
LTC1418  
TYPICAL APPLICATION  
U
Single 5V Supply, 200kHz, 14-Bit Sampling A/D Converter  
LTC1418  
5V  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
DIFFERENTIAL  
ANALOG INPUT  
(0V TO 4.096V)  
+
A
A
V
V
DD  
IN  
IN  
V
SS  
10µF  
V
REF  
3
OUTPUT  
2.5V  
BUSY  
CS  
REF  
1N5817*  
4
REFCOMP  
AGND  
D13(MSB)  
D12  
5
1µF  
10µF  
CONVST  
RD  
µP CONTROL  
LINES  
6
7
SHDN  
8
D11  
SER/PAR  
(EXT/INT)D0  
9
D10  
*REQUIRED ONLY IF V CAN BECOME  
SS  
POSITIVE WITH RESPECT TO GROUND  
10  
11  
12  
13  
14  
D9  
(D )D1  
OUT  
D8  
(CLKOUT)D2  
(SCLK)D3  
(EXTCLKIN )D4  
D5  
14-BIT  
PARALLEL  
BUS  
D7  
D6  
DGND  
1418 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC1274/LTC1277  
LTC1412  
Low Power, 12-Bit, 100ksps ADCs  
12-Bit, 3Msps Sampling ADC  
10mW Power Dissipation, Parallel/Byte Interface  
Best Dynamic Performance, SINAD = 72dB at Nyquist  
55mW Power Dissipation, 72dB SINAD  
LTC1415  
Single 5V, 12-Bit, 1.25Msps ADC  
Low Power, 14-Bit, 400ksps ADC  
Low Power, 14-Bit, 800ksps ADC  
16-Bit, 333ksps Sampling ADC  
Single 5V, 16-Bit, 100ksps ADC  
LTC1416  
70mW Power Dissipation, 80.5dB SINAD  
LTC1419  
True 14-Bit Linearity, 81.5dB SINAD, 150mW Dissipation  
±2.5V Input, SINAD = 90dB, THD = 100dB  
LTC1604  
LTC1605  
Low Power, ±10V Inputs, Parallel/Byte Interface  
DACs  
LTC1595  
16-Bit CMOS Multiplying DAC in SO-8  
16-Bit CMOS Multiplying DAC  
±1LSB Max INL/DNL, 1nV • sec Glitch, DAC8043 Upgrade  
±1LSB Max INL/DNL, DAC8143/AD7543 Upgrade  
LTC1596  
Reference  
LT1019-2.5  
Precision Bandgap Reference  
0.05% Max, 5ppm/°C Max  
1418f LT/TP 0798 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1998  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1418IG

Low Power, 14-Bit, 200ksps ADC with Serial and Parallel I/O
Linear

LTC1418IG#PBF

LTC1418 - Low Power, 14-Bit, 200ksps ADC with Serial and Parallel I/O; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1418IG#TRPBF

LTC1418 - Low Power, 14-Bit, 200ksps ADC with Serial and Parallel I/O; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1418IN

Low Power, 14-Bit, 200ksps ADC with Serial and Parallel I/O
Linear

LTC1418IN#PBF

LTC1418 - Low Power, 14-Bit, 200ksps ADC with Serial and Parallel I/O; Package: PDIP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1418IN#TRPBF

SUCCESSIVE APPROXIMATION ADC
Linear

LTC1419

14-Bit, 800ksps Sampling A/D Converter with Shutdown
Linear

LTC1419ACG

14-Bit, 800ksps Sampling A/D Converter with Shutdown
Linear

LTC1419ACG#PBF

暂无描述
Linear

LTC1419ACG#TR

LTC1419 - 14-Bit, 800ksps Sampling A/D Converter with Shutdown; Package: SSOP; Pins: 28; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1419ACSW

14-Bit, 800ksps Sampling A/D Converter with Shutdown
Linear

LTC1419ACSW#TR

LTC1419 - 14-Bit, 800ksps Sampling A/D Converter with Shutdown; Package: SO; Pins: 28; Temperature Range: 0&deg;C to 70&deg;C
Linear