LTC1520CS#PBF [Linear]

LTC1520 - 50Mbps Precision Quad Line Receiver; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C;
LTC1520CS#PBF
型号: LTC1520CS#PBF
厂家: Linear    Linear
描述:

LTC1520 - 50Mbps Precision Quad Line Receiver; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C

光电二极管 接口集成电路
文件: 总8页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1520  
50Mbps Precision Quad  
Line Receiver  
U
DESCRIPTION  
FEATURES  
The LTC®1520 is a high speed, precision differential line  
receiver that can operate at data rates as high as 50Mbps.  
A unique architecture provides very stable propagation  
delays and low skew over a wide input common mode,  
input overdrive and ambient temperature range. Propaga-  
tion delay is 18ns ±3ns, while typically tPLH/tPHL skew is  
500ps and channel-to-channel skew is 400ps.  
Precision Propagation Delay: 18ns ±3ns Over  
Temperature  
Data Rate: 50Mbps  
Low tPLH/tPHL Skew: 500ps Typ  
Low Channel-to-Channel Skew: 400ps Typ  
Rail-to-Rail Input Common Mode Range  
High Input Resistance: 18k, Even When Unpowered  
Hot Swap Capable  
Can Withstand Input DC Levels of ±10V  
Each receiver translates differential input levels (VID  
100mV) into valid CMOS and TTL output levels. Its high  
input resistance (18k) allows many receivers to be con-  
nected to the same driver. The receiver outputs go into a  
high impedance state when disabled.  
Short-Circuit Protected  
Single 5V Supply  
LVDS Compatible  
Will Not Oscillate with Slow Input Signals  
Protection features include thermal shutdown and a con-  
trolled maximum short-circuit current (50mA max) that  
does not oscillate in and out of short-circuit mode. Input  
resistance remains 18k when the device is unpowered or  
disabled,thusallowingtheLTC1520tobehotswappedinto  
a backplane without loading the data lines.  
U
APPLICATIONS  
High Speed Backplane Interface  
Line Collision Detector  
PECL and LVDS Line Receivers  
Level Translator  
Ring Oscillator  
The LTC1520 operates from a single 5V supply and draws  
12mA of supply current. The part is available in a 16-lead  
narrow SO package.  
Tapped Delay Line  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
High Speed Backplane Receiver  
Propagation Delay Guaranteed to Fall  
Within Shaded Area (±3ns)  
LTC1520  
+
RECEIVER  
INPUT  
ID  
+
+
V
=
IN  
1V/DIV  
V
= 500mV  
RECEIVER  
OUTPUT  
DD  
V
=
OUT  
5V/DIV  
V
= 5V  
+
5V  
3.3k  
3.3k  
–5  
0
5
10 15 20 25 30 35 40 45  
TIME (ns)  
0.01µF  
LTC1520 TA02  
1520 TA01  
1
LTC1520  
W W W  
U
W
U
ABSOLUTE AXI U RATI GS  
/O  
PACKAGE RDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Supply Voltage ....................................................... 10V  
Digital Input Currents ..................... 100mA to 100mA  
Digital Input Voltages ............................... 0.5V to 10V  
Receiver Input Voltages ........................................ ±10V  
Receiver Output Voltages ............. 0.5V to VDD + 0.5V  
Short-Circuit Duration .................................... Indefinite  
Operating Temperature Range .................... 0°C to 70°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
ORDER PART  
NUMBER  
B1  
A1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
DD  
B4  
LTC1520CS  
OUT 1  
ENABLE  
OUT 2  
A2  
A4  
OUT 4  
NC  
OUT 3  
A3  
B2  
GND  
B3  
S PACKAGE  
16-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 90°C/ W  
Consult factory for Industrial and Military grade parts.  
DC ELECTRICAL CHARACTERISTICS  
VDD = 5V ±5% (Notes 2, 3) per receiver, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
A, B Inputs  
MIN  
– 0.2  
2
TYP  
MAX  
+ 0.2  
UNITS  
V
V
V
Input Common Mode Voltage  
Input High Voltage  
Input Low Voltage  
Input Current  
V
V
V
CM  
IH  
DD  
Enable Input  
Enable Input  
Enable Input  
0.8  
1
V
IL  
I
I
–1  
µA  
IN1  
IN2  
Input Current (A, B)  
V , V = 5V  
250  
µA  
µA  
A
B
V , V = 0  
250  
18  
A
B
R
Input Resistance (Figure 5)  
A, B Input Capacitance  
0.2V V V + 0.2V  
kΩ  
pF  
V
IN  
CM  
DD  
C
V
V
(Note 4)  
= 5V (Note 4)  
3
IN  
Open-Circuit Input Voltage (Figure 5)  
Differential Input Threshold Voltage  
Input Hysteresis  
V
3.2  
3.3  
3.4  
0.1  
OC  
DD  
0.2V < V < V + 0.2V  
0.1  
V
ID(MIN)  
CM  
DD  
dV  
V
= 2.5V  
20  
mV  
V
ID  
CM  
OUT  
OUT  
V
V
Output High Voltage  
I
I
= 4mA, V = 0.1V, V = 5V  
4.6  
10  
50  
OH  
ID  
DD  
Output Low Voltage  
= 4mA, V = 0.1V, V = 5V  
0.4  
10  
20  
50  
V
OL  
OZR  
DD  
ID  
DD  
I
I
I
Three-State Output Current  
Total Supply Current All 4 Receivers  
Short-Circuit Current  
0V V  
V  
µA  
mA  
mA  
dB  
OUT  
DD  
V
V
V
0.1V, No Load, Enable = 5V  
12  
45  
ID  
= 0V, V  
= V  
DD  
OSR  
OUT  
CM  
OUT  
CMRR  
Common Mode Rejection Ratio  
= 2.5V, f = 25MHz  
2
LTC1520  
U W  
SWITCHI G TI E CHARACTERISTICS  
VDD = 5V ±5% (Notes 2, 3) VID = 500mV, VCM = 2.5V, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
C = 15pF (Figure 1)  
MIN  
TYP  
18  
MAX  
UNITS  
ns  
t
, t  
Input-to-Output Propagation Delay  
Rise/Fall Times  
15  
21  
PLH PHL  
L
t , t  
C = 15pF  
L
2.5  
500  
10  
ns  
r
f
SKD  
ZL  
t
t
t
t
t
t
t
– t  
PHL  
Skew  
C = 15pF, Same Receiver (Note 5)  
L
ps  
PLH  
Enable to Output Low  
C = 15pF (Figure 2)  
L
35  
35  
35  
35  
ns  
Enable to Output High  
C = 15pF (Figure 2)  
L
10  
ns  
ZH  
Disable from Output Low  
Disable from Output High  
Channel-to-Channel Skew  
Package-to-Package Skew  
C = 15pF (Figure 2)  
L
20  
ns  
LZ  
C = 15pF (Figure 2)  
L
20  
ns  
HZ  
C = 15pF (Figure 3) (Note 6)  
L
400  
1.5  
ps  
CH-CH  
t
C = 15pF, Same Temperature  
L
ns  
PKG-PKG  
(Figure 4, Note 4)  
Minimum Input Pulse Width  
Maximum Input Frequency  
(Note 4)  
12  
40  
ns  
f
(Note 4)  
MHz  
IN  
The  
denotes specifications which apply over the full operating  
Note 3: All typicals are given for V = 5V, T = 25°C.  
DD A  
Note 4: Guaranteed by design, but not tested.  
temperature range.  
Note 1: Absolute Maximum Ratings are those values beyond which the  
Note 5: Worst-case – t skew for a single receiver in a package  
over the full operating temperature range.  
t
PLH  
PHL  
safety of the device cannot be guaranteed. Recommended: V = 5V ±5%.  
DD  
Note 2: All currents into the device pins are positive; all currents out of the  
device pins are negative.  
Note 6: Maximum difference between any two t  
single package over the full operating temperature range.  
or t  
transitions in a  
PHL  
PLH  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Propagation Delay (tPLH/tPHL  
vs Input Common Mode  
)
Propagation Delay (tPLH/tPHL  
vs Temperature  
)
Propagation Delay (tPLH/tPHL  
vs Input Overdrive  
)
25  
20  
15  
10  
5
25  
20  
15  
25  
20  
15  
10  
5
V
V
= 2.5V  
T
= 25°C  
A
= 500mV  
ID  
T
= 25°C  
= 2.5V  
CM  
ID  
A
= 500mV  
V
V
CM  
10  
5
0
0
0
–50 –25  
0
25  
50  
75 100 125  
0.05 0.1  
1
5
10  
0
4
5
1
2
3
TEMPERATURE (°C)  
INPUT OVERDRIVE (V)  
INPUT COMMON MODE (V)  
LTC1520 G01  
1520 G02  
LTC1520 G03  
3
LTC1520  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Propagation Delay vs Load  
Capacitance (tPLH/tPHL  
)
CMRR vs Frequency  
Supply Current vs Frequency  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
46.5  
46.0  
45.5  
45.0  
44.5  
44.0  
43.5  
43.0  
42.5  
T
V
V
= 25°C  
A
ALL 4  
RECEIVERS  
SWITCHING  
= 500mV  
= 2.5V  
ID  
CM  
1 RECEIVER  
SWITCHING  
T
= 25°C  
A
0
0
42.0  
5
25  
35  
55  
105  
205  
15  
0
5
10  
15  
20  
25  
10  
1k  
100k  
FREQUENCY (Hz)  
10M  
LOAD CAPACITANCE (pF)  
FREQUENCY (MHz)  
1520 G06  
1520 G05  
LTC1520 G04  
Supply Current vs Temperature  
and Frequency  
Skew vs Temperature (tSKD  
)
Output Duty Cycle vs Frequency  
25  
20  
15  
10  
5
400  
390  
380  
370  
360  
350  
340  
50.0  
V
IN  
= 50% DUTY CYCLE  
49.5  
49.0  
48.5  
48.0  
47.5  
47.0  
46.5  
46.0  
45.5  
25°C  
0°C  
100°C  
–45°C  
1 RECEIVER SWITCHING  
0
0
5
10  
15  
20  
25  
–10  
30  
50  
70  
90  
110  
10  
0
20  
25  
5
10  
15  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1520 G07  
1520 G08  
1520 G09  
U
U
U
PIN FUNCTIONS  
B1 (Pin 1): Receiver 1 Inverting Input.  
A1 (Pin 2): Receiver 1 Noninverting Input.  
RO1 (Pin 3): Receiver 1 Output.  
B3 (Pin 9): Receiver 3 Inverting Input.  
A3 (Pin 10): Receiver 3 Noninverting Input.  
RO3 (Pin 11): Receiver 3 Output.  
Enable (Pin 4): Receiver Output Enable Pin. A logic high  
input enables the receiver outputs. A logic low input  
forces the receiver outputs into a high impedance state.  
Do not float.  
RO2 (Pin 5): Receiver 2 Output.  
A2 (Pin 6): Receiver 2 Noninverting Input.  
B2 (Pin 7): Receiver 2 Inverting Input.  
NC (Pin 12): No Connection.  
RO4 (Pin 13): Receiver 4 Output.  
A4 (Pin 14): Receiver 4 Noninverting Input.  
B4 (Pin 15): Receiver 4 Inverting Input.  
VDD (Pin16):5VSupplyPin. Thispinshouldbedecoupled  
with a 0.1µF ceramic capacitor as close as possible to the  
pin. Recommended: VDD = 5V ±5%.  
GND(Pin8):GroundPin.Agroundplaneisrecommended  
for all LTC1520 applications.  
4
LTC1520  
U W  
W
SWITCHI G TI E WAVEFOR S  
3V  
2.5V  
2.5V  
INPUT  
INPUT  
2.5V  
+
2V  
1/4 LTC1520  
OUTPUT  
t
t
PHL  
PLH  
15pF  
OUTPUT  
V
DD  
/2  
V
/2  
DD  
1520 F01b  
1520 F01  
Figure 1. Propagation Delay Test Circuit and Waveforms  
3V  
B1, B2 = 2.5V  
3V  
0V  
5V  
INPUT  
A1, A2  
ENABLE  
OUT 1  
1.5V  
1.5V  
2V  
t
t
LZ  
ZL  
OUTPUT  
CH1 OUT  
CH2 OUT  
V
/2  
V
/2  
DD  
DD  
1.5V  
1.5V  
NORMALLY LOW  
0.2V  
0.2V  
V
OL  
OH  
0V  
t
t
CH-CH  
CH-CH  
V
V
/2  
V
DD  
/2  
DD  
OUTPUT  
NORMALLY HIGH  
OUT 1  
1520 F03  
t
t
HZ  
ZH  
Figure 3. Any Channel to Any Channel Skew, Same Package  
S1  
S2  
1k  
RECEIVER  
OUTPUT  
V
DD  
INPUT  
C
1k  
L
A1, B1  
V
ID  
= 500mV  
1520 F02  
SAME INPUT FOR BOTH PACKAGES  
Figure 2. Receiver Enable and Disable Timing  
Test Circuit and Waveforms  
PACKAGE 1  
OUT 1  
t
PKG-PKG  
t
PKG-PKG  
PACKAGE 2  
OUT 1  
1520 F04  
Figure 4. Package-to-Package Propagation Delay Skew  
U U  
EQUIVALE T I PUT NETWORKS  
18k  
18k  
18k  
A
A
B
3.3V  
18k  
B
3.3V  
RECEIVER ENABLED, V = 5V  
RECEIVER DISABLED OR V = 0V  
DD  
DD  
1520 F05  
Figure 5. Input Thevenin Equivalent  
5
LTC1520  
U
W U U  
APPLICATIONS INFORMATION  
Theory of Operation  
referencefortransmissionlineandterminationeffects. To  
mitigate transmission errors and duty cycle distortion due  
to driver ringing, a small output filter or a dampening  
resistor on VDD may be needed as shown in Figure 6b. To  
transmit single-ended data over distances up to 10 feet,  
twisted pair is recommended with the unused wire  
grounded at both ends (Figure 7).  
Unlike typical line receivers whose propagation delay can  
vary by as much as 500% from package to package and  
show significant temperature drift, the LTC1520 employs  
a novel architecture that produces a tightly controlled and  
temperature compensated propagation delay. The differ-  
ential timing skew is also minimized between rising and  
falling output edges, and the propagation delays of any  
two receivers within a package are very tightly matched.  
MC74ACT04  
(TTL INPUT)  
PC TRACE  
The precision timing features of the LTC1520 reduce  
overall system timing constraints by providing a narrow  
6ns window during which valid data appears at the re-  
ceiver output. This output timing window applies to all  
receiversinseparatepackagesoveralloperatingtempera-  
tures thereby making the LTC1520 well suited for high  
speed parallel data transmission applications such as  
backplanes.  
5V  
1/4 LTC1520  
MC74AC04  
(CMOS INPUT)  
2.2k  
2.2k  
+
0.01µF  
1520 F06a  
Figure 6a. Single-Ended Receiver  
In clocked data systems, the low skew minimizes duty  
cycle distortion of the clock signal. The LTC1520 can  
propagate signals at frequencies up to 25MHz (50Mbps)  
with less than 5% duty cycle distortion. When a clock  
signalisusedtoretimeparalleldata, themaximumrecom-  
mended data transmission rate is 25Mbps to avoid timing  
errors due to clock distortion.  
0.01µF  
10Ω  
MC74AC04  
10Ω  
PC TRACE OR  
10pF  
PC TRACE  
1520 F06b  
Figure 6b. Techniques to Minimize Driver Ringing  
Rail-to-railinputcommonmoderangeenablestheLTC1520  
to be used in both single-ended and differential applica-  
tions with transmission distances up to 100 feet. Thermal  
shutdown and short-circuit protection prevent latchup  
damage to the LTC1520 during fault conditions.  
MC74ACT04  
MC74AC04  
10-FT TWISTED PAIR  
120Ω  
1/4 LTC1520  
+
5V  
3.3k  
Single-Ended Applications  
0.01µF  
Over short distances, the LTC1520 can be configured to  
receive single-ended data by tying one input to a fixed bias  
voltageandconnectingtheotherinputtothedriveroutput.  
In such applications, standard high speed CMOS logic  
may be used as a driver for the LTC1520. The receiver trip  
points may be easily adjusted to accommodate different  
driveroutputswingsbychangingtheresistordivideratthe  
fixed input. Figure 6a shows a single-ended receiver  
configuration with the driver and receiver connected via  
PC traces. Note that at very high speeds, transmission line  
anddriverringingeffectshavetobeconsidered.Motorola’s  
MECL System Design Handbook serves as an excellent  
2.2k  
1520 F07  
Figure 7. Medium Distance Single-Ended Transmission  
Using a CMOS Driver  
Differential Transmission  
The LTC1520 is well suited for medium distance differen-  
tialtransmissionduetoitsrail-to-railinputcommonmode  
range. Clock rates up to 25MHz can be transmitted over  
100 feet of high quality twisted pair. Figure 8 shows the  
6
LTC1520  
U
W U U  
APPLICATIONS INFORMATION  
5V  
LTC1520receivingdifferentialdatafromaPECLdriver. As  
in the single-ended configurations, care must be taken to  
properly terminate the differential data lines to avoid  
unwanted reflections, etc.  
3.3k  
3.3k  
0.01µF  
9.3MHz  
+
+
OSCILLATOR  
1/4 LTC1520  
1/4 LTC1520  
WITH BETTER  
THAN 45/55  
DUTY CYCLE  
5V  
100Ω  
+
5V  
100-FT TWISTED PAIR  
1/4 LTC1520  
+
100Ω  
5V  
R
T
1/4 LTC1520  
*
120Ω  
TYPICAL STABILITY  
±5% OVER TEMPERATURE  
100Ω  
100Ω  
*MC10116  
1520 F08  
+
+
+
6.9MHz  
0.01µF  
OSCILLATOR  
OUTPUT  
1/4 LTC1520  
1/4 LTC1520  
1/4 LTC1520  
Figure 8. Differential Transmission Over Long Distances  
+
1/4 LTC1520  
Alternate Uses  
The tightly controlled propagation delay of the LTC1520  
allows the part to serve as a fixed delay element. Figure 9  
shows the LTC1520 used as a tapped delay line with 18ns  
±3nssteps. SeveralLTC1520smaybeconnectedinseries  
to form longer delay lines. Each tap in the delay line is  
accurate to within ±17% over temperature.  
1520 F10  
Figure 10. Temperature Stable Ring Oscillators  
Layout Considerations  
A ground plane is recommended when using a high  
frequency device like the LTC1520. A 0.1µF ceramic by-  
pass capacitor less than 1/4 inch away from the VDD pin is  
also recommended. Good bypassing is especially needed  
when all four channels are driven simultaneously by the  
same input. Under these conditions, and with a bypass  
capacitor more than 1 1/4 inches away from the VDD pin,  
the parasitic inductances will cause ringing in the VDD and  
output pins. This in turn can cause false triggering of the  
output short-circuit detector (Figure 11). When the by-  
pass capacitor is placed close to the VDD pin, however, the  
LTC1520 operates normally (Figure 12).  
As shown in Figure 10, the LTC1520 can be used to create  
a temperature stable ring oscillator with period incre-  
ments of 36ns. Low skew and good channel-to-channel  
matching enable this oscillator to achieve better than a 45/  
55 duty cycle (the duty cycle approaches 50/50 as more  
LTC1520s are used for lower frequencies). Note that the  
fixed voltage bias may either be created externally with a  
resistor divider or generated internally using a bypass  
capacitor and the internal open circuit bias point (approxi-  
mately 3.3V). The use of the internal bias point will result  
in a 1% to 2% distortion of the duty cycle.  
0ns DELAY  
18ns DELAY  
INPUT  
+
36ns DELAY  
1/4 LTC1520  
+
54ns DELAY  
1/4 LTC1520  
+
1/4 LTC1520  
+
5V  
1/4 LTC1520  
72ns DELAY  
3.3k  
0.01µF  
3.3k  
1520 F09  
Figure 9. Tapped Delay Line with 18ns Steps  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
7
LTC1520  
U
W U U  
APPLICATIONS INFORMATION  
160  
150  
1V/1D4I0V  
130  
1V/DIV  
120  
110  
100  
0V  
0V  
90  
ALL 4 RECEIVERS DRIVEN BY  
THE SAME INPUT  
ALL 4 RECEIVERS DRIVEN BY  
THE SAME INPUT  
80  
0
10  
20  
30  
INPUT VOLTAGE (V)  
40  
50  
50ns/DIV  
50ns/DIV  
1520 F12  
1520 F11  
Figure 12. VDD Bypassing < 3/8Away  
Figure 11. VDD Bypassing > 1 1/4Away  
U
PACKAGE DESCRIPTION  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
16  
15  
14  
13  
12  
11  
10  
9
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
3
5
6
7
8
1
2
4
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
S16 0695  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
RELATED PARTS  
PART NUMBER  
LTC486/487  
LTC488/489  
LT®1016  
DESCRIPTION  
COMMENTS  
Low Power Quad RS485 Drivers  
Low Power Quad RS485 Receivers  
Ultrafast Precision Comparator  
High Speed Quad RS485 Receiver  
High Speed Quad RS485 Receiver  
10Mbps, 7V to 12V Common Mode Range  
10Mbps, 7V to 12V Common Mode Range  
Single 5V Supply, 10ns Propagation Delay  
50Mbps, 7V to 12V Common Mode Range  
50Mbps, 7V to 12V Common Mode Range  
LTC1518  
LTC1519  
1520fs, sn1520 LT/GP 0996 7K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1996  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY