LTC1556IGN#TRPBF [Linear]

LTC1556 - SIM Power Supplyand Level Translator; Package: SSOP; Pins: 20; Temperature Range: -40°C to 85°C;
LTC1556IGN#TRPBF
型号: LTC1556IGN#TRPBF
厂家: Linear    Linear
描述:

LTC1556 - SIM Power Supplyand Level Translator; Package: SSOP; Pins: 20; Temperature Range: -40°C to 85°C

转换器 电平转换器
文件: 总12页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1555/LTC1556  
SIM Power Supply  
and Level Translator  
U
DESCRIPTION  
FEATURES  
The LTC®1555/LTC1556 provide power conversion and  
level shifting needed for 3V GSM cellular telephones to  
interface with either 3V or 5V Subscriber Identity Mod-  
ules (SIMs). These parts contain a charge pump DC/DC  
converter that delivers a regulated 5V to the SIM card.  
Input voltage may range from 2.7V to 10V, allowing  
direct connection to the battery. Output voltage may be  
programmedto3V,5VordirectconnectiontotheVIN pin.  
Step-Up/Step-Down Charge Pump Generates 5V  
Input Voltage Range: 2.7V to 10V  
Output Current: 10mA (VIN 2.7V)  
20mA (VIN 3V)  
3V to 5V Signal Level Translators  
>10kV ESD on All SIM Contact Pins  
Short-Circuit and Overtemperature Protected  
Very Low Operating Current: 60µA  
Very Low Shutdown Current: <1µA  
A soft start feature limits inrush current at turn-on,  
mitigating start-up problems that may result when the  
input is supplied by another low power DC/DC converter.  
The LTC1556 also includes an auxiliary LDO regulator/  
power switch that may be used to power the frequency  
synthesizer or other low power circuitry.  
Soft Start Limits Inrush Current at Turn-On  
Programmable 3V or 5V Output Voltage  
650kHz Switching Frequency  
Auxiliary 4.3V LDO/Power Switch (LTC1556 Only)  
Available in a 16- and 20-Pin Narrow SSOP  
U
Battery life is maximized by 60µA operating current and  
1µA shutdown current. Board area is minimized by minia-  
ture 16- and 20-pin narrow SSOP packages and the need  
for only three small external capacitors.  
APPLICATIONS  
SIM Interface in GSM Cellular Telephones  
Smart Card Readers  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
GSM Cellular Telephone SIM Interface  
3V GSM  
CONTROLLER  
V
IN  
2.7V TO 10V  
3V  
LTC1555  
SIM  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
CIN  
CLK  
RST  
I/O  
CLK  
RST  
I/O  
RIN  
DATA  
DDRV  
V
V
CC  
CC  
5V ±5%  
10mA  
V
DV  
CC  
V
CC  
IN  
+
I
VCC  
10µF  
+
SS  
M1  
M0  
C1  
C1  
0.1µF  
10µF  
GND  
GND  
1555/56 TA01  
1
LTC1555/LTC1556  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
VIN, DVCC to GND ..................................... 0.3V to 12V  
VCC to GND ............................................... 0.3V to 12V  
Digital Inputs to GND................................ 0.3V to 12V  
LDO, CLK, RST, I/O to GND ........ 0.3V to (VCC + 0.3V)  
VCC, LDO Short-Circuit Duration..................... Indefinite  
Storage Temperature Range ................. 65°C to 150°C  
Temperature Range  
LTC1555C/LTC1556C .............................. 0°C to 70°C  
LTC1555I/LTC1556I ........................... 40°C to 85°C  
Extended Commercial Operating Temperature Range  
(Note 2) ............................................. 40°C to 85°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
NUMBER  
TOP VIEW  
CIN  
RIN  
1
2
3
4
5
6
7
8
9
20 CLK  
19 RST  
18 I/O  
1
2
3
4
5
6
7
8
CLK  
RST  
I/O  
16  
15  
14  
13  
12  
11  
10  
9
CIN  
RIN  
LTC1556CGN  
LTC1556IGN  
LTC1555CGN  
LTC1555IGN  
DATA  
DDRV  
EN  
17 LDO  
DATA  
DDRV  
16  
15  
V
V
V
CC  
CC  
FB  
V
IN  
IN  
+
DV  
CC  
+
DV  
CC  
14 C1  
13 C1  
C1  
SS  
M1  
M0  
SS  
C1  
M1  
12 GND  
11 GND  
GND  
M0 10  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
GN PACKAGE  
20-LEAD PLASTIC SSOP  
TJMAX = 150°C, θJA = 135°C/ W  
TJMAX = 150°C, θJA = 95°C/ W  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
VIN = 2.7V to 10V, DVCC = 1.8V to 5.5V, controller digital pins tied to DVCC, SIM digital pins floating, EN, FB pins tied to GND  
(LTC1556), C1 = 0.1µF, COUT = 10µF unless otherwise specified.  
PARAMETER  
Operating Voltage  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
10  
UNITS  
V
V
V
IN  
DV Operating Voltage  
1.8  
5.5  
CC  
V
Operating Current  
2.7V V 5V, V = 5V, I  
= 0  
VCC  
= 0  
VCC  
60  
75  
100  
135  
µA  
µA  
IN  
IN  
CC  
5V < V 10V, V = 5V, I  
IN  
CC  
V
Shutdown Current  
M0, M1 = 0V, 2.7V V 5V  
1
2
25  
µA  
µA  
µA  
IN  
IN  
M0, M1 = 0V, 2.7V V 5V  
IN  
M0, M1 = 0V, 5V < V 10V  
IN  
DV Operating Current  
M0, M1 = DV , C = 1MHz  
6
20  
1
µA  
µA  
CC  
CC IN  
DV Shutdown Current  
M0, M1 = 0V  
CC  
V
Output Voltage  
0 I  
0 I  
10mA, 2.7V V 10V  
IN  
CC  
VCC  
VCC  
20mA, 3V V 10V  
IN  
M0, M1 = DV  
4.75  
2.80  
5.00  
3.00  
5.25  
3.20  
V
V
V
CC  
M0 = DV , M1 = 0  
CC  
M0 = 0, M1 = DV  
V
– 0.3  
V
CC  
IN  
IN  
V
Output Ripple  
V
= 3.6V, I  
= 10mA, V = 5V  
75  
mV  
P-P  
CC  
IN  
VCC  
CC  
2
LTC1555/LTC1556  
ELECTRICAL CHARACTERISTICS  
VIN = 2.7V to 10V, DVCC = 1.8V to 5.5V, controller digital pins tied to DVCC, SIM digital pins floating, EN, FB pins tied to GND  
(LTC1556), C1 = 0.1µF, COUT = 10µF unless otherwise specified.  
PARAMETER  
Short-Circuit Current  
CONDITIONS  
Shorted to GND  
MIN  
TYP  
12.5  
4.3  
MAX  
40  
UNITS  
mA  
V
V
V
CC  
CC  
Auxiliary LDO V  
(V  
)
EN = High, V = 5V, FB = LDO, I = 5mA (LTC1556)  
LDO  
4.00  
4.55  
30  
OUT LDO  
CC  
Auxiliary Switch Resistance  
FB Input Resistance  
EN = High, V = 5V, FB = GND (LTC1556)  
18  
CC  
(LTC1556)  
200  
650  
kΩ  
kHz  
Charge Pump f  
500  
800  
OSC  
Controller Inputs/Outputs, DV = 3V  
CC  
Input Current (I , I )  
M0, M1, SS, RIN, CIN  
DDRV, EN  
–1  
–5  
1
5
µA  
µA  
IH IL  
High Level Input Current (I )  
DATA  
DATA  
20  
20  
1
µA  
IH  
Low Level Input Current (I )  
mA  
IL  
High Input Voltage Threshold (V )  
M0, M1, RIN, CIN, DDRV, EN  
DATA  
0.7 × DV  
V
V
IH  
CC  
DV – 0.6  
CC  
Low Input Voltage Threshold (V )  
M0, M1, RIN, CIN, DDRV, EN  
DATA  
0.2 × DV  
V
V
IL  
CC  
CC  
0.4  
High Level Output Voltage (V  
)
OH  
DATA Source Current = 20µA, I/O = V  
0.7 × DV  
V
V
CC  
Low Level Output Voltage (V  
DATA Pull-up Resistance  
DATA Output Rise/Fall Time  
)
OL  
DATA Sink Current = 200µA, I/O = 0V (Note 3)  
Between DATA and DV  
0.4  
28  
2
13  
20  
kΩ  
µs  
CC  
DATA Loaded with 30pF  
1.3  
SIM Inputs/Outputs, DV = 3V, V = 3V or 5V  
CC  
CC  
I/O High Input Voltage Threshold (V )  
I
I
= ±20µA  
0.5 × V  
0.7 × V  
CC  
V
V
IH  
IH(MAX)  
IL(MAX)  
CC  
I/O Low Input Voltage Threshold (V )  
= 1mA  
0.4  
IL  
High Level Output Voltage (V  
)
OH  
I/O, Source Current = 20µA, DATA or DDRV = DV  
RST, CLK, Source Current = 20µA  
0.8 × V  
0.9 × V  
V
V
CC  
CC  
CC  
Low Level Output Voltage (V  
)
OL  
I/O, Sink Current = 1mA, DATA or DDRV = 0V (Note 3)  
RST, CLK, Sink Current = 200µA  
0.4  
0.4  
V
V
I/O Pull-Up Resistance  
Between I/O and V  
6.5  
10  
14  
kΩ  
CC  
SIM Timing Parameters, DV = 3V, V = 5V  
CC  
CC  
CLK Rise/Fall Time  
RST, I/O Rise/Fall Time  
CLK Frequency  
CLK Loaded with 30pF  
RST, I/O Loaded with 30pF  
CLK Loaded with 30pF  
18  
1
ns  
µs  
5
MHz  
V
Turn-On Time  
SS = DV , C  
= 10µF, I = 0  
VCC  
1
6
ms  
ms  
CC  
CC OUT  
SS = 0V, C  
= 10µF, I  
= 0  
OUT  
VCC  
V
Discharge Time to 1V  
I
= 0, V = 5V, C = 10µF  
OUT  
3
ms  
CC  
VCC  
CC  
The  
range.  
denotes specifications which apply over the specified temperature  
over the 40°C to 85°C temperature range by design or correlation, but  
are not production tested.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: The DATA and I/O pull-down drivers must also sink current  
sourced by the internal pull-up resistors.  
Note 2: C grade device specifications are guaranteed over the 0°C to 70°C  
temperature range. In addition, C grade device specifications are assured  
3
LTC1555/LTC1556  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Operating Current  
vs Input Voltage  
Shutdown Current  
vs Input Voltage  
VCC Output Voltage  
vs Input Voltage (5V Mode)  
120  
100  
80  
5.2  
5.1  
5.0  
4.9  
4.8  
20  
15  
10  
5
I
= 10mA  
NO EXTERNAL LOAD  
VCC  
M0 = DV  
M1 = DV  
CC  
CC  
C
T
= 10µF  
OUT  
= 25°C  
A
85°C  
25°C  
85°C  
25°C  
40°C  
60  
40°C  
40  
0
6
8
2
10  
6
6
4
2
8
10  
2
8
10  
4
4
V
INPUT VOLTAGE (V)  
V
INPUT VOLTAGE (V)  
V
INPUT VOLTAGE (V)  
IN  
IN  
IN  
1555/56 G01  
1555/56 G02  
1555/56 G03  
VCC Output Voltage Turn-On Time,  
SS Disabled  
VCC Output Voltage Turn-On Time,  
SS Enabled  
V
CC Output Voltage  
vs Input Voltage (3V Mode)  
3.2  
3.1  
3.0  
2.9  
2.8  
I
= 10mA  
VCC  
M0 = DV  
M1 = 0V  
CC  
C
T
= 10µF  
OUT  
= 25°C  
A
1555/56 G05  
1555/56 G06  
VIN = 3V  
SS = 0V  
1ms/DIV  
1ms/DIV  
V
IN = 3V  
SS = DVCC  
6
8
2
10  
4
V
IN  
INPUT VOLTAGE (V)  
1555/56 G04  
3V VCC Efficiency vs Input Voltage  
5V VCC Efficiency vs Input Voltage  
100  
80  
100  
80  
V
I
= 5V  
V
I
= 3V  
CC  
CC  
= 10mA  
= 10mA  
VCC  
VCC  
T
= 25°C  
T
= 25°C  
A
A
60  
60  
40  
40  
20  
20  
2
4
6
8
10  
12  
0
2
4
6
8
10  
V
INPUT VOLTAGE (V)  
V
INPUT VOLTAGE (V)  
IN  
IN  
1555/56 G08  
1555/56 G07  
4
LTC1555/LTC1556  
U
U
U
PIN FUNCTIONS  
LTC1555/LTC1556  
GND (Pins 9/11, 12): Ground for Both the SIM and the  
Controller. Should be connected to the SIM GND contact  
as well as to the VIN/Controller GND. Proper grounding  
and supply bypassing is required to meet 10kV ESD  
specifications.  
C1(Pins 10/12): Charge Pump Flying Capacitor Nega-  
tive Input.  
CIN (Pin 1): Clock Input Pin from Controller.  
RIN (Pin 2): Reset Input Pin from Controller.  
DATA (Pin 3):Controller Side Data Input/Output Pin. Can  
be used for single pin bidirectional data transfer between  
the controller and the SIM card as long as the controller  
data pin is open drain. The controller output must be able  
to sink 1mA max when driving the DATA pin low due to  
the internal pull-up resistors on the DATA and I/O pins. If  
the controller data output is not open drain, then the  
DDRV pin should be used for sending data to the SIM  
card and the DATA pin used for receiving data from the  
SIM card (see Figure 1).  
C1+ (Pins11/13):ChargePumpFlyingCapacitorPositive  
Input.  
VIN (Pins 12/14): Charge Pump Input Voltage Pin. Input  
voltage range is 2.7V to 10V. Connect a 10µF low ESR  
input bypass capacitor close to the VIN pin.  
VCC (Pins 13/15): SIM Card VCC Output. This pin should  
be connected to the SIM VCC contact. The VCC output  
voltage is determined by the M0 and M1 pins (see Truth  
Table). VCC is discharged to GND during shutdown  
(M0, M1 = 0V). A 10µF low ESR output capacitor should  
connect close to the VCC pin.  
DDRV (Pin 4): Optional Data Input Pin for Sending Data  
to the SIM card. When not needed, the DDRV pin should  
be left floating or tied to DVCC (an internal 1µA current  
source will pull the DDRV pin up to DVCC if left floating).  
DVCC (Pins5/7):SupplyVoltageforControllerSideDigital  
I/O Pins. May be between 1.8V and 5.5V (typically 3V)  
.
I/O (Pins 14/18): SIM Side I/O Pin. The pin is an open  
drain output with a nominal pull-up resistance of 10k and  
shouldbeconnectedtotheSIMI/Ocontact.TheSIMcard  
must sink up to 1mA max when driving the I/O pin low  
due to the internal pull-up resistors on the I/O and DATA  
pins. The I/O pin is held active low when the part is in  
shutdown.  
SS (Pins 6/8): Soft Start Enable Pin. A logic low will  
enable the charge pump inrush current limiting feature.  
A logic high will disable the soft start feature and allow  
VCC to be ramped as quickly as possible upon start-up  
and coming out of shutdown.  
M1 (Pins 7/9): Mode Control Bit 1 (see Truth Table).  
M0 (Pins 8/10): Mode Control Bit 0 (see Truth Table).  
RST(Pins15/19):LevelShiftedResetOutputPin.Should  
be connected to the SIM RST contact.  
This table defines the various operating modes that may  
be obtained via the M0 and M1 mode control pins.  
CLK(Pins16/20):LevelShiftedClockOutputPin.Should  
be connected to the SIM CLK contact. Careful trace  
routing is recommended due to fast rise and fall edge  
speeds.  
Truth Table  
M0  
0V  
0V  
M1  
MODE  
Shutdown (V = 0V)  
0V  
CC  
DV  
V
CC  
V
CC  
V
CC  
= V  
IN  
CC  
DV  
0V  
DV  
= 3V  
= 5V  
CC  
CC  
DV  
CC  
5
LTC1555/LTC1556  
U
U
U
PIN FUNCTIONS  
LTC1556 Only  
ground,theregulatoractsasa30switchbetweenVCC  
and LDO.  
EN (Pin 5): Auxiliary LDO/Power Switch Enable Pin. A  
logic high on this pin from the controller will enable the  
auxiliary LDO output. When the LDO is disabled, the LDO  
LDO (Pin 17): LDO Output Pin. This pin should be tied to  
the FB pin for 4.3V LDO operation. The 4.3V LDO output  
output will float or be pulled to ground by the load. If left is usable only when VCC is 5V (or greater). It is not  
floating, the EN pin will be pulled down to GND by an  
available when VCC = 3V. The LDO output may also be  
used as a 30power switch if the FB pin is grounded  
or left floating. When used as a regulator, LDO must be  
bypassed to GND with a 3.3µF capacitor. The LDO  
output current will subtract from available VCC current.  
internal 1µA current source.  
FB (Pin 6): Auxiliary LDO Feedback Pin. When FB is  
connected to the LDO pin (Pin 17), the LDO output is  
regulated to 4.3V (typ). If the FB pin is left open or tied to  
W
BLOCK DIAGRAM  
V
BATT  
0.1µF  
+
C
IN  
10µF  
+
C1  
C1  
V
IN  
V
CC  
V
CC  
C
OUT  
10µF  
M1  
M0  
SS  
STEP-UP/  
STEP-DOWN  
CHARGE PUMP  
DC/DC  
CONVERTER  
3V  
DV  
CC  
V
CC  
RIN  
RST  
CLK  
RST  
CLK  
CONTROLLER  
SIM  
CIN  
20k  
10k  
DATA  
I/O  
I/O  
1µA  
OPTIONAL  
DDRV  
EN  
GND  
GND  
1µA  
+
GND  
LDO  
1.23V  
153k  
FREQUENCY  
SYNTHESIZER  
POWER  
4.3V  
FB  
+
C
LDO  
10µF  
61k  
LTC1555/LTC1556  
LTC1556 ONLY  
1555/56 BD  
6
LTC1555/LTC1556  
U
W U U  
APPLICATIONS INFORMATION  
The LTC1555/LTC1556 perform the two primary func-  
tions necessary for 3V controllers (e.g., GSM cellular  
telephone controllers, smart card readers, etc.) to com-  
municate with 5V SIMs or smart cards. They produce a  
regulated 5V VCC supply for the SIM and provide level  
translators for communication between the SIM and the  
controller.  
Capacitor Selection  
For best performance, it is recommended that low ESR  
(<0.5)capacitorsbeusedforbothCINandCOUTtoreduce  
noise and ripple. The CIN and COUT capacitors should be  
either ceramic or tantalum and should be 10µF or greater  
(ceramiccapacitorswillproducethesmallestoutputripple).  
Iftheinputsourceimpedanceisverylow(<0.5),CIN may  
notbeneeded.IncreasingthesizeofCOUTto22µForgreater  
willreduceoutputvoltageripple—particularlywithhighVIN  
voltages (8V or greater). A ceramic capacitor is recom-  
mended for the flying capacitor C1 with a value of 0.1µF or  
0.22µF.  
VCC Voltage Regulator  
The regulator section of the LTC1555/LTC1556 (refer to  
theBlockDiagram)consistsofastep-up/step-downcharge  
pump DC/DC converter. The charge pump can operate  
over a wide input voltage range (2.7V to 10V) while  
maintaining a regulated VCC output. The wide VIN range  
enables the parts to be powered directly from a battery (if  
desired) rather than from a 3V DC/DC converter output.  
When VIN is less than the desired VCC the parts operate as  
switched capacitor voltage doublers. When VIN is greater  
than VCC the parts operate as gated switch step-down  
converters. In either case, voltage conversion requires  
only one small flying capacitor and output capacitor.  
Output Ripple  
Normal LTC1555/LTC1556 operation produces voltage  
ripple on the VCC pin. Output voltage ripple is required for  
the parts to regulate. Low frequency ripple exists due to  
the hysteresis in the sense comparator and propagation  
delays in the charge pump enable/disable circuits. High  
frequency ripple is also present mainly from the ESR  
(equivalent series resistance) in the output capacitor.  
Typical output ripple (VIN < 8V) under maximum load is  
75mV peak-to-peak with a low ESR, 10µF output capaci-  
tor. For applications requiring VIN to exceed 8V, a 22µF or  
larger COUT capacitor is recommended to maintain maxi-  
mum ripple in the 75mV range.  
The VCC output can be programmed to either 5V or 3V via  
the M0 and M1 mode pins. This feature is useful in  
applicationswhereeithera5Vor3VSIMmaybeused. The  
chargepumpVCC outputmayalsobeconnecteddirectlyto  
VIN ifdesired. Whenthechargepumpisputintoshutdown  
(M0, M1 = 0), VCC is pulled to GND via an internal switch  
to aid in proper system supply sequencing.  
The magnitude of the ripple voltage depends on several  
factors. High input voltages increase the output ripple  
since more charge is delivered to COUT per charging cycle.  
A large C1 flying capacitor (> 0.22µF) also increases ripple  
instep-upmodeforthesamereason.Largeoutputcurrent  
load and/or a small output capacitor (< 10µF) results in  
higher ripple due to higher output voltage dV/dt. High ESR  
capacitors (ESR > 0.5) on the output pin cause high  
frequency voltage spikes on VOUT with every clock cycle.  
The soft start feature limits inrush currents upon start-up  
or coming out of shutdown mode. When the SS pin is tied  
to GND, the soft start feature is enabled. This limits the ef-  
fective inrush current out of VIN to approximately 25mA  
(COUT = 10µF). Inrush current limiting is especially useful  
when powering the LTC1555/LTC1556 from a 3V DC/DC  
output since the unlimited inrush current may approach  
200mAandcausevoltagetransientsonthe3Vsupply.How-  
ever, in cases where fast turn-on time is desired, the soft  
startfeaturemaybeoverriddenbytyingtheSSpintoDVCC.  
A 10µF ceramic capacitor on the VCC pin should produce  
acceptable levels of output voltage ripple in nearly all  
applications. However, there are several ways to further  
7
LTC1555/LTC1556  
U
W U U  
APPLICATIONS INFORMATION  
reducetheripple.AlargerCOUT capacitor(22µForgreater)  
will reduce both the low and high frequency ripple due to  
the lower COUT charging and discharging dV/dt and the  
lower ESR typically found with higher value (larger case  
size) capacitors. A low ESR ceramic output capacitor will  
minimize the high frequency ripple, but will not reduce the  
low frequency ripple unless a high capacitance value is  
chosen (10µF or greater). A reasonable compromise is to  
usea10µFto22µFtantalumcapacitorinparallelwitha1µF  
to 3.3µF ceramic capacitor on VOUT to reduce both the low  
and high frequency ripple. An RC filter may also be used  
to reduce high frequency voltage spikes (see Figure 1).  
hundredmillisecondstocompletelyshutdown. Toensure  
prompt and proper VCC shutdown, always force the M0  
and M1 pins to a logic low state before shutting down the  
DVCC supply (see Figure 2). Similarly, bring the DVCC  
supply to a valid level before allowing the M0 and M1 pins  
to go high when coming out of shutdown. This can be  
achieved with pull-down resistors from M0 and M1 to  
GND if necessary. (Note: shutting down the DVCC supply  
with VIN active is not recommended with early date code  
material. Consult factory for valid date code starting point  
for shutting down the DVCC supply.)  
Level Translators  
All SIMs and smart cards contain a clock input, reset input  
and a bidirectional data input/output. The LTC1555/  
LTC1556 provide level translators to allow controllers to  
communicate with the SIM (see Figures 3a and 3b). The  
CLK and RST inputs to the SIM are level shifted from the  
controller supply rails (DVCC and GND) to the SIM supply  
rails (VCC and GND). The data input to the SIM may be  
provided two different ways. The first method is to use the  
DATA pin as a bidirectional level translator. This configu-  
ration is only allowed if the controller data output pin is  
open drain (all SIM I/O pins are open drain). Internal pull-  
up resistors are provided for both the DATA pin and the  
SIM  
CC  
V
CC  
V
+
1µF  
15µF  
CERAMIC  
TANTALUM  
LTC1555/  
LTC1556  
2Ω  
SIM  
V
CC  
V
CC  
10µF  
10µF  
LT1555/56 F01  
Figure 1. VCC Output Ripple Reduction Techniques  
Shutting Down the DVCC Supply  
To conserve power, the DVCC supply may be shut down  
while the VIN supply is still active. When the DVCC supply  
is brought to 0V, weak internal currents will force the  
LTC1555/LTC1556 into shutdown mode regardless of the  
voltages present on the M0 and M1 pins. However, if the  
M0 and M1 pins are floating or left connected to DVCC as  
the supply is shut down, the parts may take several  
LTC1555/LTC1556  
CLK TO SIM  
RST TO SIM  
CIN  
CLK  
RST  
I/O  
RIN  
DATA TO/FROM SIM  
DATA  
DDRV  
V
CC  
CONTROLLER  
SIDE  
DV  
CC  
SIM SIDE  
1555/56 F3a  
DV  
CC  
Figure 3a. Level Translator Connections for  
Bidirectional Controller DATA Pin  
M0  
M1  
0V  
DV  
CC  
LTC1555/LTC1556  
0V  
CLK TO SIM  
RST TO SIM  
CIN  
CLK  
RST  
I/O  
DV  
CC  
RIN  
DV  
CC  
DATA FROM SIM  
DATA TO SIM  
DATA  
DDRV  
0V  
V
CC  
V
CC  
CONTROLLER  
SIDE  
DV  
CC  
V
CC  
SIM SIDE  
0V  
1555/56 F3b  
1555/56 F02  
Figure 3b. Level Translator Connections for  
One-Directional Controller Side DATA Flow  
Figure 2. Recommended DVCC Shutdown and Start-Up Timing  
8
LTC1555/LTC1556  
U
W U U  
APPLICATIONS INFORMATION  
I/O pin on the SIM side. The second method is to use the  
DDRV pin to send data to the SIM and use the DATA pin to  
receivedatafromtheSIM.WhentheDDRVpinisnotused,  
it should either be left floating or tied to DVCC.  
requiredtoensureoutputstability. A10µFlowESRcapaci-  
tor is recommended, however, to minimize LDO output  
noise. The LDO output may also be used as an auxiliary  
switch to VCC. If the FB pin is left floating or is tied to GND,  
the LDO pin will be internally connected to the VCC output  
through the P-channel pass device. The LDO may be dis-  
abledatanytimebyswitchingtheENpinfromDVCC toGND.  
The 4.3V LDO output is usable only when VCC is 5V (or  
greater). It is not available when VCC = 3V.  
Level Translation with DVCC > VCC  
It is assumed that most applications for these parts will  
use controller supply voltages (DVCC) less than or equal  
to VCC. In cases where DVCC is greater than VCC by more  
than0.6Vorso, thepartsoperationwillbeaffectedinthe  
following ways: 1) A small DC current (up to 100µA) will  
flowfromDVCC toVCC throughtheDATApull-upresistor,  
N-channel pass device and the I/O pull-up resistor  
(except when the part is in shutdown at which time DVCC  
is disconnected from VCC by turning off the pass device).  
If the VCC load current is less than the DVCC current, the  
VCC outputmaybepulledoutofregulationuntilsufficient  
load current pulls VCC back into regulation. 2) When the  
SIM is sending data back to the controller, a logic high on  
the I/O pin will result in the DATA pin being pulled up to  
[VCC + 1/3(DVCC – VCC)], not all the way up to DVCC. For  
example, if DVCC is 5V and VCC is 3V, the DATA pin will  
only swing from 0.1V to 3.67V when receiving data  
from the SIM side.  
EN  
OFF ON  
1µA  
V
CC  
= 5V  
LDO  
+
V
REF  
FB  
I
153k  
61k  
4.3V  
LDO  
0mA to  
10mA  
+
10µF  
TANT  
1555/56 F04  
Figure 4. Auxiliary LDO Connections (LTC1556 Only)  
10kV ESD Protection  
All pins that connect to the SIM (CLK, RST, I/O, VCC, GND)  
withstandover10kVofhumanbodymodel(100pF/1.5k)  
ESD. In order to ensure proper ESD protection, careful  
board layout is required. The GND pins should be tied  
directly to a GND plane. The VCC capacitor should be  
located very close to the VCC pin and tied immediately to  
the GND plane.  
Optional LDO Output  
The LTC1556 also contains an internal LDO regulator for  
providingalownoiseboostedsupplyvoltageforlowpower  
external circuitry (e.g., frequency synthesizers, etc.) Tying  
the FB pin to the LDO pin provides a regulated 4.3V at the  
LDOoutput(seeFigure4). A3.3µF(minimum)capacitoris  
9
LTC1555/LTC1556  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
GN Package  
16-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
0.189 – 0.196*  
(4.801 – 4.978)  
16 15 14 13 12 11 10  
9
0.229 – 0.244  
(5.817 – 6.198)  
0.150 – 0.157**  
(3.810 – 3.988)  
1
2
3
4
5
6
7
8
0.015 ± 0.004  
(0.38 ± 0.10)  
× 45°  
0.053 – 0.068  
(1.351 – 1.727)  
0.004 – 0.0098  
(0.102 – 0.249)  
0.007 – 0.0098  
(0.178 – 0.249)  
0° – 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.008 – 0.012  
(0.203 – 0.305)  
0.025  
(0.635)  
BSC  
*
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
GN16 (SSOP) 1197  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
10  
LTC1555/LTC1556  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
GN Package  
20-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
0.337 – 0.344*  
(8.560 – 8.737)  
20 19 18 17 16 15 14 13 12 11  
0.229 – 0.244  
(5.817 – 6.198)  
0.150 – 0.157**  
(3.810 – 3.988)  
1
2
3
4
5
6
7
8
9 10  
0.015 ± 0.004  
(0.38 ± 0.10)  
0.053 – 0.068  
(1.351 – 1.727)  
0.004 – 0.0098  
(0.102 – 0.249)  
× 45°  
0.007 – 0.0098  
(0.178 – 0.249)  
0° – 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.008 – 0.012  
(0.203 – 0.305)  
0.025  
(0.635)  
BSC  
*
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
GN20 (SSOP) 1197  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1555/LTC1556  
U
TYPICAL APPLICATION  
SIM Interface with Auxilary Power  
4.3V  
50mA  
AUXILIARY LDO/POWER SWITCH  
(FREQUENCY SYNTHESIZER)  
+
10µF  
3V GSM  
CONTROLLER  
V
IN  
2.7V TO 10V  
3V  
LTC1556  
SIM  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CIN  
CLK  
RST  
I/O  
CLK  
RST  
I/O  
RIN  
DATA  
DDRV  
EN  
3
4
LDO  
5
V
V
CC  
CC  
6
5V ±5%  
10mA  
FB  
V
IN  
+
I
VCC  
7
V
DV  
CC  
C1  
C1  
CC  
10µF  
0.1µF  
8
SS  
M1  
M0  
+
9
10µF  
GND  
GND  
10  
GND  
1555/56 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1514-3.3/LTC1514-5 Regulated Step-Up/Step-Down Charge Pumps with Low Bat Comparator 3.3V and 5V Output Versions  
LTC1515 Series  
LTC1516  
Regulated Step-Up/Step-Down Charge Pumps with Reset Output  
Micropower, Regulated 5V Charge Pump DC/DC Converter  
Micropower, Regulated 5V Charge Pump DC/DC Converter  
Adjustable, 3V/5V, 3.3V/5V Versions  
= 20mA (V 2V), I = 50mA (V 3V)  
I
OUT  
IN  
OUT  
IN  
LTC1517-5  
LTC1522 Without Shutdown and  
Packaged in SOT-23  
LTC1522  
Micropower, Regulated 5V Charge Pump DC/DC Converter  
Low Noise, Charge Pump Voltage Inverter  
I
= 20mA (V 3V), I = 6µA  
OUT IN Q  
LTC1550-4.1  
LTC660  
1mV Ripple at 900kHz  
P-P  
100mA Charge Pump DC/DC Converter  
5V to 5V at 100mA  
15556f LT/TP 0398 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1997  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
12  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY