LTC1560-1C [Linear]

1MHz/500kHz Continuous Time, Low Noise, Lowpass Elliptic Filter; 为1MHz / 500kHz的持续时间,低噪声,低通椭圆滤波器
LTC1560-1C
型号: LTC1560-1C
厂家: Linear    Linear
描述:

1MHz/500kHz Continuous Time, Low Noise, Lowpass Elliptic Filter
为1MHz / 500kHz的持续时间,低噪声,低通椭圆滤波器

文件: 总8页 (文件大小:278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1560-1  
1MHz/500kHz  
Continuous Time,  
Low Noise, Lowpass Elliptic Filter  
either 500kHz (Pin 5 to V+) or 1MHz (Pin 5 to V). When  
programmed for 1MHz, the passband ripple is typically  
±0.2dB up to 0.55fCUTOFF and ±0.3dB to 0.9fCUTOFF. The  
transition band gain is 24dB at 1.4fCUTOFF and 51dB at  
2fCUTOFF.Stopbandattenuationis63dBat2.43fCUTOFF and  
above, remaining at least 60dB to 10MHz with proper  
board layout. When the LTC1560-1 is programmed for  
FEATURES  
5th Order, 1MHz Elliptic Filter in SO-8 Package  
Pin Selectable 1MHz/500kHz Cutoff Frequency  
Signal-to-Noise Ratio (SNR): 75dB  
Signal-to-Noise Ratio with 63dB THD: 69dB  
Passband Ripple (fCUTOFF = 1MHz): ±0.3dB  
Stopband Attenuation Better Than 60dB  
fCUTOFF = 500kHz, the filter response closely follows the  
No External Components Required  
1MHz case with the exception of passband flatness near  
the cutoff frequency; the gain at fCUTOFF is 1.3dB.  
U
APPLICATIONS  
The LTC1560-1, unlike other high frequency filters, is  
designed for low noise and low distortion. With a 1VRMS  
input signal, the signal-to-noise ratio is 69dB and the THD  
is 63dB. The maximum SNR of 75dB is obtained with a  
2.1VRMS input signal. This results in 46dB THD.  
Antialiasing Filters  
Smoothing or Reconstruction Filters  
Communication Filters  
U
The LTC1560-1 operates with±5V supplies, has a power  
saving mode and is available in an SO-8 surface mount  
package.  
DESCRIPTION  
The LTC®1560-1is a 5th order, continuous-time, lowpass  
filter. The elliptic transfer function of the LTC1560-1 was  
carefully chosen to reach a compromise between selectiv-  
ity, for antialiasing applications, and transient response.  
The filter cutoff frequency, fCUTOFF, is pin selectable to  
Other cutoff frequencies from 450kHz to 1.5MHz can be  
obtained. Demo board DC135A is available for the  
LTC1560-1. For more information please contact LTC  
Marketing.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Frequency Response  
10  
0
1MHz/500kHz Elliptic Lowpass Filter  
1
2
8
7
–10  
–20  
–30  
–40  
–50  
60  
–70  
80  
GND  
V
OUT  
V
OUT  
V
(OR 5V)  
V
SHDN  
IN  
IN  
LTC1560-1  
GND  
3
4
6
5
+
V
5V  
0.1µF  
0.01µF  
0.5f /f  
C
5V  
V
C
0.1µF  
0.01µF  
5V  
1MHz  
5V  
f
= 1MHz/500kHz  
1
CUTOFF  
90  
0.1  
10  
500kHz  
FREQUENCY (MHz)  
1560-1 TA01  
1560-1 TA02  
1
LTC1560-1  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
Total Supply Voltage (V+ to V) ............................. 12V  
Power Dissipation............................................. 400mW  
Burn-In Voltage ................................................... ±5.5V  
Operating Temperature Range  
ORDER PART  
NUMBER  
TOP VIEW  
GND  
1
2
3
4
8
7
6
5
V
OUT  
V
SHDN  
IN  
LTC1560-1CS8  
LTC1560-1IS8  
+
GND  
V
LTC1560-1C ........................................... 0°C to 70°C  
LTC1560-1I ....................................... 40°C to 85°C  
Maximum Junction Temperature ......................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
V
0.5f f  
C/ C  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
15601  
15601I  
TJMAX = 150°C, θJA = 125°C/ W  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
VS = ±5V, TA = 25°C, Pin 5 = 5V (fCUTOFF = 1MHz), Pin 7 = 0V unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Voltage Range  
±4.5  
±5.0  
±5.5  
V
Passband Gain (f  
= 1MHz)  
V
= 0.5V  
, f = 20kHz  
RMS IN  
0.17  
0.18  
0.08  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
CUTOFF  
IN  
f
= 100kHz  
0.3  
0.6  
IN  
IN  
IN  
IN  
IN  
IN  
f
f
f
f
f
= 300kHz  
= 550kHz (Gain Relative to 100kHz)  
= 850kHz (Gain Relative to 100kHz)  
= 950kHz (Gain Relative to 100kHz)  
0.35 0.05  
0.3  
0
0.5  
1.0  
0.8  
3.0  
5.0  
0.3  
0.6  
1.0  
= f  
CUTOFF  
= 1MHz (Gain Relative to 100kHz)  
Transition Band Gain (Note 1)  
V
= 0.5V  
, f = 1.4MHz  
24  
42  
51  
–18  
65  
dB  
dB  
dB  
IN  
RMS IN  
f
= 1.9MHz  
= 2.0MHz  
IN  
IN  
f
Stopband Gain (f  
Passband Gain (f  
= 1MHz) (Note 2)  
= 500kHz)  
f
f
f
= 2.44MHz  
= 3.0MHz  
= 6.0MHz  
70  
68  
66.1  
dB  
dB  
dB  
CUTOFF  
IN  
IN  
IN  
f
f
f
= 100kHz, Pin 5 = 5V  
CUTOFF  
= 1.4MHz  
0.14  
1.6  
45  
dB  
dB  
dB  
CUTOFF  
IN  
IN  
IN  
= f  
= 500kHz  
–4  
0.5  
29  
Output Voltage Swing  
Output DC Offset (V  
R = 5k  
±1.9  
±3  
±250  
22  
V
mV  
mA  
mA  
L
)
OS  
Power Supply Current (I )  
S
Power Supply Current in Shutdown Mode Pin 7 at 5V  
1
Total Output Noise  
V
V
(Pin 2) Tied to Ground, f  
(Pin 2) Tied to Ground, f  
= 1MHz, BW = 2MHz  
= 0.5MHz, BW = 1MHz  
350  
322  
µV  
µV  
IN  
IN  
CUTOFF  
CUTOFF  
RMS  
RMS  
Total Harmonic Distortion (THD)  
V
= 1V  
, f = 200kHz, f  
= 1MHz, BW = 1MHz  
= 1MHz, BW = 1MHz  
63  
61  
62  
dB  
dB  
dB  
IN  
RMS IN  
CUTOFF  
= 300kHz, f  
CUTOFF  
f
IN  
IN  
f
= 1MHz, f  
= 1MHz, BW = 2MHz  
CUTOFF  
f
f
= 300kHz, f  
= 500kHz, f  
= 0.5MHz, BW = 1MHz  
= 0.5MHz, BW = 1MHz  
62  
63  
dB  
dB  
IN  
IN  
CUTOFF  
CUTOFF  
Input Resistance (R )  
6
8
10  
kΩ  
IN  
The  
denotes specifications which apply over the full operating  
connection diagram, Figure 2. A small resistor (e.g. 100) can also be  
used instead of the buffer to isolate any high capacitive load (C > 10pF)  
temperature range.  
L
from the filter output.  
Note 1: To properly measure high frequency characteristics of the filter, a  
Note 2: The stopband gain at 2.44MHz is guaranteed by design.  
noninverting output buffer is recommended as shown on the demo board  
2
LTC1560-1  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Frequency Response  
Frequency Response  
Passband Gain  
10  
0
10  
0
0.6  
0.4  
f
= 1MHz  
f
= 1MHz  
CUTOFF  
f
= 500kHz  
CUTOFF  
CUTOFF  
–10  
–20  
–30  
40  
–50  
60  
–70  
80  
–90  
–10  
–20  
–30  
40  
–50  
60  
–70  
80  
0.2  
0
0.2  
0.4  
0.6  
2
0
1
3
4
1.0  
FREQUENCY (MHz)  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
0
0.5  
1.5  
2.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1560-1 G01  
1560-1 G03  
1560-1 G02  
Group Delay  
Passband Gain  
Group Delay  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.4  
0.2  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
f
= 1MHz  
f
= 500kHz  
f
= 500kHz  
CUTOFF  
CUTOFF  
CUTOFF  
0
0.2  
0.4  
0.6  
0.8  
–1.0  
–1.2  
–1.4  
0
1.0 1.25  
0
0.25 0.50 0.75  
1.50 1.75 2.0  
0.1  
0.2  
FREQUENCY (MHz)  
0.5  
0
0.1  
0.3  
0.2  
0.3  
0.4  
0.4 0.5 0.6 0.7 0.8 0.9 1.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1560-1 G05  
1560-1 G04  
1560-1 G06  
Phase vs Frequency  
Phase vs Frequency  
0
45  
45  
0
f
= 1MHz  
f
= 500kHz  
CUTOFF  
CUTOFF  
90  
45  
90  
–135  
–180  
–225  
–270  
–135  
–180  
–225  
340  
FREQUENCY (kHz)  
20  
180  
500 660 820 980  
100  
260 340  
180  
FREQUENCY (kHz)  
20  
420 500  
1560-1 G08  
1560-1 G07  
3
LTC1560-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
W
U
Output Noise vs Frequency  
Transient Response  
Transient Response  
60  
f
= 1MHz  
CUTOFF  
TOTAL OUTPUT NOISE = 232µV  
54  
48  
RMS  
42  
36  
30  
24  
18  
12  
6
1560-1 G09  
1560-1 G10  
fCUTOFF = 0.5MHz  
IN = 5VP-P  
fIN = 50kHz  
2µs/DIV  
fCUTOFF = 1MHz  
IN = 5VP-P  
fIN = 50kHz  
2µs/DIV  
V
V
0
0.1  
0.5  
1.0 1.5  
FREQUENCY (MHz)  
1560-1 G11  
Dynamic Range  
Output Noise vs Frequency  
60  
54  
48  
42  
20  
30  
40  
50  
60  
70  
80  
90  
f
= 0.5MHz  
f
f
= 500kHz OR 1MHz  
CUTOFF  
TOTAL OUTPUT NOISE = 198µV  
CUTOFF  
IN  
= 45kHz  
RMS  
36  
30  
24  
18  
12  
6
0
50  
100  
200  
400 600  
0.1  
3
1
FREQUENCY (kHz)  
INPUT VOLTAGE (V  
)
RMS  
1560-1 G12  
1560-1 G13  
THD + Noise vs Input Frequency  
THD + Noise vs Input Frequency  
52  
54  
56  
58  
60  
62  
64  
66  
68  
–70  
–72  
52  
54  
56  
58  
60  
62  
64  
66  
68  
–70  
–72  
f
= 1MHz  
f
= 500kHz  
CUTOFF  
CUTOFF  
V
= 1V  
RMS  
IN  
S/N = 74dB  
V
= 1V  
RMS  
IN  
S/N = 72dB  
V
= 0.6V  
RMS  
IN  
V
= 0.6V  
RMS  
S/N = 69.5dB  
IN  
S/N = 68dB  
40  
120  
160 180  
40  
120  
140 200  
160 180  
60 80 100  
140  
200  
60 80 100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
1560-1 G14  
1560-1 G15  
4
LTC1560-1  
U
U
U
PIN FUNCTIONS  
G
ND (Pins 1, 3): Analog Ground Pins. The quality of the  
tion. The power supplies can be applied in any order, that  
is, the positive supply can be applied before the negative  
supply and vice versa. Switching power supplies are not  
recommended.  
analog ground can affect the filter performance. For dual  
supply operation the analog ground pin should be con-  
nected to an analog ground plane surrounding the pack-  
age. The analog ground plane should be connected to a  
digital ground plane (if any) at a single point. For single  
supplyoperation,theanaloggroundpinshouldbebiased  
at one-half the power supply across the device (see  
Figure 1) and the analog ground plane should then be  
connected to V(Pin 4).  
0.5fC/fC (Pin 5): By tying Pin 5 high the filter cutoff  
frequency is internally programmed for 500kHz. By tying  
Pin 5 low the cutoff frequency will switch to 1MHz. Pin 5  
should not be left floating. The logic threshold of Pin 5 is  
approximately 0.4 times the total power supply across the  
device.  
VIN (Pin 2): The filter input is internally connected to the  
inverting input of a high frequency op amp through an 8k  
resistor.  
SHDN (Pin 7): Shutdown. Under normal operating condi-  
tions, Pin 7 should be shorted either to the analog ground  
(Pin1)ortoV(Pin4).IfPin7ispulledhightoV+,thefilter  
operation will stop and the IC will be placed in a power  
saving mode. The power supply current will then be  
reduced to 1mA. For a ±5V supply, the logic threshold of  
Pin 7 is 2.5V. Pin 7 is internally connected to the analog  
ground pin via a 50k resistor.  
V, V+ (Pins 4, 6): Power Supply Pins. The negative and  
positive power supply (Pins 4 and 6 respectively) should  
be decoupled with a 0.1µF capacitor in parallel with a  
0.01µF. Both capacitors should be types designed for  
decoupling video frequencies and they should be placed  
as close as possible to the power supply pins of the filter.  
Parallel routing of high frequency signal paths should be  
avoided; they will couple into the device’s power supply  
pins and cause gain inaccuracy and stopband degrada-  
VOUT (Pin 8): The filter output pin can sink or source 1mA.  
The total harmonic distortion of the filter will degrade  
when driving coaxial cables or loads less than 10k without  
an output buffer.  
+
V
10k  
0.1µF  
0.01µF  
1
2
8
7
V
OUT  
GND  
V
OUT  
1µF  
0.01µF  
V
V
IN  
10k  
SHDN  
IN  
LTC1560-1  
3
4
6
5
+
GND  
V
+
GND OR V  
0.5f /f  
C
V
C
ANALOG GROUND PLANE  
SYSTEM GROUND  
DIGITAL GROUND  
PLANE  
1560-1 F01  
Figure 1. Connections for Single Supply Operation  
5
LTC1560-1  
U
W U U  
APPLICATIONS INFORMATION  
mode can also be activated via S1. The output of the filter  
is buffered by U2, an LT®1360 op amp. The buffering can  
be bypassed by using jumper JP1. Figure 3 shows the  
demo board layout.  
TheperformanceoftheLTC1560-1canbeeasilyevaluated  
byusingdemoboard135Awhichcanbeobtainedthrough  
LTC marketing. Figure 2 shows the circuit connection of  
the LTC1560-1 in demo board 135A. The filter cutoff  
frequency can be switched via S2 and the power savings  
R2  
332Ω  
OUT2  
15V  
E3  
TP  
E4  
TP  
C9  
0.01µF  
C10  
1µF  
25V  
Y5V  
JP1  
JUMPER  
3
2
1
2
3
7
OUT1  
15V  
U2  
6
E5  
TP  
R1  
1k  
LT1360CS8  
+
U1  
4
E6  
TP  
LTC1560-1  
S1  
C8  
C7  
1
2
3
4
8
7
6
5
GS01MSCKE  
1µF  
25V  
Y5V  
0.01µF  
GND  
V
OUT  
V
IN  
E1  
TP  
V
IN  
SHDN  
5V  
E7  
TP  
+
GND  
V
5V  
C5  
C6  
E2  
TP  
V
0.5f /f  
C C  
0.22µF  
1µF  
16V  
X7R  
C3  
C4  
0.01µF  
C2  
0.22µF  
1µF  
16V  
X7R  
C1  
0.01µF  
S2  
GS01MSCKE  
GND  
GND  
GND  
E8  
TP  
E9  
TP  
E10  
TP  
1560-1 F02  
Figure 2. Demo Board 135A Connection Diagram  
FILTER INPUT  
GROUND  
UNBUFFERED OUTPUT  
BUFFERED OUTPUT  
GROUND  
+5V FILTER SUPPLY  
GROUND  
+15V BUFFER SUPPLY  
5V FILTER SUPPLY  
15V BUFFER SUPPLY  
1560-1 F03  
Figure 3. Demo Board 135A Layout  
6
LTC1560-1  
U
TYPICAL APPLICATIONS N  
Augmenting the LTC1560-1 for Improved Delay Flatness  
40.2k  
20k  
22pF  
5V  
9.75k  
22pF  
6.49k  
0.1µF  
0.1µF  
1
2
8
7
2
3
GND  
V
OUT  
6.65k  
1
6
5
8
1/2 LT1364  
V
IN  
(OR 5V)  
V
49.9Ω  
SHDN  
IN  
7
+
1/2 LT1364  
V
OUT  
LTC1560-1  
GND  
3
4
6
5
+
+
5V  
V
4
0.1µF  
0.01µF  
–5V  
0.5f /f  
C
V
C
5V  
1560-1 TA05  
0.01µF  
0.1µF  
2-Level Eye Diagram of the Equalized Filter  
1560-1 TA06  
2Mbps/s  
1MHz Lowpass Filter Cascaded with a 30kHz 3rd Order Highpass Filter  
Gain vs Frequency  
10  
0
560pF  
5V  
–10  
20  
30  
40  
50  
60  
70  
80  
90  
–100  
–110  
0.1µF  
23.7k  
1k  
1
2
8
7
3
2
8
560pF 560pF  
2.61k  
GND  
V
+
OUT  
560pF  
1
6
5
39pF  
(OR 5V)  
1/2 LT1364  
V
V
IN  
SHDN  
IN  
7
1/2 LT1364  
LTC1560-1  
GND  
4
3
4
6
5
+
+
V
0.1µF  
0.1µF  
0.01µF  
0.5f /f  
C
V
C
5V  
0.01µF  
1560-1 TA09  
0.1µF  
0.1  
1
10  
100  
1000 10,000  
FREQUENCY (kHz)  
1560-1 TA10  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC1560-1  
TYPICAL APPLICATION  
U
Measured Frequency Response  
A Simple Highpass/Lowpass Filter  
15V  
10  
0
0.1µF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1k  
1
2
8
7
3
2
7
GND  
V
+
OUT  
300pF  
300pF  
8
V
LT1360  
4
OUT  
V
V
IN  
(OR 5V)  
IN  
SHDN  
LTC1560-1  
GND  
8.1k  
–5V  
3
4
6
5
+
5V  
V
0.1µF  
0.01µF  
0.5f /f  
C
V
C
0.1µF  
0.1µF  
0.01µF  
–15V  
1560-1 TA07  
20  
100  
1000  
10000  
FREQUENCY (kHz)  
1560-1 TA08  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0695  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1360/LT1361/  
LT1362  
50MHz, 800V/µs Op Amp(s)  
Single/Dual/Quad C-LoadTM Op Amps  
LTC1562  
Active RC Quad Universal Filter  
Very Low Noise, Low Distortion  
C-Load is a trademark of Linear Technology Corporation  
15601f LT/GP 1197 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1997  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
8
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY