LTC1565-31CS8#TR [Linear]

LTC1565-31 - 650kHz Continuous Time, Linear Phase Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC1565-31CS8#TR
型号: LTC1565-31CS8#TR
厂家: Linear    Linear
描述:

LTC1565-31 - 650kHz Continuous Time, Linear Phase Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

LTE 光电二极管 有源滤波器
文件: 总12页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1565-31  
650kHz Continuous Time,  
Linear Phase Lowpass Filter  
FEATURES  
DESCRIPTION  
The LTC®1565-31 is a 7th order, continuous time, linear  
phase lowpass filter. The selectivity of the LTC1565-31,  
combined with its linear phase and dynamic range, make  
it suitable for filtering in data communications or data  
acquisition systems. The filter attenuation is 36dB at  
2× fCUTOFF and at least 72dB for frequencies above 3×  
fCUTOFF. Unlike comparable LC filters, the LTC1565-31  
achieves this selectivity with a linear phase response in  
the passband.  
n
7th Order, 650kHz Linear Phase Filter in an SO-8  
n
Differential Inputs and Outputs  
n
Operates on a Single 5V or a 5V Supply  
Low Offset: 5mV Typical  
75dB THD and SNR  
78dB SNR  
Shutdown Mode  
Requires No External Components  
n
n
n
n
n
n
Requires No External Clock Signal  
With5%accuracyofthecutofffrequency,theLTC1565-31  
can be used in applications requiring pairs of matched  
filters,suchastransceiverIandQchannels.Furthermore,  
the differential inputs and outputs provide a simple inter-  
face for these wireless systems.  
APPLICATIONS  
n
CDMA Basestations  
n
Data Communications  
Withasingle5Vsupplyanda2VP-P input,theLTC1565-31  
features an impressive spurious free dynamic range of  
75dB. The maximum signal-to-noise ratio is 78dB and it  
is achieved with a 2.5VP-P input signal.  
n
Antialiasing Filters  
n
Smoothing or Reconstruction Filters  
n
Matched Filter Pairs  
n
Replacement for LC Filters  
The LTC1565-31 features a shutdown mode where power  
supply current is typically less than 10μA.  
For W-CDMA, 3G, CDMA 2000 and other cellular and  
noncellular cutoff frequencies or single-ended I/O, please  
contact LTC Marketing for additional information.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Frequency Response  
10  
0
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
Single 5V Supply, Differential 650kHz Lowpass Filter  
GAIN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
2
8
7
+
+
V
V
V
V
+IN  
–IN  
+OUT  
–OUT  
IN  
IN  
OUT  
OUT  
LTC1565-31  
5V  
DELAY  
5V  
3
4
6
5
0.1μF  
+
GND  
V
0.1μF  
V
SHDN  
15645-31 TA01  
4
5
6
7
10  
10  
10  
10  
FREQUENCY (Hz)  
1565 G01  
156531fa  
1
LTC1565-31  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
Total Supply Voltage ............................................... 11V  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC1565-31CS8...................................... 0°C to 70°C  
LTC1565-31IS8................................... 40°C to 85°C  
Storage Temperature Range ................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) ................ 300°C  
TOP VIEW  
+IN  
–IN  
1
2
3
4
8
7
6
5
+OUT  
–OUT  
+
GND  
V
V
SHDN  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
= 150°C, θ = 80°C/ W (NOTE 4)  
JA  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC1565-31CS8#PBF  
LTC1565-31IS8#PBF  
TAPE AND REEL  
LTC1565-31CS8#TRPBF 156531  
LTC1565-31IS8#TRPBF 56531I  
PART MARKING  
PACKAGE DESCRIPTION  
8-Lead Plastic SO  
TEMPERATURE RANGE  
0°C to 70°C  
8-Lead Plastic SO  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, RLOAD = 10k from each output to AC ground, and Pin 5 open  
unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Voltage  
Filter Gain  
4.75  
11  
V
l
l
l
l
l
l
l
V
= 1V , f = 25kHz  
–0.3  
–0.2  
–0.7  
–2.2  
–4  
0
0.3  
0.1  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
IN  
P-P IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 200kHz (Gain Relative to 25kHz)  
= 300kHz (Gain Relative to 25kHz)  
= 500kHz (Gain Relative to 25kHz)  
= 650kHz (Gain Relative to 25kHz)  
= 900kHz (Gain Relative to 25kHz)  
= 1.3MHz (Gain Relative to 25kHz)  
= 2.3MHz (Gain Relative to 25kHz)  
0
–0.4  
–1.6  
–3  
–11  
–36  
–72  
–0.1  
–0.95  
–2  
–7  
–31  
Filter Phase  
V
IN  
= 1V , f = 25kHz  
–13  
–101  
–150  
113  
60  
Deg  
Deg  
Deg  
Deg  
Deg  
Deg  
Deg  
P-P IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 200kHz  
= 300kHz  
= 500kHz  
= 600kHz  
= 650kHz  
= 900kHz  
l
l
–162  
34  
–138  
85  
36  
–92  
l
Phase Linearity  
Wideband Noise  
THD  
Ratio of 600kHz Phase/300kHz Phase  
Noise BW = DC to 2 • f  
1.95  
2
2.03  
118  
86  
μV  
RMS  
CUTOFF  
f
= 100kHz, 1V (Note 2)  
dB  
IN  
P-P  
Filter Differential DC Swing  
Maximum Difference Between Pins 7 and 8  
V = 5V  
l
l
1.4  
2.2  
1.7  
2.3  
V
V
S
V = 5V  
S
156531fa  
2
LTC1565-31  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VS = 5V, RLOAD = 10k from each output to AC ground, and Pin 5 open  
unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.3  
10  
MAX  
UNITS  
μA  
Input Bias Current  
Input Offset Current  
Input Resistance  
0.1  
0.6  
nA  
Common Mode, V = 2.5V  
Differential  
75  
145  
MΩ  
MΩ  
IN  
Input Capacitance  
3
pF  
Output DC Offset (Note 3)  
V = 5V  
S
5
5
12  
12  
mV  
mV  
S
V = 5V (Note 5)  
Output DC Offset Drift  
V = 5V  
S
–400  
–400  
μV/°C  
μV/°C  
S
V = 5V  
l
Ground Voltage (Pin 3) in  
Single Supply Applications  
V = 5V  
2.49  
2.51  
2.52  
4.2  
V
S
l
l
SHDN Pin Logic Thresholds  
V = 5V, Minimum Logical “1”  
V
V
S
V = 5V, Maximum Logical “0”  
3.3  
2.4  
S
l
l
V = 5V, Minimum Logical “1”  
2.9  
V
V
S
V = 5V, Maximum Logical “0”  
S
SHDN Pin Pull-Up Current  
V = 5V  
S
5
9
μA  
μA  
S
V = 5V  
l
l
Power Supply Current  
V = 5V  
S
24  
25  
31  
33  
mA  
mA  
S
V = 5V  
Power Supply Current in Shutdown Mode  
Shutdown. Includes SHDN Pull-Up Current  
l
l
V = 5V  
8
20  
16  
40  
μA  
μA  
S
V = 5V  
S
Note 3: Output DC offset is measured between Pin 8 and Pin 7 with Pin 1  
and Pin 2 connected to Pin 3.  
Note 4: Thermal resistance varies depending upon the amount of PC board  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
metal attached to the device. θ is specified for a 3.8 square inch test  
JA  
board covered with 2 oz copper on both sides.  
Note 2: Input and output voltages expressed as peak-to-peak numbers are  
assumed to be fully differential.  
Note 5: Output DC offset measurements are performed by automatic test  
equipment approximately 0.5 seconds after application of power.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Passband Gain and Delay  
vs Frequency  
Frequency Response  
10  
0
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.5  
0
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
GAIN  
5V  
GAIN  
5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
DELAY  
DELAY  
T
A
= 25°C  
4
5
6
7
25k  
100k  
1M  
10  
10  
10  
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1565 G02  
1565 G01  
156531fa  
3
LTC1565-31  
TYPICAL PERFORMANCE CHARACTERISTICS  
Stopband Gain vs Frequency  
Over Temperature  
Passband Gain vs Frequency  
Stopband Gain vs Frequency  
Over Temperature  
–40  
–50  
–60  
–70  
–80  
–90  
0.5  
0.4  
–40  
–50  
–60  
–70  
–80  
–90  
V
S
= 5V  
V
= 5V  
S
0.3  
0.2  
–40°C  
25°C  
–40°C  
25°C  
0.1  
85°C  
0
85°C  
V
= 5V  
5V  
S
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
=
S
25k  
100k  
FREQUENCY (Hz)  
400k  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1565 G03  
1565 G04  
1565 G05  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Supply Current vs Temperature  
110  
80  
70  
60  
50  
40  
30  
26  
25  
V
V
T
= 1V  
= 5V  
V
V
T
= 200mV  
= 5V  
IN  
S
A
P-P  
IN  
S
A
P-P  
= 25°C  
= 25°C  
100  
90  
V
S
= 5V  
80  
70  
V
S
= 5V  
24  
23  
60  
50  
3
4
5
6
7
3
4
5
6
7
10  
10  
10  
FREQUENCY (Hz)  
10  
10  
10  
10  
10  
FREQUENCY (Hz)  
10  
10  
30  
TEMPERATURE (°C)  
70  
90  
–50 –30 –10 10  
50  
1565 G06  
1565 G07  
1565 G08  
PIN FUNCTIONS  
+IN, –IN (Pins 1, 2): Input Pins. Signals can be applied  
to either or both input pins. The typical DC gain from dif-  
ferential inputs (Pin 1 to Pin 2) to the differential outputs  
(Pin 8 to Pin 7) is 1.0V/V. The input range is described in  
the Applications Information section.  
ceramic capacitor to Pin 4. For dual supply operation,  
connect Pin 3 to a high quality DC ground. A ground  
plane should be used. A poor ground will increase noise  
and distortion.  
The impedance seen at Pin 3 is 2.5kΩ in normal mode. In  
shutdown, the pin is internally biased to the same levels  
as normal mode. The impedance in shutdown mode  
is typically 500kΩ but varies with supply voltage and  
temperature.  
GND (Pin 3): Ground. The ground pin is the reference  
voltage for the filter and is internally biased to one-half  
the total power supply voltage of the filter, maximizing the  
dynamic range of the filter. For single supply operation,  
the ground pin should be bypassed with a quality 0.1μF  
156531fa  
4
LTC1565-31  
PIN FUNCTIONS  
+
V , V (Pins 4, 6): Power Supply Pins. For a single 5V  
supply (Pin 4 grounded), a quality 0.1μF ceramic bypass  
capacitor is required from the positive supply pin (Pin 6)  
to the negative supply pin (Pin 4). The bypass should be  
as close as possible to the IC. For dual supply applications  
(Pin 3 is grounded), bypass Pin 6 to Pin 3 and Pin 4 to  
Pin 3 with a quality 0.1μF ceramic capacitor.  
SHDN (Pin 5): Shutdown. When the Pin 5 voltage is low,  
the LTC1565-31 goes into the current saving shutdown  
mode. Pin 5 has a 4μA pull-up current. Leaving Pin 5 open  
will place the LTC1565-31 in its normal operating mode.  
OUT, +OUT (Pins 7, 8): Output Pins. Pins 7 and 8 are the  
filter differential output. Each pin can drive 1kΩ or 300pF  
loads. The common mode voltage at the output pins is  
the same as the voltage at Pin 3.  
The maximum voltage difference between the ground  
pin (Pin 3) and the positive supply pin (Pin 6) should not  
exceed 5.5V.  
BLOCK DIAGRAM  
+IN  
1
+
+OUT  
–OUT  
8
7
R
R
OUTPUT  
BUFFER  
7th ORDER  
LINEAR  
+
PHASE  
FILTER  
NETWORK  
OUTPUT  
BUFFER  
+
+
INPUT BUFFERS  
–IN  
2
3
4
WITH COMMON MODE  
TRANSLATION CIRCUIT  
V
SHUTDOWN  
SWITCH  
~1M  
5k  
+
GND  
6
V
5k  
SHUTDOWN  
SWITCH  
~1M  
+
V
V
4μA  
V
SHUTDOWN  
5
SHDN  
1565-31 BD  
156531fa  
5
LTC1565-31  
APPLICATIONS INFORMATION  
Interfacing to the LTC1565-31  
Input Common Mode and Differential Voltage Range  
The difference between the voltages at Pin 1 and Pin 2 is  
thedifferentialinputvoltage.Theaverageofthevoltages  
at Pin 1 and Pin 2 is the “common mode input voltage.”  
The difference between the voltages at Pin 7 and Pin 8  
is the “differential output voltage.” The average of the  
voltages at Pin 7 and Pin 8 is the “common mode output  
voltage.Theinputandoutputcommonmodevoltagesare  
independent.Theinputcommonmodevoltageissetbythe  
signal source, if DC coupled, or by the biasing network if  
AC coupled (Figures 1 and 2). The output common mode  
voltage is equal to the voltage of Pin 3, the GND pin. The  
GND pin is biased to one-half of the supply voltage by an  
internal resistive divider (see Block Diagram). To alter the  
common mode output voltage, Pin 3 can be driven with  
an external voltage source or resistor network. If external  
resistors are used, it is important to note that the internal  
5k resistors can vary 20% (their ratio only varies 1%).  
The output can also be AC coupled.  
The range of voltage each input can support while operat-  
ing in its linear region is typically 0.8V to 3.7V for a single  
5V supply and 4.2V to 3.2V for a 5V supply. Therefore,  
the filter can accept a variety of common mode input volt-  
ages. Figures 3 and 4 show the THD of the filter versus  
common mode input voltage with a 2V  
input signal.  
differential  
P-P  
–30  
–40  
V
= 5V  
S
–50  
–60  
–70  
–80  
–90  
V
IN  
= 2V  
P-P  
IN  
f
= 100kHz  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
INPUT COMMON MODE VOLTAGE (V)  
1
2
8
7
+
V
V
+IN  
–IN  
+OUT  
–OUT  
OUT  
OUT  
1565-31 F03  
Figure 3. THD vs Common Mode Input Voltage  
+
+
+
V
V
IN  
IN  
5V  
LTC1565-31  
3
4
6
5
–30  
+
GND  
V
0.1μF  
0.1μF  
V
SHDN  
V
= 5V  
S
–40  
–50  
15645-31 F01  
DC COUPLED INPUT  
+
V
+ V  
IN  
IN  
V
V
(COMMON MODE) =  
IN  
2
+
+
V
+ V  
2
V
OUT  
OUT  
–60  
(COMMON MODE) =  
=
OUT  
2
Figure 1  
–70  
–80  
V
IN  
= 2V  
P-P  
= 100kHz  
IN  
f
0.1μF  
100k  
1
2
8
7
0.5  
1.0  
2.0  
2.5  
3.0  
3.5  
1.5  
+
V
V
+IN  
–IN  
+OUT  
–OUT  
OUT  
INPUT COMMON MODE VOLTAGE (V)  
OUT  
1565-31 F04  
+
+
+
V
V
IN  
IN  
0.1μF  
100k  
1μF  
5V  
LTC1565-31  
Figure 4. THD vs Common Mode Input Voltage  
3
4
6
5
+
GND  
V
0.1μF  
Figure 5 shows the THD and S/N ratio versus differential  
input voltage level for both a single 5V supply and a 5V  
supply. The common mode voltage of the input signal is  
one-half the total power supply voltage of the filter. The  
spurious free dynamic range, where the THD and S/N  
ratio are equal, is 75dB to 76dB when the differential input  
V
SHDN  
15645-31 F02  
AC COUPLED INPUT  
(COMMON MODE) = V  
V
(COMMON MODE)  
IN  
OUT  
+
V
=
2
Figure 2  
voltage level is 2V ; that is, for a single 5V supply, the  
P-P  
156531fa  
6
LTC1565-31  
APPLICATIONS INFORMATION  
–30  
Output Common Mode and Differential Voltage Range  
THD: V = 5V, V = 2.5V  
S
S
CM  
THD: V  
SNR  
= 100kHz  
= 5V, V = 0V  
CM  
–40  
–50  
–60  
–70  
–80  
–90  
Theoutputisafullydifferentialsignalwithacommonmode  
level equal to the voltage at Pin 3. The specifications in  
the Electrical Characteristics table assume the inputs are  
drivendifferentiallyandtheoutputisobserveddifferentially.  
However, Pin 8 can be used as a single-ended output by  
simply floating Pin 7. Pin 7 can be used as an inverting  
single-ended output by floating Pin 8. Using Pins 7 or 8  
as single-ended outputs will decrease the performance.  
f
IN  
0.5  
1.5  
2.0  
2.5  
3.0  
3.5  
1.0  
Thecommonmodeoutputvoltagecanbeadjustedbyover-  
drivingthevoltagepresentonPin3.Thebestperformance  
is achieved using a common mode output voltage that is  
equal to mid supply (the default Pin 3 voltage). Figures  
7 and 8 illustrate the THD versus output common mode  
DIFFERENTIAL INPUT (  
)
P-P  
1565-31 F05  
Figure 5. Dynamic Range Diff-In, Diff-Out  
input voltages are Pin 1 = 2.5V DC 0.5V and Pin 2 = 2.5V  
DC 0.5V. Also note Figure 5 shows a 78dB SNR ratio for  
higher THD levels.  
voltagefora2V differentialinputvoltageandacommon  
P-P  
mode input voltage that is 0.5V below mid supply.  
0
As seen in Figures 3 and 4, the spurious free dynamic  
rangecanbeoptimizedbysettingtheinputcommonmode  
voltageslightlybelowone-halfofthepowersupplyvoltage,  
i.e., 2V for a single 5V supply and –0.5V for a 5V supply.  
Figure 6 shows the THD and SNR ratio versus differential  
input voltage level for both a single 5V supply and a 5V  
supply when the common mode input voltage is 2V and  
–0.5V respectively.  
V
V
V
= 2V 100kHz  
P-P  
IN  
S
= 5V  
–10  
–20  
–30  
= 2V  
IN(CM)  
–40  
–50  
–60  
–70  
–80  
For best performance, the inputs should be driven dif-  
ferentially. For single-ended signals, connect the unused  
input to Pin 3 or a common mode reference.  
2.0  
2.5  
3.5  
1.0  
1.5  
4.0  
3.0  
COMMON MODE OUTPUT VOLTAGE (V)  
1565-31 F07  
–30  
Figure 7. THD vs Common Mode Output Voltage  
THD: V = 5V, V = 2V  
S
S
CM  
THD: V  
SNR  
= 100kHz  
= 5V, V = –0.5V  
CM  
–40  
–50  
–60  
–70  
–80  
–90  
0
V
V
V
= 2V 100kHz  
P-P  
IN  
S
f
IN  
=
5V  
= –0.5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
IN(CM)  
0.5  
1.5  
2.0  
2.5  
3.0  
3.5  
1.0  
DIFFERENTIAL INPUT VOLTAGE (V  
)
P-P  
–2 –1  
0
1
2
–4 –3  
3
4
1565-31 F06  
COMMON MODE OUTPUT VOLTAGE (V)  
1565-31 F08  
Figure 6. THD vs VIN for a Common Mode  
Input Voltage 0.5V Below Mid Supply  
Figure 8. THD vs Common Mode Output Voltage  
156531fa  
7
LTC1565-31  
APPLICATIONS INFORMATION  
Output Drive  
in the filter passband and cannot be removed with post  
filtering (Table 1). Table 2 lists the typical change in wide-  
band noise with supply voltage.  
Pin 7 and Pin 8 can drive a 1kΩ or 300pF load connected  
to AC ground with a 0.5V signal (corresponding to a  
2V  
differential signal). For differential loads (loads  
Table 1. Wideband Noise vs Bandwidth, Single 5V Supply  
P-P  
connected from Pin 7 to Pin 8) the outputs can produce a  
BANDWIDTH  
TOTAL INTEGRATED NOISE  
2V differentialsignalacross2kΩor150pF. Forsmaller  
DC to f  
104μV  
P-P  
CUTOFF  
RMS  
signal amplitudes the outputs can drive correspondingly  
DC to 2 • f  
118μV  
RMS  
CUTOFF  
larger loads.  
Table 2. Wideband Noise vs Supply Voltage, fCUTOFF = 650kHz  
TOTAL INTEGRATED NOISE  
Noise  
POWER SUPPLY  
DC TO 2 • f  
CUTOFF  
The wideband noise of the filter is the RMS value of the  
device’soutputnoisespectraldensity.Thewidebandnoise  
data is used to determine the operating signal-to-noise at  
a given distortion level. Most of the noise is concentrated  
5V  
5V  
118μV  
120μV  
RMS  
RMS  
TYPICAL APPLICATIONS  
Test Circuit for Single 5V Supply Operation  
4.99k  
AMPLIFIERS A1, A2 AND A3 ALLOW THE USE OF A  
5V  
GROUND-REFERENCED SINGLE-ENDED AC SOURCE AS THE  
INPUT SIGNAL AND A SEPARATE GROUND-REFERENCED DC  
SOURCE TO PROVIDE THE INPUT DC COMMON MODE VOLTAGE  
0.1μF  
4.99k  
2
3
7
AMPLIFIERS A4 AND A5 ALLOW MONITORING/MEASURING  
THE DIFFERENTIAL OUTPUT WITH A SINGLE-ENDED,  
GROUND-REFERENCED INSTRUMENT  
6
A1  
LT®1809  
2.49k  
10μF  
+
4
2.49k  
4.99k  
5V  
5V  
0.1μF  
4.99k  
2.49k  
0.1μF  
V
IN  
4.99k  
+
2
3
+V /2 + V  
IN  
1
2
3
4
8
7
6
5
+
7
2
3
CM  
CM  
7
+IN  
+OUT  
–OUT  
6
A2  
LT1809  
6
A4  
LT1809  
V
OUT  
(SINGLE ENDED)  
V
2.49k  
–V /2 + V  
IN  
CM  
–IN  
4
4
+
4.99k 10μF  
2.49k  
5V  
LTC1565-31  
+
GND  
V
1k  
0.1μF  
0.1μF  
4.99k  
5V  
V
SHDN  
19k  
0.01μF  
0.1μF  
5V  
+
2
3
7
0.1μF  
4.99k  
2.49k  
20Ω  
+
6
2
3
A5  
LT1812  
7
+
1k  
V /2  
6
A3  
LT1809  
2.2μF  
4
0.1μF  
1565-31 TA08  
4
156531fa  
8
LTC1565-31  
TYPICAL APPLICATIONS  
Single-Ended Input/Output Dual Supply Filter  
4.99k  
5V  
0.1μF  
0.1μF  
4.99k  
2
3
1
8
7
6
5
7
V
+IN  
+OUT  
–OUT  
IN  
6
V
LT1809  
OUT  
2.49k  
+
2
–IN  
4
LTC1565-31  
3
+
–5V  
GND  
V
5V  
R2  
0.1μF  
0.1μF  
2.49k  
4
1565-31 TA09  
–5V  
V
SHDN  
0.1μF  
NOTE: FOR SINGLE 5V SUPPLY CONNECTION, PIN 4 (LTC1565-31)  
AND PIN 4 (LT1809) SHOULD BE GROUNDED AND RESISTOR R2  
SHOULD BE DC BIASED AT APPROXIMATELY 2.5V  
(SEE TEST CIRCUIT FOR SINGLE SUPPLY OPERATION)  
A Fully Differential Filter with Adjustable Output Common Mode Voltage  
+
1
2
3
4
8
7
6
5
(V – V )R2  
R1 + R2  
+
+
V
V
*
*
V
V
V
= V  
+
+IN  
+OUT  
–OUT  
IN  
OUT  
OUT  
OUT(CM)  
–IN  
IN  
LTC1565-31  
+
GND  
V
5V  
0.1μF  
–5V  
V
SHDN  
0.1μF  
–3V ≤ V  
≤ 3V  
OUT(CM)  
5V  
*–3.4V ≤ V  
IN(CM)  
DIFFERENT FROM V  
OUT(CM)  
≤ 2.5V  
IN(CM)  
+
V
CAN BE EQUAL OR  
V
0.1μF  
0.1μF  
+
2
3
7
6
NOTE: FOR SINGLE 5V SUPPLY OPERATION,  
PIN 4 (LTC1565-31), PIN 4 (LT1812) AND  
RESISTOR R2 SHOULD BE GROUNDED  
R1  
R2  
LT1812  
4
100pF  
0.1μF  
–5V  
1565-31 TA10  
V
156531fa  
9
LTC1565-31  
TYPICAL APPLICATIONS  
Simple Pulse Shaping Circuit for Single 5V Operation, 1.25Mbps 2 Level Data  
5V  
4.99k  
4.99k  
1
2
8
7
+
4.99k  
V
V
+IN  
–IN  
+OUT  
–OUT  
OUT  
1.25Mbps  
DATA  
OUT  
LTC1565-31  
3
4
6
5
+
GND  
V
5V  
0.1μF  
0.1μF  
V
SHDN  
15645-31 TA04  
250ns/DIV  
1565-31 TA05  
Simple Pulse Shaping Circuit for Single 5V Operation, 2Mbps (1Msps) 4 Level Data  
5V  
4.99k  
4.99k  
10k  
D1  
1Msps  
DATA  
1
2
8
7
+
V
V
+IN  
–IN  
+OUT  
–OUT  
OUT  
D0  
OUT  
4.99k  
LTC1565-31  
3
4
6
5
+
GND  
V
5V  
0.1μF  
0.1μF  
V
SHDN  
15645-31 TA06  
200ns/DIV  
1565-31 TA07  
156531fa  
10  
LTC1565-31  
TYPICAL APPLICATIONS  
Narrowband Cellular Basestation Receiver  
LTC1565-31  
LPF  
ADC  
ADC  
0°  
I
RF/IF  
SECTION  
90°  
DSP  
LO  
Q
90°  
LTC1565-31  
LPF  
1565-31 TA03  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
.160 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
156531fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC1565-31  
TYPICAL APPLICATION  
Selective 620kHz CDMA Filter  
R5  
1k  
5V  
R4  
1.13k  
C6  
0.1μF  
R6  
1k  
C3  
18pF  
C4  
18pF  
1
2
3
4
8
7
6
5
1
2
8
7
V
V
R1  
R2  
R3  
1.24k  
+IN  
–IN  
+OUT  
–OUT  
OUT1  
OUT2  
C5  
180pF  
562Ω  
562Ω  
U1  
LT1813  
V
V
IN1  
U2  
LTC1565-31  
FGND  
C1  
150pF  
C2  
1000pF  
3
4
6
5
+
GND  
V
C8  
0.1μF  
C7  
0.1μF  
R7  
562Ω  
R8  
562Ω  
R9  
V
SHDN  
1.24k  
15645-31 TA11  
R11  
1k  
IN2  
5V  
R10  
1.13k  
R12  
1k  
Frequency Response  
0
–6  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
100k  
1M  
FREQUENCY (Hz)  
1565 TA12  
RELATED PARTS  
PART NUMBER  
LTC1560-1  
DESCRIPTION  
COMMENTS  
1MHz/500kHz Continuous Time, Low Noise, Lowpass Elliptic Filter  
Universal 8th Order Active RC Filters  
f
= 500kHz or 1MHz  
CUTOFF  
LTC1562/LTC1562-2  
f
f
= 150kHz (LTC1562),  
= 300kHz (LTC1562-2)  
CUTOFF(MAX)  
CUTOFF(MAX)  
LTC1563-2/LTC1563-3  
LTC1569-6/LTC1569-7  
4th Order Active RC Lowpass Filters  
f
= 256kHz  
CUTOFF(MAX)  
Self Clocked, 10th Order Linear Phase Lowpass Filters  
f
f
/f  
/f  
= 64/1, f  
= 32/1, f  
= 75kHz (LTC1569-6)  
= 300kHz (LTC1569-7)  
CLK CUTOFF  
CLK CUTOFF  
CUTOFF(MAX)  
CUTOFF(MAX)  
156531fa  
LT 0809 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2000  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY