LTC1574CS-3.3#TRPBF [Linear]

LTC1574 - High Efficiency Step-Down DC/DC Converters with Internal Schottky Diode; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C;
LTC1574CS-3.3#TRPBF
型号: LTC1574CS-3.3#TRPBF
厂家: Linear    Linear
描述:

LTC1574 - High Efficiency Step-Down DC/DC Converters with Internal Schottky Diode; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C

转换器 稳压器 开关式稳压器或控制器 电源电路 肖特基二极管 开关式控制器 光电二极管
文件: 总8页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1574  
LTC1574-3.3/LTC1574-5  
High Efficiency Step-Down  
DC/DC Converters  
with Internal Schottky Diode  
U
FEATURES  
DESCRIPTIO  
The LTC®1574 is a family of easy-to-use current mode  
DC/DC converters ideally suited for 9V to 5V, 5V to 3.3V  
and inverting operation. With an internal 0.9switch (at  
a supply voltage of 12V) and a low forward drop Schottky  
diode (0.450V typ at 200mA, TA = 25°C), the LTC1574  
requires only three external components to construct a  
complete high efficiency DC/DC converter.  
High Efficiency: Up to 94%  
Usable in Noise-Sensitive Products  
Peak Inductor Current Independent of Inductor Value  
Short-Circuit Protection  
Internal Low Forward Drop Schottky Diode  
Only Three External Components Required  
Wide VIN Range: 4V to 18.5V (Absolute Maximum)  
Low Dropout Operation  
Low-Battery Detector  
Pin Selectable Current Limit  
Under no load condition, the LTC1574 draws only 130µA.  
In shutdown, it draws a mere 2µA making this converter  
ideal for battery-powered applications. In dropout, the  
internal P-channel MOSFET switch is turned on continu-  
ously allowing the user to maximize the life of the battery  
source.  
Internal 0.9Power Switch: VIN < 11V  
Standby Current: 130µA  
Active Low Micropower Shutdown  
U
The maximum inductor current of the LTC1574 family is  
pin selectable to either 340mA or 600mA, optimizing  
efficiency for a wide range of applications. Operation up to  
200kHz permits the use of small surface mount inductors  
and capacitors.  
APPLICATIO S  
Inverting Converters  
Step-Down Converters  
Memory Backup Supply  
Portable Instruments  
Battery-Powered Equipment  
Distributed Power Systems  
For applications requiring higher output current or ultra-  
high efficiency, see the LTC1148 or LTC1265 data sheets.  
For detailed applications information, see the LTC1174  
data sheet.  
and LTC are registered trademarks and LT is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
LTC1574-5 Efficiency  
High Efficiency Step-Down Converter  
100  
L = 100µH  
V
V
= 5V  
= 0V  
IN  
OUT  
PGM  
95  
90  
85  
80  
75  
70  
V
= 6V  
= 9V  
5.5V to  
IN  
I
16V  
+
5
22µF*  
V
35V  
IN  
V
12  
11  
6
IN  
7
LB  
LB  
SHDN  
IN  
LTC1574-5  
10  
V
OUT  
OUT  
100µH  
5V  
175mA  
3, 14  
I
SW  
PGM  
+
100µF*  
10V  
GND  
2, 4, 13, 15  
1574 TA01  
1
10  
LOAD CURRENT (mA)  
100 200  
* AVX TPSD226K035  
** AVX TPSD107K010  
COILTRONICS CTX100-4  
1574 TA02  
1
LTC1574  
LTC1574-3.3/LTC1574-5  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
(Voltage Referred to GND Pin)  
NC  
GND  
SW  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
Input Supply Voltage (Pin 5) ................. 0.3V to 18.5V  
Switch Current (Pin 3, 14) ........................................ 1A  
Switch Voltage (Pin 3, 14) .......................... VIN – 18.5V  
Operating Temperature Range .................... 0°C to 70°C  
Junction Temperature (Note 2)............................ 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
GND  
SW  
LTC1574CS  
LTC1574CS-3.3  
LTC1574CS-5  
GND  
GND  
V
LB  
IN  
IN  
I
LB  
PGM  
OUT  
SHDN  
V
(V *)  
OUT FB  
NC  
NC  
S PACKAGE  
16-LEAD PLASTIC SO  
*ADJUSTABLE OUTPUT VERSION  
= 125°C, θ = 110°C/W  
T
JMAX  
JA  
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 9V, SHDN = VIN, IPGM = 0V, unless otherwise specified.  
SYMBOL PARAMETER  
CONDITIONS  
LTC1574  
MIN  
TYP  
MAX UNITS  
I
Feedback Current into Pin 10  
Feedback Voltage  
1
µA  
FB  
V
V
LTC1574  
1.20  
1.25  
1.30  
V
FB  
Regulated Output Voltage  
LTC1574-3.3  
LTC1574-5  
3.14  
4.75  
3.30  
5.00  
3.46  
5.25  
V
V
OUT  
V  
OUT  
Output Voltage Line  
Regulation  
V
= 6V to 12V, I  
= 100mA, I  
= V (Note 3)  
10  
70  
mV  
IN  
LOAD  
PGM  
IN  
Output Voltage Load  
Regulation  
LTC1574-3.3 (Note 3) 20mA < I  
20mA < I  
< 175mA, I  
< 400mA, I  
= 0V  
–5  
45  
70  
70  
mV  
mV  
LOAD  
LOAD  
PGM  
PGM  
= V  
IN  
LTC1574-5 (Note 3)  
20mA < I  
20mA < I  
< 175mA, I  
< 400mA, I  
= 0V  
–5  
50  
70  
70  
mV  
mV  
LOAD  
LOAD  
PGM  
PGM  
= V  
IN  
I
Input DC Supply Current (Note 4)  
Active Mode  
Q
4V < V < 16V, I  
= 0V  
PGM  
450  
130  
2
600  
180  
25  
µA  
µA  
µA  
IN  
Sleep Mode  
Shutdown (Note 5)  
4V < V < 16V  
IN  
SHDN = 0V, 4V < V < 16V  
IN  
V
Low-Battery Trip Point  
Current into Pin 12  
1.25  
1.4  
0.5  
V
LBTRIP  
I
I
µA  
LBIN  
Current Sunk by Pin 11  
V
V
= 0.4V, V = 0V  
LBIN  
0.5  
7.5  
1.0  
15  
1.5  
1.0  
mA  
µA  
LBOUT  
LBOUT  
LBOUT  
= 5V, V  
= 10V  
LBIN  
V
Comparator Hysteresis  
Current Limit  
30  
mV  
HYST  
I
I
I
= V , V  
= 0V  
= 0V  
0.54  
0.27  
0.60  
0.34  
0.83  
0.53  
A
A
PEAK  
PGM  
PGM  
IN OUT  
= 0V, V  
OUT  
R
ON Resistance of Switch  
Switch Off Time  
0.9  
4
1.55  
5
µs  
V
ON  
t
V
at Regulated Value  
OUT  
3
OFF  
V
V
SHDN Pin High  
Minimum Voltage at Pin 7 for Device to Be Active  
Maximum Voltage at Pin 7 for Device to Be in Shutdown  
1.2  
IH  
IL  
SHDN Pin Low  
0.75  
V
2
LTC1574  
LTC1574-3.3/LTC1574-5  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 9V, SHDN = VIN, IPGM = 0V, unless otherwise specified.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
I
I
SHDN Pin Input Current  
SHDN = 16V  
2
µA  
µA  
V
IH  
IL  
SHDN Pin Input Current  
0 SHDN 0.8V  
Forward Current = 200mA  
0.5  
V
Schottky Diode Forward Voltage  
Schottky Reverse Current  
0.450 0.570  
F
I
Reverse Voltage = 5V  
Reverse Voltage = 18.5V  
10  
100  
25  
250  
µA  
µA  
R
Note 3: Guaranteed by design.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: Does not include Schottky reverse current. Dynamic supply  
current is higher due to the gate charge being delivered at the switching  
frequency.  
Note 2: T is calculated from the ambient temperature T and power  
J
A
dissipation P according to the following formulas:  
D
Note 5: Current into Pin 5 only, measured without electrolytic input  
T = T + (P • 110°C/W)  
J
A
D
capacitor.  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current  
Efficiency vs Load Current  
Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
95  
94  
93  
92  
91  
90  
89  
100  
90  
80  
70  
60  
50  
V
= 5V  
OUT  
L = 100µH  
V
= 5V  
IN  
COIL = CTX100-4  
V
= 6V  
IN  
V
= 9V  
IN  
V
= 9V  
IN  
I
I
= 100mA  
LOAD  
= 0V  
PGM  
I
= 300mA  
LOAD  
I
= V  
PGM  
IN  
L = 50µH  
L = 50µH  
V
I
= 5V  
V
I
= 3.3V  
OUT  
PGM  
OUT  
PGM  
= V  
= V  
IN  
IN  
COIL = CTX50-4  
COIL = CTX50-4  
1
10  
100 400  
1
10  
100  
500  
12  
5
6
7
8
9
10 11  
13 14  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
1574 • TPC02  
1574 • TPC01  
1574 • TPC03  
Efficiency Using Different Types  
of Inductor Core Material  
Switch Leakage Current  
vs Temperature  
Switch Resistance vs  
Input Voltage  
180  
160  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
V
IN  
= 13.5V  
T
= 25°C  
A
CTX50-4  
CTX50-4P  
60  
40  
V
V
PGM  
= 5V  
IN  
= 3.3V  
IN  
OUT  
20  
I
= V  
0
0
20  
40  
60  
80  
100  
1
10  
100  
500  
4
6
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
1574 • TPC06  
8
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
1574 • TPC04  
1574 • TPC05  
3
LTC1574  
LTC1574-3.3/LTC1574-5  
U
U
U
PI FU CTIO S  
VOUT or VFB (Pin 10): For the LTC1574, this pin connects  
o the main voltage comparator input. On the LTC1574-5  
and LTC1574-3.3, this pin goes to an internal resistive  
divider which sets the output voltage  
NC (Pins 1, 8, 9, 16): No Connection.  
t
GND (Pins 2, 4, 13, 15): Ground.  
SW (Pins 3, 14): Drain of P-Channel MOSFET Switch and  
Cathode of Schottky Diode.  
.
LBOUT (Pin 11): Open drain of an N-Channel Pull-Down.  
This pin will sink current when (Pin 12) LBIN goes below  
1.25V.  
V
IN (Pin 5): Input Supply Voltage. It must be decoupled  
close to ground (Pin 4).  
IPGM (Pin 6): This pin selects the current limit of the  
P-channel switch. With IPGM = VIN, the current trip point is  
600mA and with IPGM = 0V, the current trip point is  
reduced to 340mA.  
LBIN (Pin 12): The (–) Input of the Low-Battery Voltage  
Comparator. The (+) input is connected to a reference  
voltage of 1.25V.  
SHDN (Pin 7): Pulling this pin to ground keeps the internal  
switch off and puts the LTC1574 in micropower shutdown.  
W U U  
U
APPLICATIO S I FOR ATIO  
Operating Frequency and Inductor  
IPGM pin, the limit is either set to 340mA or 600mA. In  
addition, the off-time of the switch is increased to allow the  
inductor current to decay far enough to prevent any current  
build-up (see Figure 1).  
Since the LTC1574 utilizes a constant off-time architecture,  
itsoperatingfrequencyisdependentonthevalueofVIN.The  
frequency of operation can be expressed as:  
V VOUT  
V + VD  
IN  
1
tOFF  
IN  
f =  
Hz  
( )  
IPGM = VIN  
where tOFF = 4µs and VD is the voltage drop across the  
internal Schottky diode. Note that the operating frequency  
is a function of the input and output voltage.  
IPGM = 0  
Although the size of the inductor does not affect the fre-  
quency or inductor peak current, it does affect the ripple  
current. The peak-to-peak ripple current is given by:  
GND  
V
OUT + VD  
RIPPLE = 4 106  
AP-P  
1574 • F01  
I
L = 100µH  
IN = 13.5V  
20µs/DIV  
(
)
V
L
Figure 1. Inductor Current with Output Shorted  
Whenchoosingasmallinductor, corelosswillincreasedue  
to higher ripple current. Therefore, a low ESR output  
capacitor has to be used.  
Low-Battery Detector  
Thelow-batteryindicatorsensestheinputvoltagethrough  
anexternalresistivedivider. Thisdividedvoltageconnects  
to the “–” input of a voltage comparator (Pin 12) which is  
comparedwitha1.25Vreferencevoltage. Withthecurrent  
Short-Circuit Protection  
The LTC1574 is protected from output short circuits by its  
internal current limit. Depending on the condition of the  
4
LTC1574  
LTC1574-3.3/LTC1574-5  
W U U  
U
APPLICATIO S I FOR ATIO  
going into Pin 12 being negligible, the following expres-  
sion is used for setting the trip limit:  
differencebetweentheabsolutemaximumvoltagerating  
and the output voltage. A maximum of 12V is specified in  
Figure4,givingthecircuit1.5VofheadroomforVIN.Note  
that the circuit can operate from a minimum of 4V,  
making it ideal for a four NiCd cell application. For a  
higher output current circuit, please refer to the Typical  
Applications section.  
R4  
R3  
VLBTRIP = 1.25 1+  
V
IN  
LTC1574  
R4  
R3  
INPUT VOLTAGE  
4V TO 12V  
12  
+
5
1.25V  
REFERENCE  
+
47µF*  
V
IN  
0.1µF  
16V  
LTC1574-5  
SHDN  
× 2  
1574 • F02  
12  
11  
6
7
LB  
LB  
IN  
Figure 2. Low-Battery Comparator  
10  
V
OUT  
OUT  
SW  
50µH**  
3, 14  
LTC1574 Adjustable Applications  
I
PGM  
+
47µF*  
16V  
× 2  
GND  
2, 4, 13, 15  
The LTC1574 develops a 1.25V reference voltage between  
the feedback terminal (Pin 10) and ground (see Figure 3).  
By selecting resistor R1, a constant current is caused to  
flow through R1 and R2 to set the overall output voltage.  
The regulated output voltage is determined by:  
V
OUT  
–5V  
45mA  
AVX TPSD476K016  
COILTRONICS CTX50-4  
*
**  
1574 • F04  
Figure 4. Positive-to-Negative 5V Converter  
Low Noise Regulators  
2
R
VOUT = 1.25 1+  
In some applications it is important not to introduce any  
switching noise within the audio frequency range. Due to  
the nature of the LTC1574 during Burst ModeTM operation,  
there is a possibility that the regulator will introduce audio  
noise at some load currents. To circumvent this problem,  
a feed-forward capacitor can be used to shift the noise  
spectrum up and out of the audio band. Figure 5 shows the  
low noise connection with C2 being the feed-forward  
capacitor. The peak-to-peak output ripple is reduced to  
30mV over the entire load range. A toroidal surface mount  
R1  
For most applications, a 30k resistor is suggested for R1.  
To prevent stray pickup, a 100pF capacitor is suggested  
across R1 located close to the LTC1574.  
V
OUT  
R2  
LTC1574  
10  
V
FB  
100pF  
R1  
Burst Mode is a trademark of Linear Technology Corporation  
1574 • F03  
V
IN  
+
5V  
5
100µF*  
10V  
V
IN  
Figure 3. LTC1574 Adjustable Configuration  
LTC1574  
7
12  
11  
6
L1**  
100µH  
LB  
LB  
SHDN  
SW  
IN  
Inverting Applications  
V
OUT  
3.3V  
425mA  
3, 14  
10  
OUT  
C2  
6.8nF  
The LTC1574 can easily be set up for a negative output  
voltage. If 5V is desired, the LTC1574-5 is ideal for this  
application as it requires the least components. Figure 4  
shows the schematic for this application. Note that the  
output voltage is now taken off the GND pins. Therefore,  
the maximum input voltage is now determined by the  
56k  
I
V
FB  
PGM  
+
GND  
100µF*  
10V  
33k  
2, 4, 13, 15  
* AVX TPSD107K010  
** COILTRONICS CTX100-4  
1574 • F05  
Figure 5. Low Noise 5V to 3.3V Regulator  
5
LTC1574  
LTC1574-3.3/LTC1574-5  
W U U  
U
APPLICATIO S I FOR ATIO  
inductor L1 is chosen for its excellent self-shielding prop-  
erties. Open magnetic structures such as drum and rod  
cores are to be avoided since they inject high flux levels  
into their surroundings. This can become a major source  
of noise in any converter circuit.  
For COUT, the RMS current rating should be at least:  
IPEAK  
IRMS  
ARMS  
(
)
2
= 300mA  
Absolute Maximum Ratings and Latchup Prevention  
Design Example  
The absolute maximum ratings specify that SW  
(Pins 3, 14) can never exceed VIN (Pin 5) by more than  
0.3V. Normally this situation should never occur. It could,  
however, if the output is held up while the supply is pulled  
down. A condition where this could potentially occur is  
when a battery is supplying power to an LTC1574 regula-  
tor and also to one or more loads in parallel with the the  
regulator’s VIN. If the battery is disconnected while the  
LTC1574 regulator is supplying a light load and one of the  
parallel circuits is a heavy load, the input capacitor of the  
LTC1574 regulator could be pulled down faster than the  
output capacitor, causing the absolute maximum ratings  
to be exceeded. The result is often a latchup which can be  
destructive if VIN is reapplied. Battery disconnect is pos-  
sibleasaresultofmechanicalstress, badbatterycontacts  
or use of a lithium-ion battery with a built-in internal  
disconnect. The user needs to assess his/her application  
to determine whether this situation could occur. If so,  
additional protection is necessary.  
As a design example, assume VIN = 9V (nominal),  
VOUT = 5V and IOUT = 350mA maximum. The LTC1574-5  
is used for this application with IPGM (Pin 6) connected to  
VIN. The minimum value of L is determined by assuming  
the LTC1574-5 is operating in continuous mode.  
I
PEAK  
= I  
OUT  
AVG CURRENT  
I
+ I  
V
PEAK  
2
=
I
V
= 350mA  
TIME  
1574 • F06  
Figure 6. Continuous Inductor Current  
WithIOUT =350mAandIPEAK =0.6A(IPGM =VIN),IV =0.1A.  
The peak-to-peak ripple inductor current, IRIPPLE, is 0.5A  
and is also equal to:  
V
OUT + VD  
I
RIPPLE = 4 106  
AP-P  
Prevention against latchup can be accomplished by  
simply connecting a Schottky diode across the SW and  
VIN pins as shown in Figure 7. The diode will normally be  
reverse biased unless VIN is pulled below VOUT at which  
timethediodewillclampthe(VOUT VIN)potentialtoless  
than the 0.6V required for latchup. Note that a low  
leakage Schottky should be used to minimize the effect  
(
)
L
Solving for L in the above equation and with VD = 0.5V,  
L = 44µH. The next higher standard value of L is 50µH  
(example:CoiltronicsCTX50-4). Theoperatingfrequency,  
ignoring voltage across diode VD is:  
VOUT  
f 2.5 105 1−  
VIN  
LATCHUP  
PROTECTION  
SCHOTTKY  
= 111kHz  
With the value of L determined, the requirements for CIN  
and COUT are calculated. For CIN, its RMS current rating  
should be at least:  
V
V
SW  
LTC1574  
OUT  
IN  
+
1/2  
]
1574 F07  
IOUT VOUT V VOUT  
(
IN  
)
[
IRMS  
=
ARMS  
(
)
Figure 7. Preventing Absolute Maximum  
Ratings from Being Exceeded  
V
IN  
= 174mA  
6
LTC1574  
LTC1574-3.3/LTC1574-5  
W U U  
APPLICATIO S I FOR ATIO  
U
maximum allowable tolerance. To prevent this from  
occuring, a resistor must be connected between VOUT  
andgroundwithavaluelowenoughtosinkthemaximum  
possible leakage current.  
on no-load supply current. Schottky diodes such as  
MBR0530, BAS85 and BAT84 work well. Another more  
serious effect of the protection diode leakage is that at no  
load with nothing to provide a sink for this leakage  
current, the output voltage can potentially float above the  
U
TYPICAL APPLICATIO S  
Low Noise, High Efficiency 3.3V Regulator  
V
IN  
4V TO 12.5V  
+
22µF*  
5
0.1µF  
25V  
V
IN  
× 2  
6
12  
11  
7
I
SHDN  
PGM  
LTC1574  
10  
LB  
LB  
V
FB  
IN  
6.8nF  
56k  
50µH  
V
OUT  
3, 14  
SW  
3.3V  
OUT  
450mA  
GND  
+
100µF**  
10V  
× 2  
100pF  
2, 4, 13, 15  
* AVX TPSD226K025  
33k  
** AVX TPSD107K010  
COILTRONICS CTX50-4  
1574 TA03  
U
PACKAGE DESCRIPTIO  
Dimension in inches (millimeters) unless otherwise noted.  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
0.010 – 0.020  
16  
15  
14  
13  
12  
11  
10  
9
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
(0.254 – 0.508)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
0.016 – 0.050  
(0.406 – 1.270)  
S16 1098  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
2
3
4
5
6
7
8
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC1574  
LTC1574-3.3/LTC1574-5  
U
TYPICAL APPLICATIO S  
Low Dropout 5V Step-Down Regulator  
High Efficiency 3.3V Regulator  
with Low-Battery Detection  
V
IN  
5.5V to 12.5V  
V
IN  
4V TO 12.5V  
+
22µF*  
25V  
5
5
47µF**  
16V  
+
0.1µF  
4.7k  
0.1µF  
V
IN  
× 2  
V
IN  
× 2  
*LOW-  
BATTERY  
7
6
12  
11  
6
11  
12  
7
I
SHDN  
PGM  
I
SHDN  
PGM  
INDICATOR  
LTC1574-3.3  
V
OUT  
LTC1574-5  
10  
V
OUT  
10  
3.3V  
LB  
LB  
V
IN  
OUT  
SW  
LB  
LB  
V
OUT  
162k  
5V  
OUT  
IN  
425mA  
50µH  
365mA  
3, 14  
3, 14  
OUT  
SW  
L1  
100µH  
+
47µF*  
16V  
× 2  
+
47µF**  
16V  
× 2  
GND  
GND  
47.5k  
2, 4, 13, 15  
2, 4, 13, 15  
* AVX TPSD226K025  
1574 TA05  
** AVX TPSD476K016  
1574 TA04  
COILTRONICS CTX50-4  
* LOW-BATTERY INDICATOR IS  
SET UP TO TRIP AT V = 5.5V  
IN  
** AVX TPSD476K016  
SELECTION  
MANUFACTURER PART NO.  
TYPE  
COILTRONICS  
SUMIDA  
CTX100-4  
CD75-101  
SURFACE MOUNT  
SURFACE MOUNT  
GOWANDA  
GA10-103K THROUGH HOLE  
Positive to 5V Converter  
V
IN  
4V TO 12.5V  
V
(V)  
4
6
8
10  
I
(mA)  
OUT  
IN  
5
+
+
10µF**  
35V  
* LOW-BATTERY INDICATOR IS  
SET TO TRIP AT V = 4.4V  
** AVX TPSD106K035  
*** AVX TPSD107K010  
4.7k  
110  
140  
170  
200  
235  
0.1µF  
V
IN  
IN  
× 2  
*LOW-  
6
11  
12  
7
BATTERY  
I
SHDN  
PGM  
INDICATOR  
LTC1574-5  
10  
12.5  
LB  
LB  
V
SELECTION  
MANUFACTURER PART NO.  
COILTRONICS  
COILCRAFT  
SUMIDA  
280k  
OUT  
IN  
OUT  
TYPE  
SURFACE MOUNT  
DT3316-473 SURFACE MOUNT  
CD54-470 SURFACE MOUNT  
GA10-472K THROUGH HOLE  
3, 14  
SW  
CTX50-3  
L1  
50µH  
100µF***  
10V  
GND  
43k  
2, 4, 13, 15  
V
GOWANDA  
OUT  
1574 TA06  
–5V  
RELATED PARTS  
PART NUMBER  
LT®1074/LT1076  
LTC1147  
DESCRIPTION  
COMMENTS  
Step-Down Switching Regulator  
100kHz, 5A (LT1074) or 2A (LT1076) Monolithic  
8-Pin Controller  
High Efficiency Step-Down DC/DC Controller  
LTC1174  
High Efficiency Step-Down and Inverting DC/DC Converter 0.5A, Burst Mode Operation, SO-8 Package, V to 18V  
IN  
LTC1265  
1.2A High Efficiency Step-Down DC/DC Regulator  
1.5A 500kHz Step-Down Switching Regulator  
Inverting 1.4MHz Switching Regulator in SOT-23  
1MHz Step-Down DC/DC Converter in SOT-23  
High Efficiency Synchronous Step-Down Regulator  
Burst Mode Operation, Monolithic  
High Frequency Small Inductor  
LT1375/LT1376  
LT1611  
5V at 150mA from 5V Input, 1mV Output Ripple, SOT-23 Package  
P-P  
LTC1701  
V
V
= 2.5V to 5.5V, I = 135µA, V  
= 5V to 1.25V  
OUT  
IN  
Q
LTC1707  
= 2.85V to 8.5V, Selectable Burst Mode Operation,  
IN  
600mA Output Current, SO-8 Package  
LTC1877/LTC1878 High Efficiency Synchronous Step-Down Regulator  
600mA at V = 5V, 2.65V to 10V = V , I = 10µA  
IN  
IN Q  
sn1574 1574fas LT/TP 1000 2K REV A • PRINTED IN  
USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1995  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY