LTC1574CS-3.3 [Linear]

High Efficiency Step-Down DC/DC Converters with Internal Schottky Diode; 高效率降压型,内置肖特基二极管的DC / DC转换器
LTC1574CS-3.3
型号: LTC1574CS-3.3
厂家: Linear    Linear
描述:

High Efficiency Step-Down DC/DC Converters with Internal Schottky Diode
高效率降压型,内置肖特基二极管的DC / DC转换器

转换器 稳压器 开关式稳压器或控制器 电源电路 肖特基二极管 开关式控制器 光电二极管
文件: 总8页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1574  
LTC1574-3.3/LTC1574-5  
High Efficiency Step-Down  
DC/DC Converters  
with Internal Schottky Diode  
U
FEATURES  
DESCRIPTION  
The LTC®1574 is a family of easy-to-use current mode  
DC/DC converters ideally suited for 9V to 5V, 5V to 3.3V  
and inverting operation. With an internal 0.9switch (at  
a supply voltage of 12V) and a low forward drop Schottky  
diode (0.450V typ at 200mA, TA = 25°C), the LTC1574  
requires only three external components to construct a  
complete high efficiency DC/DC converter.  
High Efficiency: Up to 94%  
Usable in Noise-Sensitive Products  
Peak Inductor Current Independent of Inductor Value  
Short-Circuit Protection  
Internal Low Forward Drop Schottky Diode  
Only Three External Components Required  
Wide VIN Range: 4V to 18.5V (Absolute Maximum)  
Low Dropout Operation  
Low-Battery Detector  
Under no load condition, the LTC1574 draws only 130µA.  
In shutdown, it draws a mere 2µA making this converter  
ideal for battery-powered applications. In dropout, the  
internal P-channel MOSFET switch is turned on continu-  
ously allowing the user to maximize the life of the battery  
source.  
Pin Selectable Current Limit  
Internal 0.9Power Switch: VIN = 12V  
Standby Current: 130µA  
Active Low Micropower Shutdown  
U
The maximum inductor current of the LTC1574 family is  
pin selectable to either 340mA or 600mA, optimizing  
efficiency for a wide range of applications. Operation up to  
200kHz permits the use of small surface mount inductors  
and capacitors.  
APPLICATIONS  
Inverting Converters  
Step-Down Converters  
Memory Backup Supply  
Portable Instruments  
For applications requiring higher output current or ultra-  
highefficiency,seetheLTC1148andLTC1265datasheets.  
For detailed applications information, see the LTC1174  
data sheet.  
Battery-Powered Equipment  
Distributed Power Systems  
and LTC are registered trademarks and LT is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
LTC1574-5 Efficiency  
High Efficiency Step-Down Converter  
100  
V
IN  
L = 100µH  
5.5V to  
16V  
V
= 5V  
= 0V  
OUT  
I
PGM  
95  
90  
85  
80  
75  
70  
V
= 6V  
= 9V  
+
IN  
5
22µF*  
V
35V  
IN  
12  
11  
6
7
LB  
LB  
SHDN  
IN  
V
IN  
10  
LTC1574-5  
V
OUT  
OUT  
100µH  
5V  
175mA  
3, 14  
I
SW  
PGM  
+
100µF*  
10V  
GND  
2, 4, 13, 15  
*
AVX TPSD226K035  
1574 TA01  
** AVX TPSD107K010  
1
10  
LOAD CURRENT (mA)  
100 200  
COILTRONICS CTX100-4  
1574 TA02  
1
LTC1574  
LTC1574-3.3/LTC1574-5  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
(Voltage Referred to GND Pin)  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
ORDER PART  
Input Supply Voltage (Pin 5).................. 0.3V to 18.5V  
Switch Current (Pin 3, 14) ........................................ 1A  
Switch Voltage (Pin 3, 14) .......................... VIN – 18.5V  
Operating Temperature Range .................... 0°C to 70°C  
Junction Temperature (Note 1)............................ 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)..................300°C  
NUMBER  
NC  
GND  
SW  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
GND  
SW  
LTC1574CS  
LTC1574CS-3.3  
LTC1574CS-5  
GND  
GND  
V
LB  
IN  
IN  
I
LB  
OUT  
PGM  
SHDN  
V
(V *)  
OUT FB  
NC  
NC  
S PACKAGE  
16-LEAD PLASTIC SO  
*ADJUSTABLE OUTPUT VERSION  
= 125°C, θ = 110°C/W  
T
JMAX  
JA  
Consult factory for Industrial and Military grade parts.  
ELECTRICAL CHARACTERISTICS TA = 25°C, VIN = 9V, VSHUTDOWN = VIN, IPGM = 0V, unless otherwise specified.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
I
Feedback Current into Pin 10  
Feedback Voltage  
LTC1574  
1
µA  
FB  
V
V
LTC1574  
1.20  
1.25  
1.30  
V
FB  
Regulated Output Voltage  
LTC1574-3.3  
LTC1574-5  
3.14  
4.75  
3.30  
5.00  
3.46  
5.25  
V
V
OUT  
V  
Output Voltage Line  
Regulation  
V
= 6V to 12V, I  
= 100mA, I  
= V (Note 2)  
10  
70  
mV  
OUT  
IN  
LOAD  
PGM  
IN  
Output Voltage Load  
Regulation  
LTC1574-3.3 (Note 2) 20mA < I  
20mA < I  
< 175mA, I  
< 400mA, I  
= 0V  
–5  
45  
70  
70  
mV  
mV  
LOAD  
LOAD  
PGM  
PGM  
= V  
IN  
LTC1574-5 (Note 2)  
20mA < I  
20mA < I  
< 175mA, I  
< 400mA, I  
= 0V  
–5  
50  
70  
70  
mV  
mV  
LOAD  
LOAD  
PGM  
PGM  
= V  
IN  
I
Input DC Supply Current (Note 3)  
Active Mode  
Q
4V < V < 16V, I  
= 0V  
450  
130  
2
600  
180  
25  
µA  
µA  
µA  
IN  
PGM  
Sleep Mode  
Shutdown (Note 4)  
4V < V < 16V  
IN  
= 0V, 4V < V < 16V  
SHUTDOWN IN  
V
V
Low-Battery Trip Point  
Current into Pin 12  
1.25  
1.4  
0.5  
V
LBTRIP  
I
I
µA  
LBIN  
Current Sunk by Pin 11  
V
V
= 0.4V, V = 0V  
LBIN  
0.5  
7.5  
1.0  
15  
1.5  
1.0  
mA  
µA  
LBOUT  
LBOUT  
LBOUT  
= 5V, V  
= 10V  
LBIN  
V
Comparator Hysteresis  
Current Limit  
30  
mV  
HYST  
I
I
I
= V , V  
= 0V  
= 0V  
0.54  
0.27  
0.60  
0.34  
0.78  
0.50  
A
A
PEAK  
PGM  
PGM  
IN OUT  
= 0V, V  
OUT  
R
ON Resistance of Switch  
Switch Off Time  
0.9  
4
1.55  
5
µs  
V
ON  
t
V
at Regulated Value  
OUT  
3
OFF  
V
V
Shutdown Pin High  
Minimum Voltage at Pin 7 for Device to Be Active  
Maximum Voltage at Pin 7 for Device to Be in Shutdown  
= 16V  
1.2  
IH  
IL  
Shutdown Pin Low  
0.75  
2
V
I
Shutdown Pin Input Current  
V
µA  
IH  
SHUTDOWN  
2
LTC1574  
LTC1574-3.3/LTC1574-5  
TA = 25°C, VIN = 9V, VSHUTDOWN = VIN, IPGM = 0V, unless otherwise specified.  
ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
I
Shutdown Pin Input Current  
Schottky Diode Forward Voltage  
Schottky Reverse Current  
0 V  
0.8V  
SHUTDOWN  
0.5  
0.450 0.570  
µA  
IL  
V
Forward Current = 200mA  
V
F
I
Reverse Voltage = 5V  
Reverse Voltage = 18.5V  
10  
25  
250  
µA  
µA  
R
100  
Note 3: Does not include Schottky reverse current. Dynamic supply  
current is higher due to the gate charge being delivered at the switching  
frequency.  
The  
temperature range.  
Note 1: T is calculated from the ambient temperature T and power  
denotes specifications which apply over the full operating  
J
A
dissipation P according to the following formulas:  
Note 4: Current into Pin 5 only, measured without electrolytic input  
capacitor.  
D
T = T + (P × 110°C/W)  
J
A
D
Note 2: Guaranteed by Design.  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current  
Efficiency vs Load Current  
Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
95  
94  
93  
92  
91  
90  
89  
100  
90  
80  
70  
60  
50  
V
= 5V  
OUT  
L = 100µH  
V
= 5V  
IN  
COIL = CTX100-4  
V
IN  
= 6V  
V
= 9V  
IN  
V
= 9V  
IN  
I = 100mA  
LOAD  
I = 0V  
PGM  
I
= 300mA  
= V  
LOAD  
I
PGM  
IN  
L = 50µH  
L = 50µH  
V
I
= 5V  
V
I
= 3.3V  
OUT  
PGM  
OUT  
PGM  
= V  
= V  
IN  
IN  
COIL = CTX50-4  
COIL = CTX50-4  
1
10  
100 400  
5
6
7
8
9
10 11 12 13 14  
1
10  
100 500  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
1574 • TPC02  
1574 • TPC01  
1574 • TPC03  
Efficiency Using Different Types  
of Inductor Core Material  
Switch Leakage Current  
vs Temperature  
Switch Resistance vs  
Input Voltage  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
180  
160  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
V
IN  
= 13.5V  
T
= 25°C  
A
CTX50-4  
CTX50-4P  
60  
40  
V
V
PGM  
= 5V  
IN  
= 3.3V  
IN  
OUT  
20  
I
= V  
0
4
6
8
10 12 14 16 18 20  
INPUT VOLTAGE (V)  
1574 • TPC06  
0
20  
40  
60  
80  
100  
1
10  
100  
500  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
1574 • TPC04  
1574 • TPC05  
3
LTC1574  
LTC1574-3.3/LTC1574-5  
U
U
U
PIN FUNCTIONS  
VOUT or VFB (Pin 10): For the LTC1574, this pin connects  
o the main voltage comparator input. On the LTC1574-5  
and LTC1574-3.3, this pin goes to an internal resistive  
divider which sets the output voltage  
NC (Pins 1, 8, 9, 16): No Connection.  
t
GND (Pins 2, 4, 13, 15): Ground.  
SW (Pins 3, 14): Drain of P-Channel MOSFET Switch and  
Cathode of Schottky Diode.  
.
LBOUT (Pin 11): Open drain of an N-Channel Pull-Down.  
This pin will sink current when (Pin 12) LBIN goes below  
1.25V.  
VIN (Pin 5): Input Supply Voltage. It must be decoupled  
close to ground (Pin 4).  
IPGM (Pin 6): This pin selects the current limit of the  
P-channel switch. With IPGM = VIN, the current trip point is  
600mA and with IPGM = 0V, the current trip point is  
reduced to 340mA.  
LBIN (Pin 12): The (–) Input of the Low-Battery Voltage  
Comparator. The (+) input is connected to a reference  
voltage of 1.25V.  
SHDN (Pin 7): Pulling this pin to ground keeps the internal  
switch off and puts the LTC1574 in micropower shutdown.  
U
W U U  
APPLICATIONS INFORMATION  
Operating Frequency and Inductor  
IPGM pin, the limit is either set to 340mA or 600mA. In  
addition, the off-time of the switch is increased to allow the  
inductor current to decay far enough to prevent any current  
build-up (see Figure 1).  
Since the LTC1574 utilizes a constant off-time architecture,  
itsoperatingfrequencyisdependentonthevalueofVIN.The  
frequency of operation can be expressed as:  
V VOUT  
1
tOFF  
IN  
f =  
Hz  
( )  
V + V  
IN  
D
IPGM = VIN  
where tOFF = 4µs and VD is the voltage drop across the  
internal Schottky diode. Note that the operating frequency  
is a function of the input and output voltage.  
IPGM = 0  
Although the size of the inductor does not affect the fre-  
quency or inductor peak current, it does affect the ripple  
current. The peak-to-peak ripple current is given by:  
GND  
V
+ V  
D
L
6  
OUT  
1574 • F01  
I
= 4 ×10  
A
P-P  
(
)
L = 100µH  
IN = 13.5V  
20µs/DIV  
RIPPLE  
V
Figure 1. Inductor Current with Output Shorted  
By choosing a smaller inductor, a low ESR (Effective Series  
Resistance) output filter capacitor has to be used. Core loss  
will increase due to higher ripple current.  
Low-Battery Detector  
Thelow-batteryindicatorsensestheinputvoltagethrough  
anexternalresistivedivider.Thisdividedvoltageconnects  
to the “–” input of a voltage comparator (Pin 12) which is  
comparedwitha1.25Vreferencevoltage. Withthecurrent  
Short-Circuit Protection  
The LTC1574 is protected from output short circuits by its  
internal current limit. Depending on the condition of the  
4
LTC1574  
LTC1574-3.3/LTC1574-5  
U
W U U  
APPLICATIONS INFORMATION  
going into Pin 12 being negligible, the following expres-  
sion is used for setting the trip limit:  
differencebetweentheabsolutemaximumvoltagerating  
and the output voltage. A maximum of 12V is specified in  
Figure4,givingthecircuit1.5VofheadroomforVIN.Note  
that the circuit can operate from a minimum of 4V,  
making it ideal for a four NiCd cell application. For a  
higher output current circuit, please refer to the Typical  
Applications section.  
R4  
R3  
V
= 1.25 1+  
LBTRIP  
V
IN  
LTC1574  
R4  
R3  
12  
INPUT VOLTAGE  
4V TO 12V  
+
+
+
+
1.25V  
5
2 × 47µF*  
0.1µF  
REFERENCE  
V
16V  
IN  
12  
11  
6
7
1574 • F02  
LB  
LB  
SHDN  
IN  
10  
V
Figure 2. Low-Battery Comparator  
OUT  
OUT  
50µH**  
3, 14  
I
SW  
PGM  
LTC1574 Adjustable Applications  
LTC1574-5  
GND  
2 × 47µF*  
16V  
V
The LTC1574 develops a 1.25V reference voltage between  
the feedback terminal (Pin 10) and ground (see Figure 3).  
By selecting resistor R1, a constant current is caused to  
flow through R1 and R2 to set the overall output voltage.  
The regulated output voltage is determined by:  
2, 4, 13, 15  
OUT  
–5V  
45mA  
AVX TPSD476K016  
COILTRONICS CTX50-4  
*
**  
1574 • F04  
Figure 4. Positive-to-Negative 5V Converter  
Low Noise Regulators  
2
R
V
= 1.25 1 +  
In some applications it is important not to introduce any  
switching noise within the audio frequency range. Due to  
the nature of the LTC1574 during Burst ModeTM operation,  
there is a possibility that the regulator will introduce audio  
noise at some load currents. To circumvent this problem,  
a feed-forward capacitor can be used to shift the noise  
spectrum up and out of the audio band. Figure 5 shows the  
low noise connection with C2 being the feed-forward  
capacitor. The peak-to-peak output ripple is reduced to  
30mV over the entire load range. A toroidal surface mount  
Burst Mode is a trademark of Linear Technology Corporation  
OUT  
R1  
For most applications, a 30k resistor is suggested for R1.  
To prevent stray pickup, a 100pF capacitor is suggested  
across R1 located close to the LTC1574.  
V
OUT  
R2  
R1  
10  
LTC1574  
V
FB  
100pF  
V
5V  
IN  
1574 • F03  
+
5
100µF*  
10V  
V
IN  
Figure 3. LTC1574 Adjustable Configuration  
LTC1574  
7
12  
11  
6
L1**  
100µH  
LB  
LB  
SHDN  
SW  
IN  
Inverting Applications  
V
OUT  
3.3V  
425mA  
3, 14  
10  
OUT  
C2  
6.8nF  
The LTC1574 can easily be set up for a negative output  
voltage. If 5V is desired, the LTC1574-5 is ideal for this  
application as it requires the least components. Figure 4  
shows the schematic for this application. Note that the  
output voltage is now taken off the GND pins. Therefore,  
the maximum input voltage is now determined by the  
56k  
I
V
FB  
PGM  
+
GND  
100µF*  
10V  
33k  
2, 4, 13, 15  
*
AVX TPSD107K010  
** COILTRONICS CTX100-4  
1574 • F05  
Figure 5. Low Noise 5V to 3.3V Regulator  
5
LTC1574  
LTC1574-3.3/LTC1574-5  
U
W U U  
APPLICATIONS INFORMATION  
inductor L1 is chosen for its excellent self-shielding prop-  
erties. Open magnetic structures such as drum and rod  
cores are to be avoided since they inject high flux levels  
into their surroundings. This can become a major source  
of noise in any converter circuit.  
V
+ V  
D
L
6  
OUT  
I
= 4 ×10  
A
P-P  
(
)
RIPPLE  
Solving for L in the above equation and with VD = 0.5V,  
L = 44µH. The next higher standard value of L is 50µH  
(example:CoiltronicsCTX50-4).Theoperatingfrequency,  
ignoring voltage across diode VD is:  
Design Example  
As a design example, assume VIN = 9V (nominal),  
VOUT = 5V and IOUT = 350mA maximum. The LTC1574-5  
is used for this application with IPGM (Pin 6) connected to  
VIN. The minimum value of L is determined by assuming  
the LTC1574-5 is operating in continuous mode.  
V
V
5
OUT  
f 2.5 ×10 1−  
IN  
= 111kHz  
With the value of L determined, the requirements for CIN  
and COUT are calculated. For CIN, its RMS current rating  
should be at least:  
I
PEAK  
= I  
OUT  
AVG CURRENT  
I
+ I  
V
PEAK  
2
=
I
V
1/ 2  
]
I
V
V V  
(
)
OUT  
[
OUT IN OUT  
= 350mA  
I
=
A
RMS  
(
)
RMS  
V
IN  
= 174mA  
TIME  
1574 • F06  
For COUT, the RMS current rating should be at least:  
Figure 6. Continuous Inductor Current  
IPEAK  
2
= 300mA  
WithIOUT =350mAandIPEAK =0.6A(IPGM =VIN),IV =0.1A.  
The peak-to-peak ripple inductor current, IRIPPLE, is 0.5A  
and is also equal to:  
IRMS  
A
RMS  
(
)
U
TYPICAL APPLICATIONS  
Low Noise, High Efficiency 3.3V Regulator  
V
IN  
4V TO 12.5V  
+
22µF*  
25V  
5
0.1µF  
V
IN  
× 2  
6
12  
11  
7
I
SHDN  
PGM  
10  
LB  
LB  
V
FB  
LTC1574  
GND  
IN  
6.8nF  
56k  
50µH  
V
OUT  
3, 14  
SW  
3.3V  
OUT  
450mA  
100µF**  
10V  
× 2  
+
100pF  
2, 4, 13, 15  
*
AVX TPSD226K025  
33k  
** AVX TPSD107K010  
COILTRONICS CTX50-4  
1574 TA03  
6
LTC1574  
LTC1574-3.3/LTC1574-5  
U
TYPICAL APPLICATIONS  
Low Dropout 5V Step-Down Regulator with Low-Battery Detection  
V
IN  
5.5V to 12.5V  
5
+
+
47µF**  
16V  
4.7k  
0.1µF  
V
IN  
× 2  
*LOW-  
BATTERY  
INDICATOR  
*
LOW-BATTERY INDICATOR IS  
6
11  
12  
7
I
SHDN  
SET UP TO TRIP AT V= 5.5V  
PGM  
IN  
** AVX TPSD476K016  
10  
LB  
LB  
V
OUT  
162k  
LTC1574-5  
GND  
OUT  
IN  
SELECTION  
V
3, 14  
OUT  
MANUFACTURER  
COILTRONICS  
SUMIDA  
PART NO.  
CTX100-4  
CD75-101  
GA10-103K  
TYPE  
SW  
5V  
L1  
100µH  
SURFACE MOUNT  
SURFACE MOUNT  
THROUGH HOLE  
365mA  
47µF**  
16V  
× 2  
47.5k  
2, 4, 13, 15  
GOWANDA  
1574 TA04  
High Efficiency 3.3V Regulator  
V
IN  
4V TO 12.5V  
+
22µF*  
5
0.1µF  
25V  
V
IN  
× 2  
7
6
12  
11  
I
SHDN  
PGM  
10  
LB  
LB  
V
OUT  
IN  
LTC1574-3.3  
50µH  
V
OUT  
3, 14  
SW  
3.3V  
OUT  
425mA  
+
47µF*  
16V  
× 2  
GND  
2, 4, 13, 15  
*
AVX TPSD226K025  
** AVX TPSD476K016  
1574 TA05  
COILTRONICS CTX50-4  
Positive to –5V Converter  
V
IN  
4V TO 12.5V  
V (V)  
IN  
4
6
8
10  
I
(mA)  
110  
140  
170  
200  
235  
OUT  
5
+
+
10µF**  
4.7k  
*
LOW-BATTERY INDICATOR IS  
SET TO TRIP AT V= 4.4V  
0.1µF  
35V  
V
IN  
IN  
× 2  
*LOW-  
BATTERY  
INDICATOR  
** AVX TPSD106K035  
*** AVX TPSD107K010  
6
11  
12  
7
I
SHDN  
PGM  
10  
12.5  
LB  
LB  
V
OUT  
SELECTION  
MANUFACTURER PART NO.  
COILTRONICS  
COILCRAFT  
SUMIDA  
280k  
OUT  
IN  
LTC1574-5  
GND  
TYPE  
SURFACE MOUNT  
DT3316-473 SURFACE MOUNT  
3, 14  
SW  
CTX50-3  
L1  
50µH  
100µF***  
10V  
43k  
CD54-470  
SURFACE MOUNT  
THROUGH HOLE  
2, 4, 13, 15  
V
GOWANDA  
GA10-472K  
OUT  
–5V  
1574 TA06  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC1574  
LTC1574-3.3/LTC1574-5  
U
PACKAGE DESCRIPTION  
Dimension in inches (millimeters) unless otherwise noted.  
S Package  
16-Lead Plastic SOIC  
0.386 – 0.394*  
(9.804 – 10.008)  
16  
15  
14  
13  
12  
11  
10  
9
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
5
7
8
1
2
3
4
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
0.016 – 0.050  
0.406 – 1.270  
SO16 0695  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
RELATED PARTS  
PART NUMBER  
LT®1076  
DESCRIPTION  
COMMENTS  
Step-Down Switching Regulator  
2A Monolithic Bipolar Switcher for V to 60V  
IN  
LTC1174  
High Efficiency Step-Down/Inverting DC/DC Converter  
1.2A, High Efficiency Step-Down DC/DC Converter  
1.5A, 500kHz Step-Down Switching Regulator  
Same as LTC1574 Without Schottky Diode in SO-8 Package  
Current Mode with 0.3Switch for Higher Current  
High Frequency, Synchronizable in SO-8 Package  
LTC1265  
LT1375/LT1376  
LT/GP 0795 6K • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
8
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1995  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY