LTC1594LCS#TR [Linear]

LTC1594L - 4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C;
LTC1594LCS#TR
型号: LTC1594LCS#TR
厂家: Linear    Linear
描述:

LTC1594L - 4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C

转换器
文件: 总24页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1594/LTC1598  
4- and 8-Channel,  
Micropower Sampling  
12-Bit Serial I/O A/D Converters  
U
FEATURES  
DESCRIPTIO  
TheLTC®1594/LTC1598aremicropower,12-bitsampling  
A/Dconvertersthatfeature4-and8-channelmultiplexers,  
respectively. They typically draw only 320μA of supply  
currentwhenconvertingandautomaticallypowerdownto  
a typical supply current of 1nA between conversions. The  
LTC1594 is available in a 16-pin SO package and the  
LTC1598 is packaged in a 24-pin SSOP. Both operate on  
a 5V supply. The 12-bit, switched-capacitor, successive  
approximation ADCs include a sample-and-hold.  
12-Bit Resolution  
Auto Shutdown to 1nA  
Low Supply Current: 320μA Typ  
Guaranteed ±3/4LSB Max DNL  
Single Supply 5V Operation  
(3V Versions Available: LTC1594L/LTC1598L)  
Multiplexer: 4-Channel MUX (LTC1594)  
8-Channel MUX (LTC1598)  
Separate MUX Output and ADC Input Pins  
MUX and ADC May Be Controlled Separately  
On-chip serial ports allow efficient data transfer to a wide  
rangeofmicroprocessorsandmicrocontrollersoverthree  
or four wires. This, coupled with micropower consump-  
tion, makes remote location possible and facilitates trans-  
mitting data through isolation barriers.  
Sampling Rate: 16.8ksps  
I/O Compatible with QSPI, SPI and MICROWIRETM, etc.  
Small Package: 16-Pin Narrow SO (LTC1594)  
24-Pin SSOP (LTC1598)  
U
APPLICATIO S  
The circuit can be used in ratiometric applications or with  
an external reference. The high impedance analog inputs  
and the ability to operate with reduced spans (to 1.5V full  
scale) allow direct connection to sensors and transducers  
in many applications, eliminating the need for gain stages.  
Pen Screen Digitizing  
Battery-Operated Systems  
Remote Data Acquisition  
Isolated Data Acquisition  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Battery Monitoring  
Temperature Measurement  
U
TYPICAL APPLICATIO  
24μW, 4-Channel, 12-Bit ADC Samples at 200Hz and Runs Off a 5V Supply  
OPTIONAL  
ADC FILTER  
Supply Current vs Sample Rate  
5V  
1k  
1000  
100  
10  
1μF  
T
= 25°C  
A
V
V
f
= 5V  
CC  
REF  
18  
MUXOUT  
17  
ADCIN  
16  
V
15, 19  
1μF  
= 5V  
V
= 320kHz  
REF  
CC  
CLK  
20 CH0  
21 CH1  
22 CH2  
23 CH3  
24 CH4  
SERIAL DATA LINK  
MICROWIRE AND  
SPI COMPATABLE  
10  
6
CSADC  
CSMUX  
CLK  
ANALOG  
INPUTS  
0V TO 5V  
RANGE  
5, 14  
7
12-BIT  
SAMPLING  
ADC  
8-CHANNEL  
MUX  
+
MPU  
D
IN  
1
2
3
CH5  
CH6  
CH7  
11  
D
OUT  
12  
13  
NC  
NC  
8
COM  
1
GND  
4, 9  
0.1  
1
10  
100  
1594/98 TA01  
SAMPLE FREQUENCY (kHz)  
1594/98 TA02  
15948fb  
1
LTC1594/LTC1598  
W W U W  
ABSOLUTE AXI U RATI GS  
(Notes 1, 2)  
Supply Voltage (VCC) to GND................................... 12V  
Voltage  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC1594CS/LTC1598CG ......................... 0°C to 70°C  
LTC1594IS/LTC1598IG ..................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Analog Reference .................... 0.3V to (VCC + 0.3V)  
Analog Inputs .......................... 0.3V to (VCC + 0.3V)  
Digital Inputs .........................................0.3V to 12V  
Digital Output .......................... 0.3V to (VCC + 0.3V)  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
1
2
CH4  
CH3  
CH2  
CH1  
CH0  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
CH5  
CH6  
TOP VIEW  
CH0  
CH1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
LTC1594CS  
LTC1594IS  
LTC1598CG  
LTC1598IG  
CC  
3
CH7  
MUXOUT  
4
GND  
CH2  
D
IN  
5
CLK  
CH3  
CSMUX  
CLK  
6
V
CSMUX  
CC  
ADCIN  
7
MUXOUT  
ADCIN  
D
IN  
V
V
REF  
CC  
8
COM  
GND  
COM  
GND  
D
OUT  
9
V
REF  
CSADC  
10  
11  
12  
V
CSADC  
CC  
CLK  
NC  
D
S PACKAGE  
16-LEAD PLASTIC SO  
OUT  
NC  
TJMAX = 125°C, θJA = 120°C/ W  
G PACKAGE  
24-LEAD PLASTIC SSOP  
TJMAX = 150°C, θJA = 110°C/ W  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
W U  
U
U
U
W
(Note 5)  
RECO E DED OPERATI G CO DITIO S  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4.5  
(Note 4)  
60  
150  
1
400  
1
1
TYP  
MAX  
5.5  
320  
UNITS  
V
kHz  
μs  
V
Supply Voltage (Note 3)  
Clock Frequency  
Total Cycle Time  
CC  
f
t
t
t
t
t
t
t
t
V
= 5V  
CLK  
CC  
f
= 320kHz  
= 5V  
CYC  
CLK  
Hold Time, D After CLK↑  
V
V
V
V
V
ns  
μs  
ns  
μs  
μs  
μs  
μs  
hDI  
IN  
CC  
CC  
Setup Time CSBefore First CLK(See Operating Sequence)  
= 5V  
= 5V  
= 5V  
= 5V  
suCS  
suDI  
Setup Time, D Stable Before CLK↑  
IN  
CC  
CLK High Time  
CLK Low Time  
CS High Time Between Data Transfer Cycles  
CS Low Time During Data Transfer  
WHCLK  
WLCLK  
WHCS  
WLCS  
CC  
CC  
f
f
= 320kHz  
= 320kHz  
16  
44  
CLK  
CLK  
15948fb  
2
LTC1594/LTC1598  
U
U W  
CONVERTER AND MULTIPLEXER CHARACTERISTICS The denotes the specifications which  
apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1594CS/LTC1598CG  
LTC1594IS/LTC1598IG  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Bits  
LSB  
LSB  
LSB  
LSB  
V
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
Gain Error  
REF Input Range  
12  
12  
(Note 6)  
±3  
± 3/4  
±3  
±3  
±1  
±3  
±8  
±8  
(Notes 7, 8)  
(Notes 7, 8)  
1.5V to V + 0.05V  
CC  
0.05V to V + 0.05V  
Analog Input Range  
V
CC  
MUX Channel Input Leakage Current Off Channel  
±200  
±200  
±1  
± 200  
± 200  
±1  
nA  
nA  
μA  
MUXOUT Leakage Current  
Off Channel  
(Note 9)  
ADCIN Input Leakage Current  
U W  
DYNAMIC ACCURACY  
(Note 5) fSMPL = 16.8kHz  
SYMBOL  
S/(N + D)  
THD  
PARAMETER  
CONDITIONS  
MIN  
TYP  
71  
78  
80  
MAX  
UNITS  
dB  
Signal-to-Noise Plus Distortion Ratio  
Total Harmonic Distortion (Up to 5th Harmonic)  
Spurious-Free Dynamic Range  
1kHz Input Signal  
1kHz Input Signal  
1kHz Input Signal  
1kHz Input Signal  
dB  
dB  
dB  
SFDR  
Peak Harmonic or Spurious Noise  
80  
U
DIGITAL AND DC ELECTRICAL CHARACTERISTICS  
The denotes the specifications which  
apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
High Level Output Voltage  
V
V
V
V
= 5.25V  
= 4.75V  
2.6  
IH  
IL  
CC  
CC  
IN  
0.8  
2.5  
2.5  
V
μA  
μA  
V
V
I
I
= V  
IH  
IL  
CC  
= 0V  
IN  
V
V
V
= 4.75V, I = 10μA  
= 4.75V, I = –360A  
4.0  
2.4  
4.64  
4.62  
OH  
CC  
CC  
O
O
V
Low Level Output Voltage  
Hi-Z Output Leakage  
Output Source Current  
Output Sink Current  
V
= 4.75V, I = 1.6mA  
0.4  
±3  
V
μA  
mA  
mA  
OL  
CC  
O
I
I
I
CS = High  
V
V
OZ  
= 0V  
25  
45  
SOURCE  
SINK  
OUT  
= V  
OUT  
CC  
R
REF  
Reference Input Resistance  
CS = V  
CS = V  
5000  
55  
MΩ  
kΩ  
IH  
IL  
I
I
Reference Current  
Supply Current  
CS = V  
0.001  
90  
90  
0.001  
320  
320  
2.5  
μA  
μA  
μA  
μA  
μA  
μA  
REF  
CC  
t
t
760μs, f  
60μs, f  
25kHz  
CYC  
CYC  
CLK  
320kHz  
140  
±7  
CLK  
CS = V , CLK = V , D = V  
CC  
CC  
CC IN  
CC  
t
t
760μs, f  
60μs, f  
25kHz  
320kHz  
CYC  
CYC  
CLK  
690  
CLK  
15948fb  
3
LTC1594/LTC1598  
The denotes the specifications which apply over the full operating temperature range,  
AC CHARACTERISTICS  
otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
1.5  
16.8  
TYP  
MAX  
UNITS  
CLK Cycles  
kHz  
t
f
Analog Input Sample Time  
Maximum Sampling Frequency  
See Figure 1 in Applications Information  
See Figure 1 in Applications Information  
SMPL  
SMPL(MAX)  
t
t
t
t
t
t
t
t
t
t
Conversion Time  
Delay Time, CLKto D  
Delay Time, CSto D  
Delay Time, CLKto D  
See Figure 1 in Applications Information  
See Test Circuits  
See Test Circuits  
12  
250  
135  
75  
230  
50  
CLK Cycles  
CONV  
dDO  
dis  
Data Valid  
Hi-Z  
Enabled  
600  
300  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OUT  
OUT  
OUT  
See Test Circuits  
en  
Time Output Data Remains Valid After CLK↓  
C
LOAD  
= 100pF  
hDO  
f
D
D
Fall Time  
Rise Time  
See Test Circuits  
See Test Circuits  
See Figure 1 in Applications Information  
See Figure 2 in Applications Information  
150  
150  
700  
300  
OUT  
50  
r
OUT  
Enable Turn-On Time  
Enable Turn-Off Time  
Break-Before-Make Interval  
Input Capacitance  
260  
100  
160  
20  
5
ON  
OFF  
OPEN  
35  
C
Analog Inputs On-Channel  
Off-Channel  
Digital Input  
pF  
pF  
pF  
IN  
5
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Linearity error is specified between the actual end points of the  
A/D transfer curve.  
Note 7: Two on-chip diodes are tied to each reference and analog input  
which will conduct for reference or analog input voltages one diode drop  
Note 2: All voltage values are with respect to GND.  
below GND or one diode drop above V . This spec allows 50mV forward  
CC  
bias of either diode for 4.5V V 5.5V. This means that as long as the  
CC  
Note 3: These devices are specified at 5V. Consult factory for 3V  
specified devices (LTC1594L/LTC1598L).  
Note 4: Increased leakage currents at elevated temperatures cause the S/H  
reference or analog input does not exceed the supply voltage by more than  
50mV, the output code will be correct. To achieve an absolute 0V to 5V  
input voltage range, it will therefore require a minimum supply voltage of  
4.950V over initial tolerance, temperature variations and loading.  
to droop, therefore it is recommended that f  
160kHz at 85°C,  
CLK  
f
75kHz at 70°C and f  
1kHz at 25°C.  
CLK  
CLK  
Note 8: Recommended operating condition. Not 100% production tested.  
Note 9: Channel leakage current is measured after the channel selection.  
Note 5: V = 5V, V = 5V and CLK = 320kHz unless otherwise specified.  
CC  
REF  
CSADC and CSMUX pins are tied together during the test.  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs Sample Rate  
Supply Current vs Temperature  
Reference Current vs Temperature  
1000  
100  
10  
95.0  
94.5  
450  
400  
V
f
CLK  
= V  
SMPL  
= 5V  
= 16.8kHz  
T
= 25°C  
T
= 25°C  
CC  
REF  
A
A
V
V
f
= 5V  
V
f
= V  
= 5V  
REF  
CC  
REF  
CC  
f
= 320kHz  
= 5V  
= 320kHz  
= 16.8kHz  
CLK  
SMPL  
= 320kHz  
f
CLK  
94.0  
350  
93.5  
93.0  
300  
250  
200  
92.5  
92.0  
1
0.1  
1
10  
100  
55 35 –15  
5
25 45 65 85 105 125  
55 35 –15  
5
25 45 65 85 105 125  
SAMPLE FREQUENCY (kHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1594/98 G01  
1594/98 G02  
1594/98 G03  
15948fb  
4
LTC1594/LTC1598  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Change in Linearity  
vs Reference Voltage  
Change in Offset  
Change in Offset vs Temperature  
vs Reference Voltage  
–0.50  
–0.45  
–0.40  
–0.35  
–0.30  
–0.25  
–0.20  
–0.15  
–0.10  
–0.05  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
0.5  
–1.0  
–1.5  
2.0  
2.5  
3.0  
T
V
f
f
= 25°C  
T = 25°C  
A
V
A
= 5V  
= 5V  
CC  
CLK  
CC  
= 320kHz  
= 16.8kHz  
f
f
= 320kHz  
CLK  
SMPL  
= 16.8kHz  
SMPL  
V
= V  
= 5V  
REF  
CC  
f
f
= 320kHz  
CLK  
SMPL  
= 16.8kHz  
3.5 4.0  
1.0 1.5 2.0 2.5 3.0  
REFERENCE VOLTAGE (V)  
4.5 5.0  
3.5 4.0  
1.0 1.5 2.0 2.5 3.0  
REFERENCE VOLTAGE (V)  
55 35 15  
5
25  
45  
TEMPERATURE (°C)  
65  
85  
4.5 5.0  
1594/98 G06  
1594/98 G04  
1594/98 G05  
Change in Gain  
vs Reference Voltage  
Peak-to-Peak ADC Noise  
vs Reference Voltage  
Differential Nonlinearity vs Code  
–10  
–9  
–8  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.5  
1.0  
0.5  
0
T
V
= 25°C  
T = 25°C  
A
A
= 5V  
V
CLK  
= 5V  
= 320kHz  
CC  
CC  
f
f
= 320kHz  
f
CLK  
SMPL  
= 16.8kHz  
– 0.2  
– 0.4  
– 0.6  
– 0.8  
1.0  
3.5 4.0  
1.0 1.5 2.0 2.5 3.0  
4.5 5.0  
0
2048  
4096  
3
4
1
5
2
REFERENCE VOLTAGE (V)  
CODE  
REFERENCE VOLTAGE (V)  
1594/98 G07  
1594/98 G09  
1594/98 G08  
Spurious Free Dynamic Range  
vs Frequency  
Effective Bits and S/(N + D)  
vs Input Frequency  
S/(N + D) vs Input Level  
100  
90  
12  
11  
74  
68  
80  
70  
T
= 25°C  
A
V
= V  
= 5V  
CC  
REF  
10  
9
62  
56  
50  
44  
38  
f
f
= 1kHz  
IN  
SMPL  
80  
= 16.8kHz  
60  
50  
70  
8
60  
50  
7
6
40  
30  
20  
10  
5
40  
30  
20  
10  
0
4
3
T
= 25°C  
A
V
f
= 5V  
T
= 25°C  
CC  
A
2
1
= 320kHz  
= 16.8kHz  
V
f
= V  
= 5V  
REF  
CLK  
SMPL  
CC  
f
= 16.8kHz  
SMPL  
0
0
1
10  
100  
1000  
1
10  
100  
1000  
– 40  
–30  
–20  
INPUT LEVEL (dB)  
–10  
0
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
1594/98 G10  
1594/98 G11  
1594/98 G12  
15948fb  
5
LTC1594/LTC1598  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
4096 Point FFT Plot  
Intermodulation Distortion  
Attenuation vs Input Frequency  
0
0
0
T
= 25°C  
T = 25°C  
A
A
10  
V
= V  
= 5V  
V
= V  
= 5kHz  
= 6kHz  
= 5V  
REF  
CC  
REF  
CC  
–20  
–20  
f
f
f
= 5kHz  
f
f
f
IN  
1
2
20  
30  
= 320kHz  
CLK  
SMPL  
–40  
–60  
– 40  
– 60  
= 12.5kHz  
= 12.5kHz  
SMPL  
40  
50  
–80  
–80  
60  
70  
–100  
–120  
–100  
–120  
80  
T
= 25°C  
A
V
= V  
= 5V  
REF  
CC  
90  
f
= 16.8kHz  
SMPL  
100  
–140  
–140  
1
10  
100  
1000  
10000  
4
6
7
4
6
7
0
1
2
3
5
0
3
5
1
2
INPUT FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1594/98 G13  
1594/98 G14  
1594/98 G15  
Maximum Clock Frequency  
vs Source Resistance  
Sample-and-Hold Acquisition Time  
vs Source Resistance  
Power Supply Feedthrough  
vs Ripple Frequency  
360  
300  
240  
180  
120  
60  
0
10000  
1000  
100  
T
= 25°C  
T
= 25°C  
A
A
V
V
V
= 5V (V  
= 20mV)  
RIPPLE  
= V  
= 5V  
CC  
CC  
REF  
= 5V  
REF  
CLK  
f
= 320kHz  
V
+INPUT  
IN  
–50  
COM  
+
R
R
SOURCE  
SOURCE  
V
IN  
+INPUT  
COM  
T
= 25°C  
CC  
A
V
= V = 5V  
REF  
–100  
0
0.1  
1
10  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
SOURCE RESISTANCE (kΩ)  
RIPPLE FREQUENCY (kHz)  
SOURCE RESISTANCE (Ω)  
1594/98 G17  
1594/98 G16  
1594/98 G18  
Input Channel Leakage Current  
vs Temperature  
Minimum Clock Frequency for  
0.1LSB Error vs Temperature  
1000  
320  
240  
160  
80  
V
= V  
= 5V  
REF  
CC  
V
V
= 5V  
REF  
CC  
= 5V  
100  
10  
ON CHANNEL  
1
OFF CHANNEL  
0.1  
0.01  
0
0
120  
140  
–15  
5
60 – 40 –20  
20 40 60 80 100  
– 55  
25  
45  
65 85  
– 35  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1594/98 G20  
1594/98 G19  
15948fb  
6
LTC1594/LTC1598  
U
U
U
PIN FUNCTIONS  
LTC1594  
CH0 (Pin 1): Analog Multiplexer Input.  
CH1 (Pin 2): Analog Multiplexer Input.  
CH2 (Pin 3): Analog Multiplexer Input.  
CH3 (Pin 4): Analog Multiplexer Input.  
DOUT (Pin 10): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
VCC (Pin 11): Power Supply Voltage. This pin provides  
power to the ADC. It must be bypassed directly to the  
analog ground plane.  
ADCIN(Pin5):ADCInput. Thisinputisthepositiveanalog  
input to the ADC. Connect this pin to MUXOUT for normal  
operation.  
CLK (Pin 12): Shift Clock. This clock synchronizes the  
serial data transfer to both MUX and ADC.  
CSMUX (Pin 13): MUX Chip Select Input. A logic high on  
this input allows the MUX to receive a channel address. A  
logic low enables the selected MUX channel and connects  
it to the MUXOUT pin for A/D conversion. For normal  
operation, drive this pin in parallel with CSADC.  
V
REF (Pin 6): Reference Input. The reference input defines  
the span of the ADC.  
COM (Pin 7): Negative Analog Input. This input is the  
negative analog input to the ADC and must be free of noise  
with respect to GND.  
DIN (Pin 14): Digital Data Input. The multiplexer address  
is shifted into this input.  
GND (Pin 8): Analog Ground. GND should be tied directly  
to an analog ground plane.  
MUXOUT (Pin 15): MUX Output. This pin is the output of  
the multiplexer. Tie to ADCIN for normal operation.  
CSADC (Pin 9):ADC Chip Select Input. A logic high on this  
inputpowersdowntheADCandthree-statesDOUT. Alogic  
low on this input enables the ADC to sample the selected  
channel and start the conversion. For normal operation  
drive this pin in parallel with CSMUX.  
VCC (Pin 16): Power Supply Voltage. This pin should be  
tied to Pin 11.  
LTC1598  
CH5 (Pin 1): Analog Multiplexer Input.  
CH6 (Pin 2): Analog Multiplexer Input.  
CH7 (Pin 3): Analog Multiplexer Input.  
COM (Pin 8): Negative Analog Input. This input is the  
negative analog input to the ADC and must be free of noise  
with respect to GND.  
GND (Pin 9): Analog Ground. GND should be tied directly  
to an analog ground plane.  
GND (Pin 4): Analog Ground. GND should be tied directly  
to an analog ground plane.  
CSADC (Pin 10): ADC Chip Select Input. A logic high on  
this input deselects and powers down the ADC and three-  
states DOUT. A logic low on this input enables the ADC to  
sample the selected channel and start the conversion. For  
normal operation drive this pin in parallel with CSMUX.  
CLK(Pin5):ShiftClock. Thisclocksynchronizestheserial  
data transfer to both MUX and ADC. It also determines the  
conversion speed of the ADC.  
CSMUX (Pin 6): MUX Chip Select Input. A logic high on  
this input allows the MUX to receive a channel address. A  
logic low enables the selected MUX channel and connects  
it to the MUXOUT pin for A/D conversion. For normal  
operation, drive this pin in parallel with CSADC.  
DOUT (Pin 11): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
NC (Pin 12): No Connection.  
NC (Pin 13): No Connection.  
DIN (Pin 7): Digital Data Input. The multiplexer address is  
shifted into this input.  
CLK (Pin 14): Shift Clock. This input should be tied to Pin 5.  
15948fb  
7
LTC1594/LTC1598  
U
U
U
PIN FUNCTIONS  
VCC (Pin 15): Power Supply Voltage. This pin provides  
power to the A/D Converter. It must be bypassed directly  
to the analog ground plane.  
VCC (Pin 19): Power Supply Voltage. This pin should be  
tied to Pin 15.  
CH0 (Pin 20): Analog Multiplexer Input.  
CH1 (Pin 21): Analog Multiplexer Input.  
CH2 (Pin 22): Analog Multiplexer Input.  
CH3 (Pin 23): Analog Multiplexer Input.  
CH4 (Pin 24): Analog Multiplexer Input.  
V
REF (Pin 16): Reference Input. The reference input de-  
fines the span of the ADC.  
ADCIN (Pin 17): ADC Input. This input is the positive  
analog input to the ADC. Connect this pin to MUXOUT for  
normal operation.  
MUXOUT (Pin 18): MUX Output. This pin is the output of  
the multiplexer. Tie to ADCIN for normal operation.  
W
BLOCK DIAGRA S  
LTC1594  
LTC1598  
15  
5
6
16  
18  
17  
16  
V
15, 19  
V
V
MUXOUT  
ADCIN  
V
CC  
MUXOUT  
ADCIN  
REF  
CC  
REF  
9
20 CH0  
21 CH1  
22 CH2  
23 CH3  
24 CH4  
CSADC  
1
2
3
4
CH0  
CH1  
CH2  
CH3  
13  
12  
14  
10  
10  
6
CSMUX  
CLK  
CSADC  
CSMUX  
CLK  
12-BIT  
SAMPLING  
ADC  
4-CHANNEL  
MUX  
+
5, 14  
7
12-BIT  
SAMPLING  
ADC  
D
IN  
8-CHANNEL  
MUX  
+
D
OUT  
D
IN  
1
2
3
CH5  
CH6  
CH7  
11  
12  
13  
7
COM  
D
OUT  
GND  
8
LTC1594  
NC  
NC  
8
COM  
GND  
4, 9  
LTC1598  
1594/98 BD  
TEST CIRCUITS  
Load Circuit for tdDO, tr and tf  
Voltage Waveforms for DOUT Rise and Fall Times, tr, tf  
1.4V  
3k  
V
V
OH  
OL  
D
OUT  
D
TEST POINT  
OUT  
t
t
1594/98 TC02  
r
f
100pF  
1594/98 TC01  
15948fb  
8
LTC1594/LTC1598  
TEST CIRCUITS  
Voltage Waveforms for ten  
Voltage Waveforms for DOUT Delay Times, tdDO  
LTC1594/LTC1598  
CSMUX  
CSADC  
=
=
CS  
CSADC  
CLK  
CLK  
EN D2 D1 DO  
D
DON‘T CARE  
IN  
D
OUT  
B11 B10 B9 B8 B7  
B6  
B5 B4 B3 B2 B1 B0 B1 B2  
1
2
MPU  
TRANSMIT  
WORD  
0
?
0
?
0
?
0
EN D2 D1 D0  
X
?
X
?
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
BYTE  
1
BYTE  
2
BYTE  
3
MPU  
RECEIVED  
WORD  
?
?
1
?
?
?
B11 B10 B9 B8 B7  
BYTE  
B6 B5 B4 B3 B2 B1 B0 B1  
BYTE  
BYTE  
2
3
1594/98 TA03  
B11  
D
OUT  
V
OL  
t
en  
1594/98 TC06  
Load Circuit for tdis and ten  
Voltage Waveforms for tdis  
TEST POINT  
3k  
CSADC = CSMUX = CS  
V
IH  
V
t
WAVEFORM 2, t  
en  
CC dis  
D
OUT  
D
OUT  
90%  
WAVEFORM 1  
(SEE NOTE 1)  
t
dis  
WAVEFORM 1  
100pF  
t
dis  
1594/98 TC04  
D
OUT  
WAVEFORM 2  
(SEE NOTE 2)  
10%  
NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL.  
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL.  
1594/98 TC05  
15948fb  
9
LTC1594/LTC1598  
U
W U U  
APPLICATIONS INFORMATION  
and can operate with reduced spans to 1.5V. Reducing  
OVERVIEW  
the spans allow them to achieve 366μV resolution.  
TheLTC1594/LTC1598aremicropower,12-bitsampling  
A/D converters that feature a 4- and 8-channel multi-  
plexer respectively. They typically draw only 320μA of  
supply current when sampling at 16.8kHz. Supply cur-  
rent drops linearly as the sample rate is reduced (see  
SupplyCurrentvsSampleRate). TheADCsautomatically  
power down when not performing conversions, drawing  
onlyleakagecurrent.TheLTC1594isavailableina16-pin  
narrow SO package and the LTC1598 is packaged in a  
24-pin SSOP. Both devices operate on a single supply  
from 4.5V to 5.5V.  
The LTC1594/LTC1598 provide separate MUX output  
and ADC input pins to form an ideal MUXOUT/ADCIN  
loop which economizes signal conditioning. The MUX  
andADCofthedevicescanalsobecontrolledindividually  
through separate chip selects to enhance flexibility.  
SERIAL INTERFACE  
For this discussion we will assume that CSMUX and  
CSADC are tied together and will refer to them as simply  
CS, unless otherwise specified.  
The LTC1594/LTC1598 contain a 12-bit, switched-  
capacitor ADC, sample-and-hold, serial port and an  
externalreferenceinputpin.Inaddition,theLTC1594has  
a 4-channel multiplexer and the LTC1598 provides an  
8-channel multiplexer (see Block Diagram). They can  
measure signals floating on a DC common mode voltage  
TheLTC1594/LTC1598communicatewiththemicropro-  
cessor and other external circuitry via a synchronous,  
halfduplex, 4-wireinterface(seeOperatingSequencesin  
Figures 1 and 2).  
t
CYC  
CSMUX = CSADC = CS  
t
suCS  
CLK  
EN  
D1  
D
IN  
DON’T CARE  
D0  
D2  
NULL  
BIT  
Hi-Z  
Hi-Z  
D
OUT  
B3 B2 B1 B0*  
B11 B10 B9 B8 B7 B6 B5 B4  
t
SMPL  
t
CONV  
CH0 TO  
CH7  
t
ON  
ADCIN =  
MUXOUT  
COM = GND  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER CLOCKS ARE APPLIED WITH CS LOW,  
THE ADC WILL OUTPUT LSB-FIRST DATA THEN FOLLOWED WITH ZEROS INDEFINITELY  
1594/98 F01  
Figure 1. LTC1594/LTC1598 Operating Sequence Example: CH2, GND  
15948fb  
10  
LTC1594/LTC1598  
U
W U U  
APPLICATIONS INFORMATION  
t
CYC  
CSMUX = CSADC = CS  
t
suCS  
CLK  
EN  
D1  
D
D0N‘T CARE  
IN  
D0  
D2  
NULL  
BIT  
Hi-Z  
Hi-Z  
D
OUT  
DUMMY CONVERSION  
t
CONV  
CH0 TO  
CH7  
t
OFF  
ADCIN =  
MUXOUT  
1594/98 F02  
COM = GND  
Figure 2. LTC1594/LTC1598 Operating Sequence Example: All Channels Off  
Data Transfer  
break-before-make interval, tOPEN. After a delay of tON  
(tOFF + tOPEN), the selected channel is switched on,  
allowing the ADC in the chip to acquire input signal and  
start the conversion (see Figures 1 and 2). After 1 null bit,  
the result of the conversion is output on the DOUT line.  
The selected channel remains on, until the next falling  
edge of CS. At the end of the data exchange CS should be  
brought high. This resets the LTC1594/LTC1598 and  
initiates the next data exchange.  
The CLK synchronizes the data transfer with each bit  
being transmitted on the falling CLK edge and captured  
on the rising CLK edge in both transmitting and receiving  
systems.  
The LTC1594/LTC1598 first receive input data and then  
transmit back the A/D conversion results (half duplex).  
Because of the half duplex operation, DIN and DOUT may  
be tied together allowing transmission over just 3 wires:  
CS, CLK and DATA (DIN/DOUT).  
CS  
Data transfer is initiated by a rising chip select (CS)  
signal. After CS rises the input data on the DIN pin is  
latchedintoa4-bitregisterontherisingedgeoftheclock.  
More than four input bits can be sent to the DIN pin  
without problems, but only the last four bits clocked in  
before CS falls will be stored into the 4-bit register. This  
4-bit input data word will select the channel in the  
multiplexer (see Input Data Word and Tables 1 and 2). To  
ensure correct operation the CS must be pulled low  
before the next rising edge of the clock.  
D
D
IN2  
IN1  
D
D
OUT2  
OUT1  
SHIFT MUX  
ADDRESS IN  
SHIFT A/D CONVERSION  
RESULT OUT  
1594/98 AI01  
t
+ 1 NULL BIT  
SMPL  
Break-Before-Make  
The LTC1594/LTC1598 provide a break-before-make  
interval from switching off all the channels simulta-  
neously to switching on the next selected channel once  
CS is pulled low. In other words, once CS is pulled low,  
Once the CS is pulled low, all channels are simulta-  
neously switched off after a delay of tOFF to ensure a  
15948fb  
11  
LTC1594/LTC1598  
U
W U U  
APPLICATIONS INFORMATION  
Table 2. Logic Table for the LTC1598 Channel Selection  
after a delay of tOFF, all the channels are switched off to  
ensure a break-before-make interval. After this interval,  
the selected channel is switched on allowing signal  
transmission. The selected channel remains on until the  
next falling edge of CS and the process repeats itself with  
the “EN” bit being logic high. If the “EN” bit is logic low,  
all the channels are switched off simultaneously after a  
delay of tOFF from CS being pulled low and all the  
channels remain off until the next falling edge of CS.  
CHANNEL STATUS  
EN  
0
D2  
X
0
D1  
X
0
DO  
X
0
All Off  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
1
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
Input Data Word  
1
1
1
1
When CS is high, the LTC1594/LTC1598 clock data into  
theDIN inputsontherisingedgeoftheclockandstorethe  
dataintoa4-bitregister.Theinputdatawordsaredefined  
as follows:  
Transfer Curve  
The LTC1594/LTC1598 are permanently configured for  
unipolar only. The input span and code assignment for  
this conversion type is illustrated below.  
EN  
D2  
D1  
D0  
Transfer Curve  
CHANNEL SELECTION  
1594/98 AI02  
“EN” Bit  
1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 0  
The first bit in the 4-bit register is an “EN” bit. If the “EN”  
bit is a logic high, as illustrated in Figure 1, it enables the  
selectedchannelafteradelayoftON whentheCSispulled  
low. If the “EN” bit is logic low, as illustrated in Figure 2,  
it disables all channels after a delay of tOFF when the CS  
is pulled low.  
0 0 0 0 0 0 0 0 0 0 0 1  
V
IN  
0 0 0 0 0 0 0 0 0 0 0 0  
V
REF  
4096  
1LSB =  
1594/98 • AI03  
Multiplexer (MUX) Address  
The 3 bits of input word following the “EN” bit select the  
channel in the MUX for the requested conversion. For a  
given channel selection, the converter will measure the  
voltage of the selected channel with respect to the voltage  
on the COM pin. Tables 1 and 2 show the various bit  
combinationsfortheLTC1594/LTC1598channelselection.  
Output Code  
INPUT VOLTAGE  
(V = 5.000V)  
OUTPUT CODE  
INPUT VOLTAGE  
REF  
4.99878V  
1 1 1 1 1 1 1 1 1 1 1 1 1 1  
V
V
– 1LSB  
REF  
REF  
4.99756V  
1 1 1 1 1 1 1 1 1 1 1 1 1 0  
– 2LSB  
0.00122V  
0V  
0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1LSB  
0V  
Table 1. Logic Table for the LTC1594 Channel Selection  
1594/98 • AI04  
CHANNEL STATUS  
EN  
0
D2  
X
0
D1  
X
0
DO  
X
All Off  
CH0  
CH1  
CH2  
CH3  
1
0
1
0
0
1
1
0
1
0
1
0
1
1
15948fb  
12  
LTC1594/LTC1598  
U
W U U  
APPLICATIONS INFORMATION  
Operation with DIN and DOUT Tied Together  
Therefore the processor port line must be switched to an  
input with CS being low to avoid a conflict.  
The LTC1594/LTC1598 can be operated with DIN and  
DOUT tied together. This eliminates one of the lines  
required to communicate to the microprocessor (MPU).  
Data is transmitted in both directions on a single wire.  
The processor pin connected to this data line should be  
configurableaseitheraninputoranoutput.TheLTC1594/  
LTC1598 will take control of the data line after CS falling  
and before the 6th falling CLK while the processor takes  
control of the data line when CS is high (see Figure 3).  
Separate Chip Selects for MUX and ADC  
The LTC1594/LTC1598 provide separate chip selects,  
CSMUXandCSADC, tocontrolMUXandADCseparately.  
This feature not only provides the flexibility to select a  
particular channel once for multiple conversions (see  
Figure 4) but also maximizes the sample rate up to  
20ksps (see Figure 5).  
t
suCS  
CS  
1
2
3
4
5
6
CLK  
DATA (D /D  
)
EN  
D2  
D1  
D0  
B11  
B10  
IN OUT  
• • •  
MPU CONTROLS DATA LINE AND SENDS  
MUX ADDRESS TO LTC1594/LTC1598  
LTC1594/LTC1598 CONTROLS DATA LINE AND SENDS  
A/D RESULT BACK TO MPU  
PROCESSOR MUST RELEASE DATA  
LINE AFTER CS FALLING AND  
BEFORE THE 6TH FALLING CLK  
LTC1594/LTC1598 TAKES CONTROL OF DATA  
LINE AFTER CS FALLING AND BEFORE THE  
6TH FALLING CLK  
1594/98 F03  
Figure 3. LTC1594/LTC1598 Operation with DIN and DOUT Tied Together  
CSMUX  
CSADC  
CLK  
t
t
suCS  
suCS  
EN  
D1  
D
IN  
DON’T CARE  
DON’T CARE  
D0  
D0  
D2  
NULL  
BIT  
NULL  
BIT  
Hi-Z  
Hi-Z  
Hi-Z  
D
OUT  
B3 B2 B1 B0  
B3 B2 B1 B0  
B11 B10 B9 B8 B7 B6 B5 B4  
B11 B10 B9 B8 B7 B6 B5 B4  
t
t
SMPL  
SMPL  
t
t
CONV  
CONV  
CH0 TO  
CH7  
t
ON  
ADCIN =  
MUXOUT  
1594 TD01  
COM = GND  
Figure 4. Select Certain Channel Once for Mulitple Conversions  
15948fb  
13  
LTC1594/LTC1598  
U
W U U  
APPLICATIONS INFORMATION  
CSADC  
CSMUX  
t
t
suCS  
suCS  
CLK  
EN  
D1  
EN  
D1  
EN  
D1  
D
IN  
DON’T CARE  
DON’T CARE  
D0  
D2  
B3 B2 B1 B0  
D0  
D2  
D0  
D2  
B3 B2 B1 B0  
NULL  
BIT  
NULL  
BIT  
D
OUT  
B3 B2 B1 B0  
B4  
B11 B10 B9 B8 B7 B6 B5 B4  
B11 B10 B9 B8 B7 B6 B5 B4  
t
t
SMPL  
SMPL  
t
t
CONV  
CONV  
CH0 TO  
CH7  
t
t
ON  
ON  
ADCIN =  
MUXOUT  
1594/98 F05  
COM = GND  
Figure 5. Use Separate Chip Selects to Maximize Sample Rate  
1000  
MUXOUT/ADCIN Loop Economizes  
Signal Conditioning  
T
= 25°C  
A
V
V
= 5V  
CC  
REF  
CLK  
= 5V  
= 320kHz  
f
The MUXOUT and ADCIN pins of the LTC1594/LTC1598  
form a very flexible external loop that allows Program-  
mable Gain Amplifier (PGA) and/or processing analog  
input signals prior to conversion. This loop is also a cost  
effective way to perform the conditioning, because only  
one circuit is needed instead of one for each channel.  
100  
10  
1
In the Typical Applications section, there are a few  
examplesillustratinghowtousetheMUXOUT/ADCINloop  
to form a PGA and to antialias filter several analog inputs.  
0.1  
1
10  
100  
SAMPLE FREQUENCY (kHz)  
1594/98 F06  
Figure 6. Automatic Power Shutdown Between Conversions  
Allows Power Consumption to Drop with Sample Rate  
ACHIEVING MICROPOWER PERFORMANCE  
With typical operating currents of 320μA and automatic  
shutdown between conversions, the LTC1594/LTC1598  
achieve extremely low power consumption over a wide  
range of sample rates (see Figure 6). The auto shutdown  
allows the supply current to drop with reduced sample  
rate.Severalthingsmustbetakenintoaccounttoachieve  
such a low power consumption.  
leaving the CLK running to clock the input data word into  
MUX.IftheCS,DIN andCLKarenotrunningrail-to-rail,the  
input logic buffers will draw currents. These currents may  
be large compared to the typical supply current. To obtain  
the lowest supply current, run the CS, DIN and CLK pins  
rail-to-rail.  
DOUT Loading  
Shutdown  
Capacitive loading on the digital output can increase  
power consumption. A 100pF capacitor on the DOUT pin  
can add more than 80mA to the supply current at a  
320kHz clock frequency. An extra 80mA or so of current  
goes into charging and discharging the load capacitor.  
The same goes for digital lines driven at a high frequency  
by any logic. The (C)(V)(f) currents must be evaluated  
TheLTC1594/LTC1598areequippedwithautomaticshut-  
down features. They draw power when the CS pin is low.  
The bias circuits and comparator of the ADC powers down  
and the reference input becomes high impedance at the  
end of each conversion leaving the CLK running to clock  
outtheLSBfirstdataorzeroes(seeFigures1and2).When  
the CS pin is high, the ADC powers down completely  
and the troublesome ones minimized.  
15948fb  
14  
LTC1594/LTC1598  
U
W U U  
APPLICATIONS INFORMATION  
BOARD LAYOUT CONSIDERATIONS  
SAMPLE-AND-HOLD  
Both the LTC1594/LTC1598 provide a built-in sample-  
and-hold (S&H) function to acquire signals through the  
selected channel, assuming the ADCIN and MUXOUT  
pins are tied together. The S & H of these parts acquire  
input signals through the selected channel relative to  
COM input during the tSMPL time (see Figure 7).  
Grounding and Bypassing  
The LTC1594/LTC1598 are easy to use if some care is  
taken. They should be used with an analog ground plane  
and single point grounding techniques. The GND pin  
should be tied directly to the ground plane.  
The VCC pin should be bypassed to the ground plane with  
a10μFtantalumcapacitorwithleadsasshortaspossible.  
If the power supply is clean, the LTC1594/LTC1598 can  
also operate with smaller 1μF or less surface mount or  
ceramic bypass capacitors. All analog inputs should be  
referenced directly to the single point ground. Digital  
inputs and outputs should be shielded from and/or  
routed away from the reference and analog circuitry.  
Single-Ended Inputs  
The sample-and-hold of the LTC1594/LTC1598 allows  
conversion of rapidly varying signals. The input voltage  
is sampled during the tSMPL time as shown in Figure 7.  
The sampling interval begins after tON time once the CS  
is pulled low and continues until the second falling CLK  
edge after the CS is low (see Figure 7). On this falling CLK  
SAMPLE  
HOLD  
“ANALOG” INPUT MUST  
SETTLE DURING  
THIS TIME  
t
ON  
CSADC = CSMUX = CS  
CLK  
t
t
CONV  
SMPL  
DON‘T CARE  
D
IN  
EN  
D2  
D1  
D0  
D
OUT  
B11  
1ST BIT TEST “COM” INPUT MUST  
SETTLE DURING THIS TIME  
MUXOUT = ADCIN  
CH0 TO CH7  
COM  
1594/98 F07  
Figure 7. LTC1594/LTC1598 ADCIN and COM Input Settling Windows  
15948fb  
15  
LTC1594/LTC1598  
U
W U U  
APPLICATIONS INFORMATION  
During the conversion, the “analog” input voltage is  
effectively “held” by the sample-and-hold and will not  
affecttheconversionresult. However, itiscriticalthatthe  
“COM” input voltage settles completely during the first  
CLK cycle of the conversion time and be free of noise.  
Minimizing RSOURCEand C2 will improve settling time.  
If a large “COM” input source resistance must be used,  
the time allowed for settling can be extended by using a  
slower CLK frequency.  
edge, the S & H goes into hold mode and the conversion  
begins. The voltage on the “COM” input must remain  
constant and be free of noise and ripple throughout the  
conversion time. Otherwise, the conversion operation  
may not be performed accurately. The conversion time is  
12 CLK cycles. Therefore, a change in the “COM” input  
voltage during this interval can cause conversion errors.  
For a sinusoidal voltage on the “COM” input this error  
would be:  
V
ERROR(MAX) = VPEAK(2π)(f)(“COM”)12/fCLK  
Input Op Amps  
Where f(“COM”) is the frequency of the “COM” input  
voltage, VPEAK is its peak amplitude and fCLK is the  
frequency of the CLK. In most cases VERROR will not be  
significant. For a 60Hz signal on the “COM” input to  
generate a 1/4LSB error (305μV) with the converter  
running at CLK = 320kHz, its peak value would have to be  
8.425mV.  
When driving the analog inputs with an op amp it is  
important that the op amp settle within the allowed time  
(see Figure 7). Again, the “analog” and “COM” input  
sampling times can be extended as described above to  
accommodatesloweropamps. Mostopamps, including  
the LT®1006 and LT1413 single supply op amps, can be  
made to settle well even with the minimum settling  
windows of 4.8μs (“analog” input) which occur at the  
maximum clock rate of 320kHz.  
ANALOG INPUTS  
Because of the capacitive redistribution A/D conversion  
techniques used, the analog inputs of the LTC1594/  
LTC1598 have capacitive switching input current spikes.  
These current spikes settle quickly and do not cause a  
problem. However, if large source resistances are used  
or if slow settling op amps drive the inputs, care must be  
taken to insure that the transients caused by the current  
spikes settle completely before the conversion begins.  
Source Resistance  
The analog inputs of the LTC1594/LTC1598 look like a  
20pF capacitor (CIN) in series with a 500Ω resistor (RON)  
and a 45Ω channel resistance as shown in Figure 8.  
CIN gets switched between the selected “analog” and  
“COM” inputs once during each conversion cycle. Large  
external source resistors and capacitances will slow the  
settling of the inputs. It is important that the overall RC  
time constants be short enough to allow the analog  
inputs to completely settle within the allowed time.  
“Analog” Input Settling  
The input capacitor of the LTC1594/LTC1598 is switched  
onto the selected channel input during the tSMPL time (see  
Figure7)andsamplestheinputsignalwithinthattime.The  
sample phase is at least 1 1/2 CLK cycles before conver-  
sion starts. The voltage on the “analog” input must settle  
completely within tSMPL. Minimizing RSOURCE+ and C1 will  
improve the input settling time. If a large “analog” input  
source resistance must be used, the sample time can be  
increased by using a slower CLK frequency.  
MUX  
“ANALOG”  
+
R
45Ω  
ON  
INPUT  
R
SOURCE  
MUXOUT  
ADCIN  
LTC1594  
LTC1598  
V
+
IN  
R
ON  
C1  
500Ω  
C
“COM”  
INPUT  
IN  
20pF  
R
SOURCE  
V
IN  
1594/98 • F08  
C2  
“COM” Input Settling  
Figure 8. Analog Input Equivalent Circuit  
AttheendofthetSMPL,theinputcapacitorswitchestothe  
“COM” input and conversion starts (see Figures 1 and 7).  
15948fb  
16  
LTC1594/LTC1598  
U
W U U  
APPLICATIONS INFORMATION  
Input Leakage Current  
Offset with Reduced VREF  
Inputleakagecurrentscanalsocreateerrorsifthesource  
resistance gets too large. For instance, the maximum  
input leakage specification of 200nA (at 85°C) flowing  
through a source resistance of 1.2k will cause a voltage  
drop of 240μV or 0.2LSB. This error will be much  
reduced at lower temperatures because leakage drops  
rapidly (see typical curve Input Channel Leakage Current  
vs Temperature).  
TheoffsetoftheLTC1594/LTC1598hasalargereffecton  
the output code when the ADCs are operated with  
reduced reference voltage. The offset (which is typically  
afixedvoltage)becomesalargerfractionofanLSBasthe  
size of the LSB is reduced. The typical curve of Change in  
Offset vs Reference Voltage shows how offset in LSBs is  
related to reference voltage for a typical value of VOS. For  
example, a VOS of 122μV which is 0.1LSB with a 5V  
reference becomes 0.5LSB with a 1V reference and  
2.5LSBs with a 0.2V reference. If this offset is unaccept-  
able, it can be corrected digitally by the receiving system  
orbyoffsettingtheCOMinputoftheLTC1594/LTC1598.  
REFERENCE INPUTS  
The reference input of the LTC1594/LTC1598 is effec-  
tively a 50k resistor from the time CS goes low to the end  
of the conversion. The reference input becomes a high  
impedance node at any other time (see Figure 9). Since  
the voltage on the reference input defines the voltage  
span of the A/D converter, the reference input should be  
driven by a reference with low ROUT(ex. LT1004, LT1019  
Noise with Reduced VREF  
The total input referred noise of the LTC1594/LTC1598  
can be reduced to approximately 400μV peak-to-peak  
using a ground plane, good bypassing, good layout  
techniquesandminimizingnoiseonthereferenceinputs.  
This noise is insignificant with a 5V reference but will  
become a larger fraction of an LSB as the size of the LSB  
is reduced.  
and LT1021) or a voltage source with low ROUT  
.
+
REF  
LTC1594  
LTC1598  
1
R
OUT  
Foroperationwitha5Vreference,the400μVnoiseisonly  
0.33LSBpeak-to-peak.Inthiscase,theLTC1594/LTC1598  
noisewillcontributevirtuallynouncertaintytotheoutput  
code. However, for reduced references the noise may  
become a significant fraction of an LSB and cause  
undesirable jitter in the output code. For example, with a  
2.5V reference this same 400μV noise is 0.66LSB peak-  
to-peak. This will reduce the range of input voltages over  
which a stable output code can be achieved by 1LSB. If  
the reference is further reduced to 1V, the 400μV noise  
becomes equal to 1.65LSBs and a stable code may be  
difficult to achieve. In this case averaging multiple read-  
ings may be necessary.  
V
REF  
GND  
4
1594/98 F09  
Figure 9. Reference Input Equivalent Circuit  
Reduced Reference Operation  
The effective resolution of the LTC1594/LTC1598 can be  
increased by reducing the input span of the converters.  
The LTC1594/LTC1598 exhibit good linearity and gain  
over a wide range of reference voltages (see typical  
curves Change in Linearity vs Reference Voltage and  
Change in Gain vs Reference Voltage). However, care  
must be taken when operating at low values of VREF  
because of the reduced LSB step size and the resulting  
higher accuracy requirement placed on the converters.  
The following factors must be considered when operat-  
ing at low VREF values:  
Thisnoisedatawastakeninaverycleansetup. Anysetup  
induced noise (noise or ripple on VCC, VREF or VIN) will  
add to the internal noise. The lower the reference voltage  
to be used the more critical it becomes to have a clean,  
noise free setup.  
1. Offset  
2. Noise  
3. Conversion speed (CLK frequency)  
15948fb  
17  
LTC1594/LTC1598  
U
W U U  
APPLICATIONS INFORMATION  
Conversion Speed with Reduced VREF  
Effective Number of Bits  
With reduced reference voltages, the LSB step size is  
reduced and the LTC1594/LTC1598 internal comparator  
overdrive is reduced. Therefore, it may be necessary to  
reduce the maximum CLK frequency when low values of  
TheEffectiveNumberofBits(ENOBs)isameasurementof  
the resolution of an ADC and is directly related to S/(N + D)  
by the equation:  
ENOB = [S/(N + D) – 1.76]/6.02  
V
REF are used.  
where S/(N + D) is expressed in dB. At the maximum  
sampling rate of 16.8kHz with a 5V supply, the LTC1594/  
LTC1598 maintain above 11 ENOBs at 10kHz input  
frequency. Above 10kHz the ENOBs gradually decline, as  
shown in Figure 11, due to increasing second harmonic  
distortion. The noise floor remains low.  
DYNAMIC PERFORMANCE  
The LTC1594/LTC1598 have exceptional sampling capa-  
bility. Fast Fourier Transform (FFT) test techniques are  
used to characterize the ADC’s frequency response,  
distortion and noise at the rated throughput. By applying  
a low distortion sine wave and analyzing the digital  
output using an FFT algorithm, the ADC’s spectral con-  
tent can be examined for frequencies outside the funda-  
mental. Figure 10 shows a typical LTC1594/LTC1598  
plot.  
12  
11  
74  
68  
10  
9
62  
56  
50  
44  
38  
8
7
6
0
5
T
= 25°C  
CC  
= 5kHz  
= 320kHz  
= 12.5kHz  
A
4
3
V
f
= V  
= 5V  
REF  
–20  
T
= 25°C  
A
IN  
CLK  
SMPL  
V
f
= 5V  
f
f
CC  
2
1
= 320kHz  
–40  
–60  
CLK  
SMPL  
f
= 16.8kHz  
0
1
10  
100  
1000  
INPUT FREQUENCY (kHz)  
–80  
1594/98 G10  
–100  
–120  
Figure 11. Effective Bits and S/(N + D) vs Input Frequency  
–140  
Total Harmonic Distortion  
4
6
7
0
1
2
3
5
FREQUENCY (kHz)  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamen-  
tal itself. The out-of-band harmonics alias into the fre-  
quency band between DC and half of the sampling  
frequency. THD is defined as:  
1594/98 G14  
Figure 10. LTC1594/LTC1598 Nonaveraged, 4096 Point FFT Plot  
Signal-to-Noise Ratio  
The Signal-to-Noise plus Distortion Ratio (S/N + D) is the  
ratio between the RMS amplitude of the fundamental  
input frequency to the RMS amplitude of all other fre-  
quency components at the ADC’s output. The output is  
band limited to frequencies above DC and below one half  
the sampling frequency. Figure 11 shows a typical spec-  
tral content with a 16.8kHz sampling rate.  
V2 + V32 + V42 + ... + V2  
2
N
THD = 20log  
V
1
where V1 is the RMS amplitude of the fundamental  
frequency and V2 through VN are the amplitudes of the  
second through the Nth harmonics. The typical THD  
15948fb  
18  
LTC1594/LTC1598  
U
W U U  
APPLICATIONS INFORMATION  
specification in the Dynamic Accuracy table includes the  
2nd through 5th harmonics. With a 7kHz input signal, the  
LTC1594/LTC1598havetypicalTHDof80dBwithVCC =5V.  
For input frequencies of 5kHz and 6kHz, the IMD of the  
LTC1594/LTC1598 is 73dB with a 5V supply.  
Peak Harmonic or Spurious Noise  
Intermodulation Distortion  
The peak harmonic or spurious noise is the largest  
If the ADC input signal consists of more than one spectral component excluding the input signal and DC.  
spectral component, the ADC transfer function nonlin- This value is expressed in dBs relative to the RMS value  
earity can produce intermodulation distortion (IMD)  
in addition to THD. IMD is the change in one sinusoi-  
dal input caused by the presence of another sinusoidal  
input at a different frequency.  
of a full-scale input signal.  
Full-Power and Full-Linear Bandwidth  
The full-power bandwidth is that input frequency at  
which the amplitude of the reconstructed fundamental is  
reduced by 3dB for a full-scale input.  
If two pure sine waves of frequencies fa and fb are applied  
to the ADC input, nonlinearities in the ADC transfer  
functioncancreatedistortionproductsatsumanddiffer-  
ence frequencies of mfa ± nfb, where m and n = 0, 1, 2, 3,  
etc. For example, the 2nd order IMD terms include (fa +  
fb) and (fa – fb) while 3rd order IMD terms include (2fa +  
fb), (2fa – fb), (fa + 2fb), and (fa – 2fb). If the two input sine  
waves are equal in magnitudes, the value (in dB) of the  
2nd order IMD products can be expressed by the follow-  
ing formula:  
The full-linear bandwidth is the input frequency at which  
the effective bits rating of the ADC falls to 11 bits. Beyond  
this frequency, distortion of the sampled input signal  
increases.TheLTC1594/LTC1598havebeendesignedto  
optimize input bandwidth, allowing the ADCs to  
undersample input signals with frequencies above the  
converters’ Nyquist Frequency.  
amplitude f ± f  
(
)
a
b
IMD f ± f = 20log  
(
)
a
b
amplitude at fa  
U
TYPICAL APPLICATIONS N  
Microprocessor Interfaces  
Motorola SPI (MC68HC05)  
The LTC1594/LTC1598 can interface directly (without  
external hardware) to most popular microprocessors’  
(MPU) synchronous serial formats including  
MICROWIRE, SPI and QSPI. If an MPU without a dedi-  
cated serial port is used, then three of the MPU’s parallel  
port lines can be programmed to form the serial link to the  
LTC1594/LTC1598. Included here is one serial interface  
example.  
TheMC68HC05hasbeenchosenasanexampleofanMPU  
withadedicatedserialport. ThisMPUtransfersdataMSB-  
first and in 8-bit increments. The DIN word sent to the data  
register starts the SPI process. With three  
8-bit transfers the A/D result is read into the MPU. The  
second 8-bit transfer clocks B11 through B7 of the A/D  
conversion result into the processor. The third 8-bit trans-  
fer clocks the remaining bits B6 through B0 into the MPU.  
ANDing the second byte with 1FHEX clears the three most  
significantbitsandANDingthethirdbytewithFEHEX clears  
theleastsignificantbit. Shiftingthedatatotherightbyone  
bit results in a right justified word.  
15948fb  
19  
LTC1594/LTC1598  
U
TYPICAL APPLICATIONS N  
MC68HC05 CODE  
BPL LOOP1 Loop if not done with transfer to previous instruction  
LDA #$52 Configuration data for serial peripheral  
control register (Interrupts disabled, output  
enabled, master, Norm = 0, Ph = 0, Clk/16)  
BCLR 0,$02 Bit 0 Port C ($02) goes low (CS goes low)  
LDA $0C  
STA $0C  
Load contents of SPI data register into Accumulator  
Start next SPI cycle  
STA $0A  
Load configuration data into location $0A (SPCR)  
LDA #$FF Configuration data for I/O ports  
(all bits are set as outputs)  
LOOP2 TST $0B  
Test status of SPIF  
BPL LOOP2 Loop if not done  
STA $04  
STA $05  
STA $06  
Load configuration data into Port A DDR ($04)  
LDA $0C  
STA $0C  
Load contents of SPI data register into Accumulator  
Start next SPI cycle  
Load configuration data into Port B DDR ($05)  
Load configuration data into Port C DDR ($06)  
AND #$IF  
Clear 3 MSBs of first D  
word  
OUT  
LDA #$08 Put D word for LTC1598 into Accumulator  
STA $00  
Load Port A ($00) with MSBs  
Test status of SPIF  
IN  
(CH0 with respect to GND)  
LOOP3 TST $0B  
STA $50  
Load D word into memory location $50  
IN  
BPL LOOP3 Loop if not done  
START BSET 0,$02 Bit 0 Port C ($02) goes high (CS goes high)  
LDA $0C  
Load contents of SPI data register into Accumulator  
LDA $50  
STA $0C  
Load D word at $50 into Accumulator  
AND #$FE Clear LSB of second D  
word  
IN  
IN  
OUT  
Load D word into SPI data register ($0C) and  
STA $01  
Load Port B ($01) with LSBs  
start clocking data  
JMP START Go back to start and repeat program  
LOOP1 TST $0B  
Test status of SPIF bit in SPI status register ($0B)  
Data Exchange Between LTC1598 and MC68HC05  
CSMUX  
= CSADC  
= CS  
CLK  
EN D2 D1 DO  
DON‘T CARE  
D
IN  
D
OUT  
B11 B10 B9 B8 B7  
B6  
B5 B4 B3 B2 B1 B0 B1 B2  
MPU  
TRANSMIT  
WORD  
0
?
0
?
0
?
0
EN D2 D1 D0  
X
?
X
?
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
BYTE 2  
BYTE 1  
BYTE 3  
MPU  
RECEIVED  
WORD  
?
?
?
?
?
B11 B10 B9 B8 B7  
BYTE 2  
B6 B5 B4  
B2 B1 B0  
BYTE 3  
B3  
B1  
BYTE 1  
1594/98 TA03  
Hardware and Software Interface to Motorola MC68HC05  
D
FROM LTC1598 STORED IN MC68HC05 RAM  
OUT  
MSB  
C0  
MC68HC05  
CSMUX  
CSADC  
0
BYTE 1  
BYTE 2  
B11 B10  
B8  
B7  
0
0
0
B9  
B1  
#00  
#01  
ANALOG  
INPUTS  
SCK  
LTC1598 CLK  
LSB  
B0  
D
MOSI  
MISO  
IN  
B6  
B5  
B4  
B2  
B3  
D
OUT  
1594/98 TA04  
15948fb  
20  
LTC1594/LTC1598  
U
TYPICAL APPLICATIONS N  
MULTICHANNEL A/D USES A SINGLE ANTIALIASING  
FILTER  
than 1LSB of error due to offsets and bias currents. The  
filter’s noise and distortion are less than –72dB for a  
100Hz, 2VP-P offset sine input.  
This circuit demonstrates how the LTC1598’s indepen-  
dent analog multiplexer can simplify design of a 12-bit  
dataacquisitionsystem.AlleightchannelsareMUXedinto  
a single 1kHz, 4th order Sallen-Key antialiasing filter,  
which is designed for single supply operation. Since the  
LTC1598’s data converter accepts inputs from ground to  
the positive supply, rail-to-rail op amps were chosen for  
thefiltertomaximizedynamicrange.TheLT1368dualrail-  
to-rail op amp is designed to operate with 0.1μF load  
capacitors (C1 and C2). These capacitors provide fre-  
quency compensation for the amplifiers and help reduce  
the amplifier’s output impedance and improve supply  
rejection at high frequencies. The filter contributes less  
The combined MUX and A/D errors result in an integral  
nonlinearity error of ± 3LSB (maximum) and a differential  
nonlinearity error of ±3/4LSB (maximum). The typical  
signal-to-noise plus distortion ratio is 71dB, with approxi-  
mately –78dB of total harmonic distortion. The LTC1598  
is programmed through a 4-wire serial interface that is  
compatable with MICROWIRE, SPI and QSPI. Maximum  
serial clock speed is 320kHz, which corresponds to a  
16.8kHz sampling rate.  
The complete circuit consumes approximately 800μA  
from a single 5V supply.  
Simple Data Acquisition System Takes Advantage of the LTC1598’s  
MUXOUT/ADCIN Pins-to-Filter Analog Signals Prior to A/D Conversion  
ANALOG INPUTS  
0V TO 5V  
5V  
RANGE  
1
2
24  
CH4  
0.015μF  
CH5  
CH6  
CH7  
GND  
CLK  
1μF  
23  
CH3  
7.5k  
7.5k  
3
22  
+
CH2  
1/2  
LT1368  
4
21  
0.03μF  
CH1  
CH0  
C2  
5
20  
19  
18  
17  
16  
15  
14  
13  
LTC1598  
5V  
0.1μF  
6
CSMUX  
V
CC  
7
1μF  
D
MUXOUT  
ADCIN  
IN  
8
COM  
7.5k  
7.5k  
9
GND  
V
+
REF  
10  
11  
12  
1/2  
LT1368  
0.015μF  
0.03μF  
CSADC  
V
CC  
C1  
D
CLK  
NC  
OUT  
0.1μF  
NC  
DATA OUT  
DATA IN  
1594/98 TA05  
CHIP SELECT  
CLOCK  
15948fb  
21  
LTC1594/LTC1598  
U
TYPICAL APPLICATIONS N  
is the summation of the resistors below the selected MUX  
channel. If CH0 is selected, the loop gain is 1 since RS1 is  
0. Table 1 shows the gain for each MUX channel. The  
LT1368dualrail-to-railopampisdesignedtooperatewith  
0.1μFloadcapacitors.Thesecapacitorsprovidefrequency  
compensation for the amplifiers, help reduce the amplifi-  
ers’ output impedance and improve supply rejection at  
high frequencies. Because the LT1368’s IB is low, the RON  
of the selected channel will not affect the loop gain given  
by the formula above.  
Using MUXOUT/ADCIN Loop as PGA  
This figure shows the LTC1598’s MUXOUT/ADCIN loop  
and an LT1368 being used to create a single channel PGA  
witheightnoninvertinggains.CombinedwiththeLTC1391,  
the system can expand to eight channels and eight gains  
for each channel. Using the LTC1594, the PGA is reduced  
to four gains. The output of the LT1368 drives the ADCIN  
and the resistor ladder. The resistors above the selected  
MUX channel form the feedback for the LT1368. The loop  
gainforthisamplifierisRS1/RS2 +1. RS1 isthesummation  
of the resistors above the selected MUX channel and RS2  
Using the MUXOUT/ADCIN Loop of the LTC1598 to Form a PGA with Eight Gains in a Noninverting Configuration  
5V  
5V  
1 F  
LTC1391  
1
2
3
4
5
6
7
8
16  
+
V
1 F  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
15  
14  
13  
12  
11  
10  
9
D
+
V
1/2 LT1368  
5V  
0.1 F  
D
OUT  
D
IN  
CS  
CLK  
17  
ADCIN  
16  
V
15, 19  
1 F  
V
REF  
CC  
64R  
32R  
16R  
8R  
4R  
2R  
R
20 CH0  
21 CH1  
22 CH2  
23 CH3  
24 CH4  
CH7 GND  
10  
6
CSADC  
CSMUX  
CLK  
5, 14  
11  
8-CHANNEL  
MUX  
12-BIT  
SAMPLING  
ADC  
+
P/ C  
D
OUT  
1
2
3
CH5  
CH6  
CH7  
7
D
IN  
R
LTC1598  
12  
13  
18 MUXOUT  
COM  
NC  
NC  
8
GND  
4, 9  
1594/98 TA06  
15948fb  
22  
LTC1594/LTC1598  
U
PACKAGE DESCRIPTION  
G Package  
24-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
7.90 – 8.50*  
(.311 – .335)  
1.25 ±0.12  
24 23 22 21 20 19 18 17 16 15 14  
13  
7.8 – 8.2  
5.3 – 5.7  
7.40 – 8.20  
(.291 – .323)  
0.42 ±0.03  
RECOMMENDED SOLDER PAD LAYOUT  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10 11 12  
2.0  
5.00 – 5.60**  
(.197 – .221)  
(.079)  
MAX  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.25  
0.55 – 0.95  
(.0035 – .010)  
(.022 – .037)  
0.05  
0.22 – 0.38  
(.009 – .015)  
TYP  
(.002)  
NOTE:  
MIN  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
G24 SSOP 0204  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
S Package  
16-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.386 – .394  
(9.804 – 10.008)  
.045 ±.005  
NOTE 3  
.050 BSC  
16  
N
15  
14  
13  
12  
11  
10  
9
N
1
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
5
6
7
8
1
2
3
4
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S16 0502  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
15948fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC1594/LTC1598  
TYPICAL APPLICATION  
U
Using the LTC1598 and LTC1391 as an 8-Channel Differential 12-Bit ADC System  
5V  
18  
MUXOUT  
17  
ADCIN  
16  
V
15, 19  
1μF  
V
REF  
CC  
20 CH0  
21 CH1  
22 CH2  
23 CH3  
24 CH4  
10  
6
CSADC  
CSMUX  
CLK  
5V  
5, 14  
7
12-BIT  
SAMPLING  
ADC  
8-CHANNEL  
MUX  
+
1μF  
D
IN  
1
2
3
CH5  
CH6  
CH7  
11  
D
OUT  
LTC1391  
12  
13  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
+
V
CH0  
CH7  
CH0  
LTC1598  
8
COM  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
D
GND  
4, 9  
V
D
OUT  
D
IN  
CS  
CLK  
CH7 GND  
D
IN  
CLK  
CS  
D
OUT  
1594/98 TA07  
RELATED PARTS  
PART NUMBER  
LTC1096/LTC1098  
LTC1096L/LTC1098L  
LTC1196/LTC1198  
LTC1282  
DESCRIPTION  
COMMENTS  
8-Pin SO, Micropower 8-Bit ADC  
8-Pin SO, 2.65V Micropower 8-Bit ADC  
8-Pin SO, 1Msps 8-Bit ADC  
Low Power, Small Size, Low Cost  
Low Power, Small Size, Low Cost  
Low Power, Small Size, Low Cost  
3V High Speed Parallel 12-Bit ADC  
8-Pin SO, 3V, Micropower 12-Bit ADC  
8-Pin SO, 5V, Micropower 12-Bit ADC  
Multiplexed 3V, 12-Bit ADC  
140ksps, Complete with V , CLK, Sample-and-Hold  
REF  
LTC1285/LTC1288  
LTC1286/LTC1298  
LTC1289  
1- or 2-Channel, Auto Shutdown  
1- or 2-Channel, Auto Shutdown  
8-Channel 12-Bit Serial I/O  
LTC1290  
Multiplexed 12-Bit ADC  
8-Channel 12-Bit Serial I/O  
LTC1415  
5V High Speed Parallel 12-Bit ADC  
4-Channel, 3V Micropower 12-Bit ADC  
8-Channel, 3V Micropower 12-Bit ADC  
1.25Msps, Complete with V , CLK, Sample-and-Hold  
REF  
LTC1594L  
Low Power, Small Size, Low Cost  
Low Power, Small Size, Low Cost  
LTC1598L  
15948fb  
LT 0507 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 1996  

相关型号:

LTC1594LCS#TRPBF

LTC1594L - 4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1594LIS

4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters
Linear

LTC1594LIS#PBF

LTC1594L - 4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters; Package: SO; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LTC1594LIS#TRPBF

LTC1594L - 4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters; Package: SO; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LTC1594LS16

IC 4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, PDSO16, SO-16, Analog to Digital Converter
Linear

LTC1594LS16#TR

IC 4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, PDSO16, SO-16, Analog to Digital Converter
Linear

LTC1594L_15

4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters
Linear

LTC1594_1

4- and 8-Channel, Micropower Sampling 12-Bit Serial I/O A/D Converters
Linear

LTC1594_15

4- and 8-Channel, Micropower Sampling 12-Bit Serial I/O A/D Converters
Linear

LTC1595

Serial 16-Bit Multiplying DACs
Linear

LTC1595ACN8

Serial 16-Bit Multiplying DACs
Linear

LTC1595ACN8#PBF

LTC1595 - Serial 16-Bit Multiplying DACs; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C
Linear