LTC1594L [Linear]

4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters; 4和8通道, 3V微功率采样12位串行I / OA / D转换器
LTC1594L
型号: LTC1594L
厂家: Linear    Linear
描述:

4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters
4和8通道, 3V微功率采样12位串行I / OA / D转换器

转换器
文件: 总24页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1594L/LTC1598L  
4- and 8-Channel,  
3V Micropower Sampling  
12-Bit Serial I/O A/D Converters  
U
FEATURES  
DESCRIPTIO  
The LTC®1594L/LTC1598L are 3V micropower, 12-bit  
sampling A/D converters that feature 4- and 8-channel  
multiplexers,respectively.Theytypicallydrawonly160µA  
of supply current when converting and automatically  
power down to a typical supply current of 1nA between  
conversions. The LTC1594L is available in a 16-pin SO  
package and the LTC1598L is packaged in a 24-pin  
SSOP.Bothoperateona3Vsupply.The12-bit,switched-  
capacitor, successive approximation ADCs include a  
sample-and-hold.  
12-Bit Resolution on 3V Supply  
Low Supply Current: 160µA Typ  
Auto Shutdown to 1nA  
Guaranteed ±3/4LSB Max DNL  
Guaranteed 2.7V Operation  
(5V Versions Available: LTC1594/LTC1598)  
Multiplexer: 4-Channel MUX (LTC1594L)  
8-Channel MUX (LTC1598L)  
Separate MUX Output and ADC Input Pins  
MUX and ADC May Be Controlled Separately  
Sampling Rate: 10.5ksps  
On-chip serial ports allow efficient data transfer to a wide  
I/O Compatible with QSPI, SPI and MICROWIRETM, etc.  
Small Package: 16-Pin Narrow SO (LTC1594L)  
rangeofmicroprocessorsandmicrocontrollersoverthree  
or four wires. This, coupled with micropower consump-  
tion, makes remote location possible and facilitates trans-  
mitting data through isolation barriers.  
24-Pin SSOP (LTC1598L)  
U
APPLICATIO S  
The circuit can be used in ratiometric applications or with  
an external reference. The high impedance analog inputs  
and the ability to operate with reduced spans (to 1.5V full  
scale) allow direct connection to sensors and transducers  
in many applications, eliminating the need for gain stages.  
Pen Screen Digitizing  
Battery-Operated Systems  
Remote Data Acquisition  
Isolated Data Acquisition  
Battery Monitoring  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
MICROWIRE is a trademark of National Semiconductor Corporation.  
Temperature Measurement  
U
TYPICAL APPLICATION  
12µW, 8-Channel, 12-Bit ADC Samples at 200Hz and Runs Off a 3V Supply  
OPTIONAL  
ADC FILTER  
Supply Current vs Sample Rate  
3V  
1k  
1µF  
1000  
100  
10  
T
= 25°C  
A
V
V
= 2.7V  
CC  
REF  
CLK  
18  
MUXOUT  
17  
ADCIN  
16  
V
15, 19  
1µF  
= 2.5V  
= 200kHz  
V
REF  
CC  
f
20 CH0  
21 CH1  
22 CH2  
23 CH3  
24 CH4  
SERIAL DATA LINK  
MICROWIRE AND  
SPI COMPATABLE  
10  
6
CSADC  
CSMUX  
CLK  
ANALOG  
INPUTS  
0V TO 3V  
RANGE  
5, 14  
7
12-BIT  
SAMPLING  
ADC  
8-CHANNEL  
MUX  
+
MPU  
D
IN  
1
2
3
CH5  
CH6  
CH7  
11  
D
OUT  
12  
13  
NC  
NC  
LTC1598L  
8
COM  
1
GND  
4, 9  
0.1  
1
10  
100  
1594L/98L TA01  
SAMPLE FREQUENCY (kHz)  
1594L/98L TA02  
1
LTC1594L/LTC1598L  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, 2)  
Supply Voltage (VCC) to GND................................... 12V  
Voltage  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC1594LCS/LTC1598LCG ..................... 0°C to 70°C  
LTC1594LIS/LTC1598LIG ................. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Analog Reference .................... 0.3V to (VCC + 0.3V)  
Analog Inputs .......................... 0.3V to (VCC + 0.3V)  
Digital Inputs .........................................0.3V to 12V  
Digital Output .......................... 0.3V to (VCC + 0.3V)  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
1
2
CH4  
CH3  
CH2  
CH1  
CH0  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
CH5  
CH6  
TOP VIEW  
LTC1594LCS  
LTC1594LIS  
LTC1598LCG  
LTC1598LIG  
CH0  
CH1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
3
CC  
CH7  
MUXOUT  
4
GND  
CH2  
D
5
IN  
CLK  
CH3  
CSMUX  
CLK  
6
V
CSMUX  
CC  
ADCIN  
7
MUXOUT  
ADCIN  
D
IN  
V
V
8
REF  
COM  
GND  
CC  
COM  
GND  
D
9
V
OUT  
REF  
CSADC  
10  
11  
12  
V
CSADC  
CC  
CLK  
NC  
D
OUT  
NC  
S PACKAGE  
16-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 120°C/ W  
G PACKAGE  
24-LEAD PLASTIC SSOP  
TJMAX = 150°C, θJA = 110°C/ W  
Consult factory for Military grade parts.  
W W U  
U
U
U
RECOM ENDED OPERATING CONDITIONS The denotes the specifications which apply over  
the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
2.7  
(Note 4)  
95  
450  
2
600  
1.5  
TYP  
MAX  
3.6  
200  
UNITS  
V
kHz  
µs  
V
Supply Voltage (Note 3)  
Clock Frequency  
Total Cycle Time  
CC  
f
t
t
t
t
t
t
t
t
V
= 2.7V  
CLK  
CC  
f
= 200kHz  
= 2.7V  
= 2.7V  
= 2.7V  
= 2.7V  
CYC  
CLK  
Hold Time, D After CLK↑  
V
V
V
V
V
ns  
µs  
ns  
µs  
µs  
µs  
µs  
hDI  
IN  
CC  
CC  
Setup Time CSBefore First CLK(See Operating Sequence)  
Setup Time, D Stable Before CLK↑  
CLK High Time  
CLK Low Time  
CS High Time Between Data Transfer Cycles  
CS Low Time During Data Transfer  
suCS  
suDI  
IN  
CC  
WHCLK  
WLCLK  
WHCS  
WLCS  
CC  
= 2.7V  
1.5  
25  
70  
CC  
f
f
= 200kHz  
= 200kHz  
CLK  
CLK  
2
LTC1594L/LTC1598L  
U
U W  
CONVERTER AND MULTIPLEXER CHARACTERISTICS  
The denotes the specifications which  
apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1594LCS/LTC1598LCG  
LTC1594LIS/LTC1598LIG  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Bits  
LSB  
LSB  
LSB  
LSB  
V
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
Gain Error  
REF Input Range  
12  
12  
(Note 6)  
±3  
± 3/4  
±3  
±3  
±1  
±3  
±8  
±8  
(Notes 7, 8)  
(Notes 7, 8)  
1.5V to V + 0.05V  
CC  
0.05V to V + 0.05V  
Analog Input Range  
V
CC  
MUX Channel Input Leakage Current Off Channel  
±200  
±200  
±1  
±200  
±200  
±1  
nA  
nA  
µA  
MUXOUT Leakage Current  
Off Channel  
(Note 9)  
ADCIN Input Leakage Current  
U W  
DYNAMIC ACCURACY  
TA = 25°C, fSMPL = 10.5kHz. (Note 5)  
CONDITIONS  
SYMBOL  
S/(N + D)  
THD  
PARAMETER  
MIN  
TYP  
68  
MAX  
UNITS  
dB  
Signal-to-Noise Plus Distortion Ratio  
Total Harmonic Distortion (Up to 5th Harmonic)  
Spurious-Free Dynamic Range  
Peak Harmonic or Spurious Noise  
1kHz Input Signal  
1kHz Input Signal  
1kHz Input Signal  
1kHz Input Signal  
78  
80  
dB  
dB  
SFDR  
80  
dB  
U
DIGITAL AND DC ELECTRICAL CHARACTERISTICS The denotes the specifications which  
apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
High Level Output Voltage  
V
V
V
V
= 3.6V  
= 2.7V  
2.0  
IH  
IL  
CC  
CC  
IN  
0.8  
2.5  
2.5  
V
µA  
µA  
V
V
I
I
= V  
IH  
IL  
CC  
= 0V  
IN  
V
V
V
= 2.7V, I = 10µA  
2.4  
2.1  
2.64  
2.30  
OH  
CC  
CC  
O
= 2.7V, I = 360µA  
O
V
Low Level Output Voltage  
Hi-Z Output Leakage  
Output Source Current  
Output Sink Current  
V
= 2.7V, I = 400µA  
0.4  
±3  
V
µA  
mA  
mA  
OL  
CC  
O
I
I
I
CS = High  
V
V
OZ  
= 0V  
10  
15  
SOURCE  
SINK  
OUT  
= V  
OUT  
CC  
R
REF  
Reference Input Resistance  
CS = V  
CS = V  
2700  
60  
MΩ  
kΩ  
IH  
IL  
I
I
Reference Current  
Supply Current  
CS = V  
0.001  
50  
50  
0.001  
160  
160  
2.5  
µA  
µA  
µA  
µA  
µA  
µA  
REF  
CC  
t
t
760µs, f  
60µs, f  
25kHz  
200kHz  
CYC  
CYC  
CLK  
70  
±3  
CLK  
CS = V , CLK = V , D = V  
CC  
CC  
CC IN  
25kHz  
200kHz  
CC  
t
t
760µs, f  
60µs, f  
CYC  
CYC  
CLK  
320  
CLK  
3
LTC1594L/LTC1598L  
The denotes the specifications which apply over the full operating temperature range,  
AC CHARACTERISTICS  
otherwise specifications are at TA = 25°C.(Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
1.5  
10.5  
TYP  
MAX  
UNITS  
CLK Cycles  
kHz  
t
f
Analog Input Sample Time  
Maximum Sampling Frequency  
Conversion Time  
Delay Time, CLKto D  
Delay Time, CSto D  
See Figure 1 in Applications Information  
See Figure 1 in Applications Information  
SMPL  
SMPL(MAX)  
t
t
t
t
t
t
t
t
t
t
See Figure 1 in Applications Information  
See Test Circuits  
See Test Circuits  
12  
600  
220  
180  
520  
60  
CLK Cycles  
CONV  
dDO  
dis  
Data Valid  
Hi-Z  
Enabled  
1500  
600  
500  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OUT  
OUT  
Delay Time, CLKto D  
Time Output Data Remains Valid After CLK↓  
See Test Circuits  
en  
OUT  
C
LOAD  
= 100pF  
hDO  
f
D
D
Fall Time  
Rise Time  
See Test Circuits  
See Test Circuits  
See Figure 1 in Applications Information  
See Figure 2 in Applications Information  
180  
180  
1200  
500  
OUT  
80  
r
OUT  
Enable Turn-On Time  
Enable Turn-Off Time  
Break-Before-Make Interval  
Input Capacitance  
540  
190  
350  
20  
5
ON  
OFF  
OPEN  
125  
C
IN  
Analog Inputs On-Channel  
Off-Channel  
Digital Input  
pF  
pF  
pF  
5
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 7: Two on-chip diodes are tied to each reference and analog input  
which will conduct for reference or analog input voltages one diode drop  
below GND or one diode drop above V . This spec allows 50mV forward  
CC  
Note 2: All voltage values are with respect to GND.  
Note 3: These devices are specified at 3V. Consult factory for 5V  
specified devices (LTC1594/LTC1598).  
Note 4: Increased leakage currents at elevated temperatures cause the S/H  
bias of either diode for 2.7V V 3.6V. This means that as long as the  
CC  
reference or analog input does not exceed the supply voltage by more than  
50mV, the output code will be correct. To achieve an absolute 0V to 3V  
input voltage range, it will therefore require a minimum supply voltage of  
2.950V over initial tolerance, temperature variations and loading.  
Note 8: Recommended operating condition.  
Note 9: Channel leakage current is measured after the channel selection.  
to droop, therefore it is recommended that f  
200kHz at 85°C,  
CLK  
f
75kHz at 70°C and f  
1kHz at 25°C.  
CLK  
CLK  
Note 5: V = 2.7V, V = 2.5V and CLK = 200kHz unless otherwise  
CC  
REF  
specified. CSADC and CSMUX pins are tied together during the test.  
Note 6: Linearity error is specified between the actual end points of the  
A/D transfer curve.  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Reference Current vs Temperature  
Supply Current vs Sample Rate  
Supply Current vs Temperature  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
1000  
100  
10  
260  
220  
V
V
f
= 2.7V  
= 2.5V  
= 200kHz  
= 10.5kHz  
T
= 25°C  
CC  
REF  
CLK  
T
= 25°C  
A
A
V
V
f
= 2.7V  
V
V
f
= 2.7V  
CC  
CC  
REF  
= 2.5V  
= 2.5V  
= 200kHz  
REF  
f
= 200kHz  
SMPL  
CLK  
CLK  
SMPL  
f
= 10.5kHz  
180  
140  
100  
60  
1
0.1  
1
10  
100  
–55 –35 –15  
5
25 45 65 85 105 125  
55 35 –15  
5
25 45 65 85 105 125  
SAMPLE FREQUENCY (kHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1594L/98L G01  
1594L/98L G03  
1594L/98L G02  
4
LTC1594L/LTC1598L  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Change in Linearity  
vs Reference Voltage  
0.50  
Change in Offset  
Change in Offset vs Temperature  
vs Reference Voltage  
3.0  
2.5  
0.20  
T
= 25°C  
T
= 25°C  
V
V
f
= 2.7V  
= 2.5V  
= 200kHz  
= f  
A
A
CC  
CLK  
SMPL  
CC  
REF  
CLK  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
f
= 2.7V  
V
f
f
= 2.7V  
= 200kHz  
= 10.5kHz  
CC  
0.15  
0.10  
= 200kHz  
= 10.5kHz  
CLK  
SMPL  
f
f
SMPL SMPL(MAX)  
2.0  
1.5  
0.05  
0
0.05  
0.10  
0.15  
1.0  
0.5  
0
0.20  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
10  
20  
40  
50  
60  
70  
1.0 1.2 1.4 1.6  
2.0  
2.4 2.6 2.8  
2.2  
0
30  
1.8  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
1594L/98L G04  
1594L/98L G06  
1594L/98L G05  
Effective Bits and S/(N + D)  
vs Input Frequency  
Change in Gain  
vs Reference Voltage  
Differential Nonlinearity vs Code  
–10  
–9  
–8  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
12  
11  
10  
9
74  
68  
62  
56  
50  
1
0.5  
T
= 25°C  
T
= 25°C  
A
A
V
f
= 2.7V  
V
V
f
= 2.7V  
CC  
CC  
= 200kHz  
= 10.5kHz  
= 2.5V  
CLK  
SMPL  
REF  
f
= 200kHz  
CLK  
8
7
0
6
5
4
0.5  
3
T
= 25°C  
A
V
= 2.7V  
CC  
2
f
f
= 200kHz  
CLK  
SMPL  
1
= 10.5kHz  
–1  
0
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8  
REFERENCE VOLTAGE (V)  
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE  
1
10  
INPUT FREQUENCY (kHz)  
100  
1594L/98L G09  
1594L/98L G07  
1594L/98L G08  
Spurious Free Dynamic Range  
vs Input Frequency  
S/(N + D) vs Input Level  
Frequency Response  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
T
V
V
= 25°C  
A
= 2.7V  
CC  
REF  
= 1kHz  
= 2.5V  
f
f
IN  
SMPL SMPL(MAX)  
= f  
(MUX + A  
)
DC  
T
= 25°C  
A
CC  
REF  
T
V
V
= 25°C  
A
V
V
f
= 2.7V  
= 2.7V  
CC  
= 2.5V  
= 2.5V  
REF  
= f  
SMPL SMPL(MAX)  
f
= f  
SMPL SMPL(MAX)  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
INPUT FREQUENCY (kHz)  
100  
25 20  
15 10 5  
45 40 35 30  
0
INPUT FREQUENCY (Hz)  
INPUT LEVEL (dB)  
1594L/98L G10  
1594L/98L G12  
1594L/98/ G11  
5
LTC1594L/LTC1598L  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Power Supply Feedthrough  
vs Ripple Frequency  
4096 Point FFT Plot  
Intermodulation Distortion  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
–100  
0
20  
0
20  
T
= 25°C  
T
= 25°C  
A
A
V
V
f
= 2.7V  
V
V
f
= 2.7V (V  
= 1mV)  
RIPPLE  
CC  
REF  
CC  
REF  
= 2.5V  
= 2.5V  
= 200kHz  
= 3.05kHz  
= 120kHz  
IN  
CLK  
SMPL  
CLK  
f
f
40  
40  
= 7.5kHz  
60  
60  
80  
80  
100  
120  
100  
120  
2.5 3.0  
FREQUENCY (kHz)  
2.5 3.0  
FREQUENCY (kHz)  
0
0.5 1.0 1.5 2.0  
3.5 4.0  
0
0.5 1.0 1.5 2.0  
3.5 4.0  
1k  
10k  
100k  
1M  
10M  
RIPPLE FREQUENCY (Hz)  
1594L/98L G15  
1594L/98L G13  
1594L/98L G14  
Maximum Clock Frequency  
vs Source Resistance  
Sample-and-Hold Acquisition Time  
vs Source Resistance  
10000  
1000  
100  
200  
190  
180  
170  
160  
150  
140  
130  
120  
T
V
V
= 25°C  
T
A
= 25°C  
A
= 2.7V  
V
= 2.7V  
CC  
CC  
= 2.5V  
V
= 2.5V  
REF  
REF  
V
IN  
+INPUT  
–INPUT  
+
R
SOURCE  
V
+INPUT  
–INPUT  
IN  
R
SOURCE  
1
10  
100  
1000  
10000  
10  
100  
SOURCE RESISTANCE ()  
1000  
SOURCE RESISTANCE ()  
1594L/98L G16  
1594L/98L G17  
Input Channel Leakage Current  
vs Temperature  
Minimum Clock Frequency for  
0.1LSB Error vs Temperature  
1000  
100  
10  
120  
100  
V
V
= 2.7V  
REF  
CC  
V
V
= 2.7V  
REF  
CC  
= 2.5V  
= 2.5V  
80  
60  
40  
20  
1
0.1  
ON CHANNEL  
OFF CHANNEL  
2
0
0.01  
20  
30  
50  
0
10  
40  
60  
70  
–55 –35 –15  
5
65 85 105 125  
25 45  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1594L/98L G18  
1594L/98L G19  
6
LTC1594L/LTC1598L  
U
U
U
PIN FUNCTIONS  
LTC1594L  
CH0 (Pin 1): Analog Multiplexer Input.  
CH1 (Pin 2): Analog Multiplexer Input.  
CH2 (Pin 3): Analog Multiplexer Input.  
CH3 (Pin 4): Analog Multiplexer Input.  
DOUT (Pin 10): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
VCC (Pin 11): Power Supply Voltage. This pin provides  
power to the ADC. It must be bypassed directly to the  
analog ground plane.  
ADCIN(Pin5):ADCInput. Thisinputisthepositiveanalog  
input to the ADC. Connect this pin to MUXOUT for normal  
operation.  
CLK (Pin 12): Shift Clock. This clock synchronizes the  
serial data transfer to both MUX and ADC.  
CSMUX (Pin 13): MUX Chip Select Input. A logic high on  
this input allows the MUX to receive a channel address. A  
logic low enables the selected MUX channel and connects  
it to the MUXOUT pin for A/D conversion. For normal  
operation, drive this pin in parallel with CSADC.  
V
REF (Pin 6): Reference Input. The reference input defines  
the span of the ADC.  
COM (Pin 7): Negative Analog Input. This input is the  
negative analog input to the ADC and must be free of noise  
with respect to GND.  
DIN (Pin 14): Digital Data Input. The multiplexer address  
is shifted into this input.  
GND (Pin 8): Analog Ground. GND should be tied directly  
to an analog ground plane.  
MUXOUT (Pin 15): MUX Output. This pin is the output of  
the multiplexer. Tie to ADCIN for normal operation.  
CSADC (Pin 9):ADC Chip Select Input. A logic high on this  
inputpowersdowntheADCandthree-statesDOUT. Alogic  
low on this input enables the ADC to sample the selected  
channel and start the conversion. For normal operation,  
drive this pin in parallel with CSMUX.  
VCC (Pin 16): Power Supply Voltage. This pin should be  
tied to Pin 11.  
LTC1598L  
CH5 (Pin 1): Analog Multiplexer Input.  
CH6 (Pin 2): Analog Multiplexer Input.  
CH7 (Pin 3): Analog Multiplexer Input.  
COM (Pin 8): Negative Analog Input. This input is the  
negative analog input to the ADC and must be free of noise  
with respect to GND.  
GND (Pin 9): Analog Ground. GND should be tied directly  
to an analog ground plane.  
GND (Pin 4): Analog Ground. GND should be tied directly  
to an analog ground plane.  
CSADC (Pin 10): ADC Chip Select Input. A logic high on  
this input deselects and powers down the ADC and three-  
states DOUT. A logic low on this input enables the ADC to  
sample the selected channel and start the conversion. For  
normal operation drive this pin in parallel with CSMUX.  
CLK(Pin5):ShiftClock. Thisclocksynchronizestheserial  
data transfer to both MUX and ADC. It also determines the  
conversion speed of the ADC.  
CSMUX (Pin 6): MUX Chip Select Input. A logic high on  
this input allows the MUX to receive a channel address. A  
logic low enables the selected MUX channel and connects  
it to the MUXOUT pin for A/D conversion. For normal  
operation, drive this pin in parallel with CSADC.  
DOUT (Pin 11): Digital Data Output. The A/D conversion  
result is shifted out of this output.  
NC (Pin 12): No Connection.  
NC (Pin 13): No Connection.  
DIN (Pin 7): Digital Data Input. The multiplexer address is  
shifted into this input.  
CLK (Pin 14): Shift Clock. This input should be tied to Pin 5.  
7
LTC1594L/LTC1598L  
U
U
U
PIN FUNCTIONS  
VCC (Pin 15): Power Supply Voltage. This pin provides  
power to the A/D Converter. It must be bypassed directly  
to the analog ground plane.  
VCC (Pin 19): Power Supply Voltage. This pin should be  
tied to Pin 15.  
CH0 (Pin 20): Analog Multiplexer Input.  
CH1 (Pin 21): Analog Multiplexer Input.  
CH2 (Pin 22): Analog Multiplexer Input.  
CH3 (Pin 23): Analog Multiplexer Input.  
CH4 (Pin 24): Analog Multiplexer Input.  
VREF (Pin 16): Reference Input. The reference input  
defines the span of the ADC.  
ADCIN (Pin 17): ADC Input. This input is the positive  
analog input to the ADC. Connect this pin to MUXOUT for  
normal operation.  
MUXOUT (Pin 18): MUX Output. This pin is the output of  
the multiplexer. Tie to ADCIN for normal operation.  
W
BLOCK DIAGRA S  
LTC1594L  
LTC1598L  
15  
5
6
16  
18  
17  
16  
V
15, 19  
V
V
V
CC  
LTC1594L  
MUXOUT  
ADCIN  
LTC1598L  
20
MUXOUT  
ADCIN  
REF  
CC  
REF  
9
CSADC  
1
2
3
4
CH0  
CH1  
13  
12  
14  
10  
21
22
23
24
10  
6
CSMUX  
CLK  
CSADC  
CSMUX  
CLK  
12-BIT  
SAMPLING  
ADC  
4-CHANNEL  
MUX  
+
CH2  
CH3  
5, 14  
7
12-BIT  
SAMPLING  
ADC  
D
8-CHANNEL  
MUX  
IN  
D
OUT  
D
IN  
1
2
3
7
COM  
11  
12  
13  
D
OUT  
GND  
8
1594L BD  
NC  
NC  
8
COM  
GND  
4, 9  
1598L BD  
TEST CIRCUITS  
Load Circuit for tdDO, tr and tf  
Voltage Waveforms for DOUT Rise and Fall Times, tr, tf  
1.4V  
3k  
V
V
OH  
OL  
D
OUT  
D
TEST POINT  
OUT  
t
t
1594L/98L TC02  
r
f
100pF  
1594L/98L TC01  
8
LTC1594L/LTC1598L  
TEST CIRCUITS  
Voltage Waveforms for ten  
Voltage Waveforms for DOUT Delay Times, tdDO  
LTC1594L/LTC1598L  
CLK  
CSADC  
CLK  
V
IL  
t
dDO  
V
OH  
1
2
D
OUT  
V
OL  
1594L/98L TC03  
B11  
D
OUT  
V
OL  
t
en  
1594L/98L TC06  
Load Circuit for tdis and ten  
Voltage Waveforms for tdis  
TEST POINT  
3k  
CSADC = CSMUX = CS  
V
IH  
V
t
WAVEFORM 2, t  
CC dis  
en  
D
OUT  
D
OUT  
90%  
10%  
WAVEFORM 1  
(SEE NOTE 1)  
t
dis  
WAVEFORM 1  
100pF  
t
dis  
1594L/98L TC04  
D
OUT  
WAVEFORM 2  
(SEE NOTE 2)  
NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL.  
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH  
THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL.  
1594L/98L TC05  
9
LTC1594L/LTC1598L  
U
W U U  
APPLICATIONS INFORMATION  
and can operate with reduced spans to 1.5V. Reducing  
the spans allow them to achieve 366µV resolution.  
OVERVIEW  
The LTC1594L/LTC1598L are 3V micropower, 12-bit  
sampling A/D converters that feature 4- and 8-channel  
multiplexersrespectively.Theytypicallydrawonly160µA  
of supply current when sampling at 10.5kHz. Supply  
current drops linearly as the sample rate is reduced (see  
SupplyCurrentvsSampleRate). TheADCsautomatically  
power down when not performing conversions, drawing  
only leakage current. The LTC1594L is available in a  
16-pin narrow SO package and the LTC1598L is pack-  
aged in a 24-pin SSOP. Both devices operate on a single  
supply from 2.7V to 3.6V.  
The LTC1594L/LTC1598L provide separate MUX output  
and ADC input pins to form an ideal MUXOUT/ADCIN  
loop which economizes signal conditioning. The MUX  
andADCofthedevicescanalsobecontrolledindividually  
through separate chip selects to enhance flexibility.  
SERIAL INTERFACE  
For this discussion, we will assume that CSMUX and  
CSADC are tied together and will refer to them as simply  
CS, unless otherwise specified.  
The LTC1594L/LTC1598L contain a 12-bit, switched-  
capacitor ADC, sample-and-hold, serial port and an  
external reference input pin. In addition, the LTC1594L  
has a 4-channel multiplexer and the LTC1598L provides  
an 8-channel multiplexer (see Block Diagram). They can  
measure signals floating on a DC common mode voltage  
The LTC1594L/LTC1598L communicate with the micro-  
processorandotherexternalcircuitryviaasynchronous,  
halfduplex, 4-wireinterface(seeOperatingSequencesin  
Figures 1 and 2).  
t
CYC  
CSMUX = CSADC = CS  
t
suCS  
CLK  
EN  
D1  
D
IN  
DON’T CARE  
D0  
D2  
NULL  
BIT  
Hi-Z  
Hi-Z  
D
OUT  
B3 B2 B1 B0*  
B11 B10 B9 B8 B7 B6 B5 B4  
t
SMPL  
t
CONV  
CH0 TO  
CH7  
t
ON  
ADCIN =  
MUXOUT  
COM = GND  
*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER CLOCKS ARE APPLIED WITH CS LOW,  
THE ADC WILL OUTPUT LSB-FIRST DATA THEN FOLLOWED WITH ZEROS INDEFINITELY  
1594F/98F F01  
Figure 1. LTC1594L/LTC1598L Operating Sequence Example: CH2, GND  
10  
LTC1594L/LTC1598L  
U
W U U  
APPLICATIONS INFORMATION  
t
CYC  
CSMUX = CSADC = CS  
t
suCS  
CLK  
EN  
D1  
D
D0N‘T CARE  
IN  
D0  
D2  
NULL  
BIT  
Hi-Z  
Hi-Z  
D
OUT  
DUMMY CONVERSION  
t
CONV  
CH0 TO  
CH7  
t
OFF  
ADCIN =  
MUXOUT  
1594L/98L F02  
COM = GND  
Figure 2. LTC1594L/LTC1598L Operating Sequence Example: All Channels Off  
Data Transfer  
break-before-make interval, tOPEN. After a delay of tON  
(tOFF + tOPEN), the selected channel is switched on,  
allowing the ADC in the chip to acquire input signal and  
start the conversion (see Figures 1 and 2). After 1 null bit,  
the result of the conversion is output on the DOUT line.  
The selected channel remains on, until the next falling  
edge of CS. At the end of the data exchange, CS should  
be brought high. This resets the LTC1594L/LTC1598L  
and initiates the next data exchange.  
The CLK synchronizes the data transfer with each bit  
being transmitted on the falling CLK edge and captured  
on the rising CLK edge in both transmitting and receiving  
systems.  
The LTC1594L/LTC1598L first receive input data and  
then transmit back the A/D conversion results (half  
duplex). Because of the half duplex operation, DIN and  
DOUT may be tied together allowing transmission over  
just 3 wires: CS, CLK and DATA (DIN/DOUT).  
CS  
Data transfer is initiated by a rising chip select (CS)  
signal. After CS rises, the input data on the DIN pin is  
latchedintoa4-bitregisterontherisingedgeoftheclock.  
More than four input bits can be sent to the DIN pin  
without problems, but only the last four bits clocked in  
before CS falls will be stored into the 4-bit register. This  
4-bit input data word will select the channel in the  
muliplexer (see Input Data Word and Tables 1 and 2). To  
ensure correct operation, the CS must be pulled low  
before the next rising edge of the clock.  
D
D
IN2  
IN1  
D
D
OUT2  
OUT1  
SHIFT MUX  
ADDRESS IN  
SHIFT A/D CONVERSION  
RESULT OUT  
1594L/98L AI01  
t
+ 1 NULL BIT  
SMPL  
Break-Before-Make  
The LTC1594L/LTC1598L provide a break-before-make  
interval from switching off all the channels simulta-  
neously to switching on the next selected channel once  
CS is pulled low. In other words, once CS is pulled low,  
Once the CS is pulled low, all channels are simulta-  
neously switched off after a delay of tOFF to ensure a  
11  
LTC1594L/LTC1598L  
U
W U U  
APPLICATIONS INFORMATION  
Table 2. Logic Table for the LTC1598L Channel Selection  
after a delay of tOFF, all the channels are switched off to  
ensure a break-before-make interval. After this interval,  
the selected channel is switched on allowing signal  
transmission. The selected channel remains on until the  
next falling edge of CS and the process repeats itself with  
the “EN” bit being logic high. If the “EN” bit is logic low,  
all the channels are switched off simultaneously after a  
delay of tOFF from CS being pulled low and all the  
channels remain off until the next falling edge of CS.  
CHANNEL STATUS  
EN  
0
D2  
X
0
D1  
X
0
DO  
X
0
All Off  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
1
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
Input Data Word  
1
1
1
1
When CS is high, the LTC1594L/LTC1598L clock data  
into the DIN inputs on the rising edge of the clock and  
store the data into a 4-bit register. The input data words  
are defined as follows:  
Transfer Curve  
The LTC1594L/LTC1598L are permanently configured  
for unipolar only. The input span and code assignment  
for this conversion type is illustrated below.  
EN  
D2  
D1  
D0  
Transfer Curve  
CHANNEL SELECTION  
1594L/98L AI02  
“EN” Bit  
1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 0  
The first bit in the 4-bit register is an “EN” bit. If the “EN”  
bit is a logic high, as illustrated in Figure 1, it enables the  
selectedchannelafteradelayoftON whentheCSispulled  
low. If the “EN” bit is logic low, as illustrated in Figure 2,  
it disables all channels after a delay of tOFF when the CS  
is pulled low.  
0 0 0 0 0 0 0 0 0 0 0 1  
V
IN  
0 0 0 0 0 0 0 0 0 0 0 0  
V
4096  
REF  
1LSB =  
Multiplexer (MUX) Address  
1594L/98L • AI03  
The 3 bits of input word following the “EN” bit select the  
channel in the MUX for the requested conversion. For a  
given channel selection, the converter will measure the  
voltageoftheselectedchannelwithrespecttothevoltage  
on the COM pin. Tables 1 and 2 show the various bit  
combinations for the LTC1594L/LTC1598L channel  
selection.  
Output Code  
INPUT VOLTAGE  
(V = 2.500V)  
OUTPUT CODE  
INPUT VOLTAGE  
REF  
2.49939V  
1 1 1 1 1 1 1 1 1 1 1 1 1 1  
V
REF  
V
REF  
– 1LSB  
2.49878V  
1 1 1 1 1 1 1 1 1 1 1 1 1 0  
– 2LSB  
0.00061V  
0V  
0 0 0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1LSB  
0V  
1594L/98L • AI04  
Table 1. Logic Table for the LTC1594L Channel Selection  
CHANNEL STATUS  
EN  
0
D2  
X
0
D1  
X
0
DO  
X
All Off  
CH0  
CH1  
CH2  
CH3  
1
0
1
0
0
1
1
0
1
0
1
0
1
1
12  
LTC1594L/LTC1598L  
U
W U U  
APPLICATIONS INFORMATION  
Operation with DIN and DOUT Tied Together  
(see Figure 3). Therefore the processor port line must be  
switchedtoaninputwithCSbeinglowtoavoidaconflict.  
The LTC1594L/LTC1598L can be operated with DIN and  
DOUT tied together. This eliminates one of the lines  
required to communicate to the microprocessor (MPU).  
Data is transmitted in both directions on a single wire.  
The processor pin connected to this data line should be  
configurable as either an input or an output. The  
LTC1594L/LTC1598L will take control of the data line  
after CS falling and before the 6th falling CLK while the  
processor takes control of the data line when CS is high  
Separate Chip Selects for MUX and ADC  
The LTC1594L/LTC1598L provide separate chip selects,  
CSMUXandCSADC, tocontrolMUXandADCseparately.  
This feature not only provides the flexibility to select a  
particular channel once for multiple conversions (see  
Figure 4) but also maximizes the sample rate up to  
20ksps (see Figure 5).  
t
suCS  
CS  
1
2
3
4
5
6
CLK  
DATA (D /D  
IN OUT  
)
EN  
D2  
D1  
D0  
B11  
B10  
• • •  
MPU CONTROLS DATA LINE AND SENDS  
MUX ADDRESS TO LTC1594L/LTC1598L  
LTC1594L/LTC1598L CONTROLS DATA LINE AND SENDS  
A/D RESULT BACK TO MPU  
PROCESSOR MUST RELEASE DATA  
LINE AFTER CS FALLING AND  
BEFORE THE 6TH FALLING CLK  
LTC1594L/LTC1598L TAKES CONTROL OF DATA  
LINE AFTER CS FALLING AND BEFORE THE  
6TH FALLING CLK  
1594L/98L F03  
Figure 3. LTC1594L/LTC1598L Operation with DIN and DOUT Tied Together  
CSMUX  
CSADC  
CLK  
t
t
suCS  
suCS  
EN  
D1  
D
IN  
DON’T CARE  
DON’T CARE  
D0  
D0  
D2  
NULL  
BIT  
NULL  
BIT  
Hi-Z  
Hi-Z  
Hi-Z  
D
OUT  
B3 B2 B1 B0  
B3 B2 B1 B0  
B11 B10 B9 B8 B7 B6 B5 B4  
B11 B10 B9 B8 B7 B6 B5 B4  
t
t
SMPL  
SMPL  
t
t
CONV  
CONV  
CH0 TO  
CH7  
t
ON  
ADCIN =  
MUXOUT  
1594L/98L F04  
COM = GND  
Figure 4. Selecting a Channel Once for Multiple Conversions  
13  
LTC1594L/LTC1598L  
U
W U U  
APPLICATIONS INFORMATION  
CSADC  
CSMUX  
t
t
suCS  
suCS  
CLK  
EN  
D1  
EN  
D1  
EN  
D1  
D
IN  
DON’T CARE  
DON’T CARE  
D0  
D2  
B3 B2 B1 B0  
D0  
D2  
B3 B2 B1 B0  
D0  
D2  
B3 B2 B1 B0  
NULL  
BIT  
NULL  
BIT  
D
OUT  
B4  
B11 B10 B9 B8 B7 B6 B5 B4  
B11 B10 B9 B8 B7 B6 B5 B4  
t
t
SMPL  
SMPL  
t
t
CONV  
CONV  
CH0 TO  
CH7  
t
t
ON  
ON  
ADCIN =  
MUXOUT  
1594L/98L F05  
COM = GND  
Figure 5. Use Separate Chip Selects to Maximize Sample Rate  
1000  
MUXOUT/ADCIN Loop Economizes  
Signal Conditioning  
T
= 25°C  
A
V
V
= 2.7V  
CC  
REF  
CLK  
= 2.5V  
= 200kHz  
f
TheMUXOUTandADCINpinsoftheLTC1594L/LTC1598L  
form a very flexible external loop that allows Program-  
mable Gain Amplifier (PGA) and/or processing analog  
input signals prior to conversion. This loop is also a cost  
effective way to perform the conditioning, because only  
one circuit is needed instead of one for each channel.  
100  
10  
1
In the Typical Applications section, there are a few  
examplesillustratinghowtousetheMUXOUT/ADCINloop  
to form a PGA and to antialias filter several analog inputs.  
0.1  
1
10  
100  
SAMPLE FREQUENCY (kHz)  
1594L/98L G01  
Figure 6. Automatic Power Shutdown Between Conversions  
Allows Power Consumption to Drop with Sample Rate  
ACHIEVING MICROPOWER PERFORMANCE  
With typical operating currents of 160µA and automatic  
shutdown between conversions, the LTC1594L/  
LTC1598L achieve extremely low power consumption  
overawiderangeofsamplerates(seeFigure6). Theauto  
shutdownallowsthesupplycurrenttodropwithreduced  
samplerate. Severalthingsmustbetakenintoaccountto  
achieve such a low power consumption.  
leaving the CLK running to clock the input data word into  
MUX.IftheCS,DIN andCLKarenotrunningrail-to-rail,the  
input logic buffers will draw currents. These currents may  
be large compared to the typical supply current. To obtain  
the lowest supply current, run the CS, DIN and CLK pins  
rail-to-rail.  
DOUT Loading  
Shutdown  
Capacitive loading on the digital output can increase  
power consumption. A 100pF capacitor on the DOUT pin  
canaddmorethan50µAtothesupplycurrentata200kHz  
clock frequency. An extra 50µA or so of current goes into  
charging and discharging the load capacitor. The same  
goes for digital lines driven at a high frequency by any  
logic. The (C)(V)(f) currents must be evaluated and the  
troublesome ones minimized.  
The LTC1594L/LTC1598L are equipped with automatic  
shutdown features. They draw power when the CS pin is  
low. The bias circuits and comparator of the ADC powers  
down and the reference input becomes high impedance at  
the end of each conversion leaving the CLK running to  
clockouttheLSBfirstdataorzeroes(seeFigures1and2).  
WhentheCSpinishigh,theADCpowersdowncompletely  
14  
LTC1594L/LTC1598L  
U
W U U  
APPLICATIONS INFORMATION  
BOARD LAYOUT CONSIDERATIONS  
SAMPLE-AND-HOLD  
BoththeLTC1594L/LTC1598Lprovideabuilt-insample-  
and-hold (S&H) function to acquire signals through the  
selected channel, assuming the ADCIN and MUXOUT  
pins are tied together. The S & H of these parts acquire  
input signals through the selected channel relative to  
COM input during the tSMPL time (see Figure 7).  
Grounding and Bypassing  
The LTC1594L/LTC1598L are easy to use if some care is  
taken. They should be used with an analog ground plane  
and single point grounding techniques. The GND pin  
should be tied directly to the ground plane.  
The VCC pin should be bypassed to the ground plane with  
a10µFtantalumcapacitorwithleadsasshortaspossible.  
If the power supply is clean, the LTC1594L/LTC1598L  
can also operate with smaller 1µF or less surface mount  
or ceramic bypass capacitors. All analog inputs should  
be referenced directly to the single point ground. Digital  
inputs and outputs should be shielded from and/or  
routed away from the reference and analog circuitry.  
Single-Ended Inputs  
Thesample-and-holdoftheLTC1594L/LTC1598Lallows  
conversion of rapidly varying signals. The input voltage  
is sampled during the tSMPL time as shown in Figure 7.  
The sampling interval begins after tON time once the CS  
is pulled low and continues until the second falling CLK  
edge after the CS is low (see Figure 7). On this falling CLK  
SAMPLE  
HOLD  
“ANALOG” INPUT MUST  
SETTLE DURING  
THIS TIME  
t
ON  
CSADC = CSMUX = CS  
CLK  
t
t
CONV  
SMPL  
DON‘T CARE  
D
IN  
EN  
D2  
D1  
D0  
D
OUT  
B11  
1ST BIT TEST “COM” INPUT MUST  
SETTLE DURING THIS TIME  
MUXOUT = ADCIN  
CH0 TO CH7  
COM  
1594L/98L F07  
Figure 7. LTC1594L/LTC1598L ADCIN and COM Input Settling Windows  
15  
LTC1594L/LTC1598L  
U
W U U  
APPLICATIONS INFORMATION  
“COM” Input Settling  
edge, the S & H goes into hold mode and the conversion  
begins. The voltage on the “COM” input must remain  
constant and be free of noise and ripple throughout the  
conversion time. Otherwise, the conversion operation  
may not be performed accurately. The conversion time is  
12 CLK cycles. Therefore, a change in the “COM” input  
voltage during this interval can cause conversion errors.  
For a sinusoidal voltage on the “COM” input this error  
would be:  
AttheendofthetSMPL,theinputcapacitorswitchestothe  
“COM” input and conversion starts (see Figures 1 and 7).  
During the conversion, the “analog” input voltage is  
effectively “held” by the sample-and-hold and will not  
affecttheconversionresult. However, itiscriticalthatthe  
“COM” input voltage settles completely during the first  
CLK cycle of the conversion time and be free of noise.  
Minimizing RSOURCEand C2 will improve settling time.  
If a large “COM” input source resistance must be used,  
the time allowed for settling can be extended by using a  
slower CLK frequency.  
V
ERROR(MAX) = VPEAK(2π)(f)(“COM”)12/fCLK  
Where f(“COM”) is the frequency of the “COM” input  
voltage, VPEAK is its peak amplitude and fCLK is the  
frequency of the CLK. In most cases, VERROR will not be  
significant. For a 60Hz signal on the “COM” input to  
generate a 0.5LSB error (305µV) with the converter  
running at CLK = 200kHz, its peak value would have to be  
5.266mV.  
Input Op Amps  
When driving the analog inputs with an op amp it is  
important that the op amp settle within the allowed time  
(see Figure 7). Again, the “analog” and “COM” input  
sampling times can be extended as described above to  
accommodatesloweropamps. Mostopamps, including  
the LT®1006 and LT1413 single supply op amps, can be  
made to settle well even with the minimum settling  
windows of 7.5µs (“analog” input) which occur at the  
maximum clock rate of 200kHz.  
ANALOG INPUTS  
Because of the capacitive redistribution A/D conversion  
techniques used, the analog inputs of the LTC1594L/  
LTC1598Lhavecapacitiveswitchinginputcurrentspikes.  
These current spikes settle quickly and do not cause a  
problem. However, if large source resistances are used  
or if slow settling op amps drive the inputs, care must be  
taken to insure that the transients caused by the current  
spikes settle completely before the conversion begins.  
Source Resistance  
The analog inputs of the LTC1594L/LTC1598L look like a  
20pFcapacitor(CIN)inserieswitha1kresistor(RON)and  
a 90channel resistance as shown in Figure 8. CIN gets  
switched between the selected “analog” and “COM”  
inputsonceduringeachconversioncycle. Largeexternal  
source resistors and capacitances will slow the settling  
of the inputs. It is important that the overall RC time  
constants be short enough to allow the analog inputs to  
completely settle within the allowed time.  
“Analog” Input Settling  
TheinputcapacitoroftheLTC1594L/LTC1598Lisswitched  
onto the selected channel input during the tSMPL time (see  
Figure7)andsamplestheinputsignalwithinthattime.The  
sample phase is at least 1 1/2 CLK cycles before conver-  
sion starts. The voltage on the “analog” input must settle  
completely within tSMPL. Minimizing RSOURCE+ and C1 will  
improve the input settling time. If a large “analog” input  
source resistance must be used, the sample time can be  
increased by using a slower CLK frequency.  
MUX  
“ANALOG”  
+
R
ON  
INPUT  
R
90Ω  
SOURCE  
MUXOUT  
ADCIN  
LTC1594L  
LTC1598L  
V
+
IN  
R
ON  
C1  
1k  
C
“COM”  
INPUT  
IN  
20pF  
R
SOURCE  
V
IN  
1594L/98L F08  
C2  
Figure 8. Analog Input Equivalent Circuit  
16  
LTC1594L/LTC1598L  
U
W U U  
APPLICATIONS INFORMATION  
Input Leakage Current  
Offset with Reduced VREF  
Inputleakagecurrentscanalsocreateerrorsifthesource  
resistance gets too large. For instance, the maximum  
input leakage specification of 200nA (at 85°C) flowing  
through a source resistance of 600will cause a voltage  
drop of 120µV or 0.2LSB. This error will be much  
reduced at lower temperatures because leakage drops  
rapidly (see typical curve Input Channel Leakage Current  
vs Temperature).  
The offset of the LTC1594L/LTC1598L has a larger effect  
on the output code when the ADCs are operated with  
reduced reference voltage. The offset (which is typically  
afixedvoltage)becomesalargerfractionofanLSBasthe  
size of the LSB is reduced. The typical curve of Change in  
Offset vs Reference Voltage shows how offset in LSBs is  
related to reference voltage for a typical value of VOS. For  
example, a VOS of 122µV which is 0.2LSB with a 2.5V  
reference becomes 0.5LSB with a 1V reference and  
2.5LSBs with a 0.2V reference. If this offset is unaccept-  
able, it can be corrected digitally by the receiving system  
or by offsetting the “COM” input of the LTC1594L/  
LTC1598L.  
REFERENCE INPUTS  
The reference input of the LTC1594L/LTC1598L is effec-  
tively a 50k resistor from the time CS goes low to the end  
of the conversion. The reference input becomes a high  
impedance node at any other time (see Figure 9). Since  
the voltage on the reference input defines the voltage  
span of the A/D converter, the reference input should be  
driven by a reference with low ROUT(ex. LT1004, LT1019  
Noise with Reduced VREF  
ThetotalinputreferrednoiseoftheLTC1594L/LTC1598L  
can be reduced to approximately 400µV peak-to-peak  
using a ground plane, good bypassing, good layout  
techniquesandminimizingnoiseonthereferenceinputs.  
This noise is insignificant with a 5V reference but will  
become a larger fraction of an LSB as the size of the LSB  
is reduced.  
and LT1021) or a voltage source with low ROUT  
.
+
REF  
LTC1594L  
LTC1598L  
1
R
OUT  
V
REF  
GND  
4
For operation with a 2.5V reference, the 400µV noise is  
only 0.66LSB peak-to-peak. In this case, the LTC1594L/  
LTC1598Lnoisewillcontributevirtuallynouncertaintyto  
the output code. However, for reduced references the  
noise may become a significant fraction of an LSB and  
cause undesirable jitter in the output code. For example,  
witha1.25Vreferencethissame400µVnoiseis1.32LSB  
peak-to-peak. Thiswillreducetherangeofinputvoltages  
overwhichastableoutputcodecanbeachievedby1LSB.  
If the reference is further reduced to 1V, the 400µV noise  
becomes equal to 1.65LSBs and a stable code may be  
difficult to achieve. In this case, averaging multiple  
readings may be necessary.  
1594L/98L F09  
Figure 9. Reference Input Equivalent Circuit  
Reduced Reference Operation  
The effective resolution of the LTC1594L/LTC1598L can  
be increased by reducing the input span of the convert-  
ers. The LTC1594L/LTC1598L exhibit good linearity and  
gain over a wide range of reference voltages (see typical  
curves Change in Linearity vs Reference Voltage and  
Change in Gain vs Reference Voltage). However, care  
must be taken when operating at low values of VREF  
because of the reduced LSB step size and the resulting  
higher accuracy requirement placed on the converters.  
The following factors must be considered when operat-  
ing at low VREF values:  
Thisnoisedatawastakeninaverycleansetup. Anysetup  
induced noise (noise or ripple on VCC, VREF or VIN) will  
add to the internal noise. The lower the reference voltage  
to be used the more critical it becomes to have a clean,  
noise free setup.  
1. Offset  
2. Noise  
3. Conversion speed (CLK frequency)  
17  
LTC1594L/LTC1598L  
U
W U U  
APPLICATIONS INFORMATION  
Conversion Speed with Reduced VREF  
Effective Number of Bits  
With reduced reference voltages, the LSB step size is  
reducedandtheLTC1594L/LTC1598Linternalcompara-  
tor overdrive is reduced. Therefore, it may be necessary  
to reduce the maximum CLK frequency when low values  
of VREF are used.  
TheEffectiveNumberofBits(ENOBs)isameasurementof  
the resolution of an ADC and is directly related to S/(N + D)  
by the equation:  
ENOB = [S/(N + D) – 1.76]/6.02  
where S/(N + D) is expressed in dB. At the maximum  
samplingrateof10.5kHzwitha5Vsupply,theLTC1594L/  
LTC1598L maintain above 10.7 ENOBs at 10kHz input  
frequency. Above 10kHz the ENOBs gradually decline, as  
shown in Figure 11, due to increasing second harmonic  
distortion. The noise floor remains low.  
DYNAMIC PERFORMANCE  
The LTC1594L/LTC1598L have exceptional sampling  
capability. Fast Fourier Transform (FFT) test techniques  
are used to characterize the ADC’s frequency response,  
distortion and noise at the rated throughput. By applying  
a low distortion sine wave and analyzing the digital  
output using an FFT algorithm, the ADC’s spectral con-  
tent can be examined for frequencies outside the funda-  
mental. Figure 10 shows a typical LTC1594L/LTC1598L  
plot.  
12  
11  
10  
9
74  
68  
62  
56  
50  
8
7
6
0
5
T
V
V
= 25°C  
A
= 2.7V  
4
CC  
REF  
= 3.05kHz  
20  
40  
= 2.5V  
3
T
= 25°C  
A
f
f
f
IN  
CLK  
SMPL  
V
f
= 2.7V  
CC  
2
= 120kHz  
= 200kHz  
CLK  
SMPL  
= 7.5kHz  
1
f
= 10.5kHz  
0
60  
1
10  
INPUT FREQUENCY (kHz)  
100  
1594L/98L G09  
80  
Figure 11. Effective Bits and S/(N + D) vs Input Frequency  
100  
120  
2.5 3.0  
0.5 1.0 1.5 2.0  
FREQUENCY (kHz)  
0
3.5 4.0  
Total Harmonic Distortion  
1594L/98L G13  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamen-  
tal itself. The out-of-band harmonics alias into the fre-  
quency band between DC and half of the sampling  
frequency. THD is defined as:  
Figure 10. LTC1594L/LTC1598L Nonaveraged,  
4096 Point FFT Plot  
Signal-to-Noise Ratio  
The Signal-to-Noise plus Distortion Ratio (S/N + D) is the  
ratio between the RMS amplitude of the fundamental  
input frequency to the RMS amplitude of all other fre-  
quency components at the ADC’s output. The output is  
band limited to frequencies above DC and below one half  
the sampling frequency. Figure 11 shows a typical spec-  
tral content with a 10.5kHz sampling rate.  
V2 + V32 + V42 +... + V2  
2
N
THD = 20log  
V
1
where V1 is the RMS amplitude of the fundamental  
frequency and V2 through VN are the amplitudes of the  
second through the Nth harmonics. The typical THD  
18  
LTC1594L/LTC1598L  
U
W U U  
APPLICATIONS INFORMATION  
specification in the Dynamic Accuracy table includes the  
2nd through 5th harmonics. With a 1kHz input signal, the  
LTC1594L/LTC1598L have typical THD of 78dB with  
amplitude f ± f  
(
)
b
a
IMD f ± f = 20log  
(
)
a
b
amplitude at fa  
VCC = 2.7V.  
Peak Harmonic or Spurious Noise  
Intermodulation Distortion  
The peak harmonic or spurious noise is the largest  
spectral component excluding the input signal and DC.  
This value is expressed in dBs relative to the RMS value  
of a full-scale input signal.  
If the ADC input signal consists of more than one  
spectral component, the ADC transfer function nonlin-  
earity can produce intermodulation distortion (IMD)  
in addition to THD. IMD is the change in one sinusoi-  
dal input caused by the presence of another sinusoidal  
input at a different frequency.  
Full-Power and Full-Linear Bandwidth  
The full-power bandwidth is that input frequency at  
which the amplitude of the reconstructed fundamental is  
reduced by 3dB for a full-scale input.  
If two pure sine waves of frequencies fa and fb are applied  
to the ADC input, nonlinearities in the ADC transfer  
functioncancreatedistortionproductsatsumanddiffer-  
ence frequencies of mfa ±nfb, where m and n = 0, 1, 2, 3,  
etc. For example, the 2nd order IMD terms include (fa +  
fb) and (fa – fb) while 3rd order IMD terms include (2fa +  
fb), (2fa – fb), (fa + 2fb), and (fa – 2fb). If the two input sine  
waves are equal in magnitudes, the value (in dB) of the  
2nd order IMD products can be expressed by the follow-  
ing formula:  
The full-linear bandwidth is the input frequency at which  
the effective bits rating of the ADC falls to 11 bits. Beyond  
this frequency, distortion of the sampled input signal  
increases.TheLTC1594L/LTC1598Lhavebeendesigned  
to optimize input bandwidth, allowing the ADCs to  
undersample input signals with frequencies above the  
converters’ Nyquist Frequency.  
U
TYPICAL APPLICATIONS N  
Microprocessor Interfaces  
Motorola SPI (MC68HC05)  
The LTC1594L/LTC1598L can interface directly (without  
external hardware) to most popular microprocessors’  
(MPU) synchronous serial formats including  
MICROWIRE, SPI and QSPI. If an MPU without a dedi-  
cated serial port is used, then three of the MPU’s parallel  
port lines can be programmed to form the serial link to the  
LTC1594L/LTC1598L.Includedhereisoneserialinterface  
example.  
TheMC68HC05hasbeenchosenasanexampleofanMPU  
withadedicatedserialport. ThisMPUtransfersdataMSB-  
first and in 8-bit increments. The DIN word sent to the data  
register starts the SPI process. With three  
8-bit transfers the A/D result is read into the MPU. The  
second 8-bit transfer clocks B11 through B7 of the A/D  
conversion result into the processor. The third 8-bit trans-  
fer clocks the remaining bits B6 through B0 into the MPU.  
ANDing the second byte with 1FHEX clears the three most  
significantbitsandANDingthethirdbytewithFEHEX clears  
theleastsignificantbit. Shiftingthedatatotherightbyone  
bit results in a right justified word.  
19  
LTC1594L/LTC1598L  
U
TYPICAL APPLICATIONS N  
MC68HC05 CODE  
BPL LOOP1 Loop if not done with transfer to previous instruction  
LDA #$52 Configuration data for serial peripheral  
control register (Interrupts disabled, output  
enabled, master, Norm = 0, Ph = 0, Clk/16)  
BCLR 0,$02 Bit 0 Port C ($02) goes low (CS goes low)  
LDA $0C  
STA $0C  
Load contents of SPI data register into Accumulator  
Start next SPI cycle  
STA $0A  
Load configuration data into location $0A (SPCR)  
LDA #$FF Configuration data for I/O ports  
(all bits are set as outputs)  
LOOP2 TST $0B  
Test status of SPIF  
BPL LOOP2 Loop if not done  
STA $04  
STA $05  
STA $06  
Load configuration data into Port A DDR ($04)  
LDA $0C  
STA $0C  
Load contents of SPI data register into Accumulator  
Start next SPI cycle  
Load configuration data into Port B DDR ($05)  
Load configuration data into Port C DDR ($06)  
AND #$IF  
Clear 3 MSBs of first D  
word  
OUT  
LDA #$08 Put D word for LTC1598L into Accumulator  
STA $00  
Load Port A ($00) with MSBs  
Test status of SPIF  
IN  
(CH0 with respect to GND)  
LOOP3 TST $0B  
STA $50  
Load D word into memory location $50  
IN  
BPL LOOP3 Loop if not done  
START BSET 0,$02 Bit 0 Port C ($02) goes high (CS goes high)  
LDA $0C  
Load contents of SPI data register into Accumulator  
LDA $50  
STA $0C  
Load D word at $50 into Accumulator  
AND #$FE Clear LSB of second D  
word  
IN  
IN  
OUT  
Load D word into SPI data register ($0C) and  
STA $01  
Load Port B ($01) with LSBs  
start clocking data  
JMP START Go back to start and repeat program  
LOOP1 TST $0B  
Test status of SPIF bit in SPI status register ($0B)  
Data Exchange Between LTC1598L and MC68HC05  
CSMUX  
= CSADC  
= CS  
CLK  
EN D2 D1 DO  
DON‘T CARE  
D
IN  
D
OUT  
B11 B10 B9 B8 B7  
B6  
B5 B4 B3 B2 B1 B0 B1 B2  
MPU  
TRANSMIT  
WORD  
0
?
0
?
0
?
0
EN D2 D1 D0  
X
?
X
?
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
BYTE 2  
BYTE 1  
BYTE 3  
MPU  
RECEIVED  
WORD  
?
?
?
?
?
B11 B10 B9 B8 B7  
BYTE 2  
B6 B5 B4  
B2 B1 B0  
B3  
B1  
1594L/98L TA03  
BYTE 1  
BYTE 3  
Hardware and Software Interface to Motorola MC68HC05  
D
FROM LTC1598L STORED IN MC68HC05 RAM  
OUT  
MSB  
C0  
MC68HC05  
CSMUX  
CSADC  
0
BYTE 1  
BYTE 2  
B11 B10  
B8  
B7  
0
0
0
B9  
B1  
#00  
#01  
ANALOG  
INPUTS  
SCK  
LTC1598L CLK  
LSB  
B0  
D
IN  
MOSI  
MISO  
B6  
B5  
B4  
B2  
B3  
D
OUT  
1594L/98L TA04  
20  
LTC1594L/LTC1598L  
U
TYPICAL APPLICATIONS N  
MULTICHANNEL A/D USES A SINGLE  
ANTIALIASING FILTER  
than 1LSB of error due to offsets and bias currents. The  
filter’s noise and distortion are less than –72dB for a  
100Hz, 2VP-P offset sine input.  
This circuit demonstrates how the LTC1598L’s indepen-  
dent analog multiplexer can simplify design of a 12-bit  
dataacquisitionsystem.AlleightchannelsareMUXedinto  
a single 1kHz, 4th order Sallen-Key antialiasing filter,  
which is designed for single supply operation. Since the  
LTC1598L’s data converter accepts inputs from ground to  
the positive supply, rail-to-rail op amps were chosen for  
thefiltertomaximizedynamicrange.TheLT1368dualrail-  
to-rail op amp is designed to operate with 0.1µF load  
capacitors (C1 and C2). These capacitors provide fre-  
quency compensation for the amplifiers and help reduce  
the amplifier’s output impedance and improve supply  
rejection at high frequencies. The filter contributes less  
The combined MUX and A/D errors result in an integral  
nonlinearity error of ±3LSB (maximum) and a differential  
nonlinearity error of ±3/4LSB (maximum). The typical  
signal-to-noise plus distortion ratio is 68dB, with approxi-  
mately –78dB of total harmonic distortion. The LTC1598L  
is programmed through a 4-wire serial interface that is  
compatible with MICROWIRE, SPI and QSPI. Maximum  
serial clock speed is 200kHz, which corresponds to a  
10.5kHz sampling rate.  
The complete circuit consumes approximately 600µA  
from a single 3V supply.  
Simple Data Acquisition System Takes Advantage of the LTC1598L’s  
MUXOUT/ADCIN Pins to Filter Analog Signals Prior to A/D Conversion  
3.3V  
R1  
7.5k  
R2  
R3  
R4  
C8  
0.01µF  
7.5k  
7.5k  
7.5k  
3
2
5
6
8
+
+
C5  
0.015µF  
1
7
C1  
0.03µF  
C2  
0.015µF  
C4  
0.03µF  
1/2 LT1368  
1/2 LT1368  
C6  
0.1µF  
C3  
0.1µF  
4
3.3V  
C7  
1µF  
18  
MUXOUT  
17  
16  
15, 19  
V
REF  
V
CC  
LTC1598L  
ADCIN  
20 CH0  
21 CH1  
22 CH2  
23 CH3  
24 CH4  
10  
CSADC  
CSMUX  
6
5, 14  
7
12-BIT  
SAMPLING  
ADC  
8-CHANNEL  
MUX  
SERIAL DATA LINK  
MICROWIRE AND SPI  
COMPATIBLE  
CLK  
+
D
IN  
1
2
3
CH5  
CH6  
CH7  
11  
D
OUT  
12  
13  
NC  
NC  
8
COM  
GND  
4, 9  
1594L/98L TA05  
21  
LTC1594L/LTC1598L  
U
TYPICAL APPLICATIONS N  
Using MUXOUT/ADCIN Loop as PGA  
the summation of the resistors below the selected MUX  
channel. If CH0 is selected, the gain is 1 since RS1 is 0.  
Table1showsthegainforeachMUXchannel. TheLT1368  
dual rail-to-rail op amp is designed to operate with 0.1µF  
loadcapacitors. Thesecapacitorsprovidefrequencycom-  
pensation for the amplifiers, help reduce the amplifiers’  
output impedance and improve supply rejection at high  
frequencies.BecausetheLT1368’sIB islow,theRON ofthe  
selected channel will not affect the gain given by the  
formula above.  
This figure shows the LTC1598L’s MUXOUT/ADCIN pins  
and an LT1368 being used to create a single channel PGA  
witheightnoninvertinggains.CombinedwiththeLTC1391,  
the system can expand to eight channels and eight gains  
foreachchannel. UsingtheLTC1594L, thePGAisreduced  
to four gains. The output of the LT1368 drives the ADCIN  
and the resistor ladder. The resistors above the selected  
MUX channel form the feedback for the LT1368. The gain  
for this amplifier is RS1/RS2 + 1. RS1 is the summation of  
the resistors above the selected MUX channel and RS2 is  
Using the MUXOUT/ADCIN Pins of the LTC1598L to Form a PGA.  
The LTC1391 MUX Allows Eight Input Channels to be Digitized  
3V  
3V  
1µF  
LTC1391  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
+
V
1µF  
1(7)  
CH0  
3(5)  
2(6)  
8
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
D
+
V
1/2 LT1368  
3V  
0.1µF  
D
OUT  
4
D
IN  
17  
ADCIN  
16  
V
15, 19  
1µF  
CS  
CLK  
V
REF  
CC  
64R  
20 CH0  
21 CH1  
22 CH2  
23 CH3  
24 CH4  
CH7 GND  
32R  
16R  
8R  
4R  
2R  
R
10  
6
CSADC  
CSMUX  
CLK  
5, 14  
11  
8-CHANNEL  
MUX  
12-BIT  
SAMPLING  
ADC  
+
D
OUT  
µP/µC  
1
2
3
CH5  
CH6  
CH7  
7
D
IN  
R
LTC1598L  
12  
13  
18 MUXOUT  
COM  
NC  
NC  
8
GND  
4, 9  
1594L/98L TA06  
= DAISY CHAIN CONFIGURATION FOR THE LTC1391 AND THE LTC1598L  
22  
LTC1594L/LTC1598L  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTION  
G Package  
24-Lead Plastic SSOP (0.209)  
(LTC DWG # 05-08-1640)  
8.07 – 8.33*  
(0.318 – 0.328)  
24 23 22 21 20 19 18 17 16 15 14  
13  
7.65 – 7.90  
(0.301 – 0.311)  
5
7
8
1
2
3
4
6
9 10 11 12  
5.20 – 5.38**  
(0.205 – 0.212)  
1.73 – 1.99  
(0.068 – 0.078)  
0° – 8°  
0.65  
(0.0256)  
BSC  
0.13 – 0.22  
0.55 – 0.95  
(0.005 – 0.009)  
(0.022 – 0.037)  
0.05 – 0.21  
(0.002 – 0.008)  
0.25 – 0.38  
(0.010 – 0.015)  
NOTE: DIMENSIONS ARE IN MILLIMETERS  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.152mm (0.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE  
G24 SSOP 1098  
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.386 – 0.394*  
(9.804 – 10.008)  
16  
15  
14  
13  
12  
11  
10  
9
0.150 – 0.157**  
0.228 – 0.244  
(3.810 – 3.988)  
(5.791 – 6.197)  
5
7
8
1
2
3
4
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0° – 8° TYP  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
0.016 – 0.050  
(0.406 – 1.270)  
S16 1098  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC1594L/LTC1598L  
U
TYPICAL APPLICATION  
Using the LTC1598L and LTC1391 as an 8-Channel Differential 12-Bit ADC System  
3V  
18  
MUXOUT  
17  
ADCIN  
16  
V
15, 19  
1µF  
V
REF  
CC  
20 CH0  
21 CH1  
22 CH2  
23 CH3  
24 CH4  
10  
6
CSADC  
CSMUX  
CLK  
3V  
5, 14  
7
12-BIT  
SAMPLING  
ADC  
8-CHANNEL  
MUX  
+
1µF  
D
IN  
1
2
3
CH5  
CH6  
CH7  
11  
D
OUT  
LTC1391  
12  
13  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
+
V
CH0  
CH7  
CH0  
LTC1598L  
8
COM  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
D
GND  
4, 9  
V
D
OUT  
D
IN  
CS  
CLK  
CH7 GND  
D
IN  
CLK  
CS  
D
OUT  
1594L/98L TA07  
= DAISY CHAIN CONFIGURATION FOR THE LTC1391 AND THE LTC1598L  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1096/LTC1098  
LTC1096L/LTC1098L  
LTC1196/LTC1198  
LTC1282  
8-Pin SO, Micropower 8-Bit ADCs  
Low Power, Small Size, Low Cost  
Low Power, Small Size, Low Cost  
Low Power, Small Size, Low Cost  
8-Pin SO, 2.65V Micropower 8-Bit ADCs  
8-Pin SO, 1Msps 8-Bit ADCs  
3V High Speed Parallel 12-Bit ADC  
8-Pin SO, 3V, Micropower ADCs  
8-Pin SO, 5V, Micropower ADCs  
Multiplexed 3V, 12-Bit ADC  
140ksps, Complete with V , CLK, Sample-and-Hold  
REF  
LTC1285/LTC1288  
LTC1286/LTC1298  
LTC1289  
1- or 2-Channel, Auto Shutdown  
1- or 2-Channel, Auto Shutdown  
8-Channel 12-Bit Serial I/O  
LTC1296  
Multiplexed 5V, 12-Bit ADC  
8-Channel 12-Bit Serial I/O  
LTC1415  
5V High Speed Parallel 12-Bit ADC  
4-Channel, 5V Micropower 12-Bit ADC  
8-Channel, 5V Micropower 12-Bit ADC  
1.25Msps, Complete with V , CLK, Sample-and-Hold  
REF  
LTC1594  
Low Power, Small Size, Low Cost  
Low Power, Small Size, Low Cost  
LTC1598  
15948lfa LT/TP 0500 2K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  
LINEAR TECHNOLOGY CORPORATION 1997  

相关型号:

LTC1594LCS

4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters
Linear

LTC1594LCS#PBF

LTC1594L - 4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1594LCS#TR

LTC1594L - 4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1594LCS#TRPBF

LTC1594L - 4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters; Package: SO; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC1594LIS

4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters
Linear

LTC1594LIS#PBF

LTC1594L - 4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters; Package: SO; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LTC1594LIS#TRPBF

LTC1594L - 4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters; Package: SO; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LTC1594LS16

IC 4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, PDSO16, SO-16, Analog to Digital Converter
Linear

LTC1594LS16#TR

IC 4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, PDSO16, SO-16, Analog to Digital Converter
Linear

LTC1594L_15

4- and 8-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converters
Linear

LTC1594_1

4- and 8-Channel, Micropower Sampling 12-Bit Serial I/O A/D Converters
Linear

LTC1594_15

4- and 8-Channel, Micropower Sampling 12-Bit Serial I/O A/D Converters
Linear